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ABSTRACT High-heeled shoes of excessive height can severely injure shoe users. Such shoes may cause
various injuries, including musculoskeletal pain, osteoarthritis, and hallux valgus. A physician can estimate
an appropriate heel height limitation for an individual wearer by touching calcaneus to estimate deformation
of the calcaneal varus. It would typically be impractical for a woman to seek the professional assistance of
her physician when buying high-heeled shoes. A novel system was developed in this study for evaluating
the maximum safe height of high-heeled shoes for female wearers. In this study, images of Achilles tendons,
medial longitudinal arches, lateral longitudinal arches, and plantar pressure distributions served as the inputs
in the proposed system. After the system had been trained with those images, the system could output
the maximum height of high-heeled shoes for each individual wearer. In this study, two crucial methods
were used for performing the evaluating system. First, Basic CNN, VGG16, and MobileNetV2 were used to
evaluate images of feet. Through the experiments, the proposed artificial intelligence (AI) model achieved
an accuracy of 0.88. Next, a statistics algorithm was used to modify the results obtained from the AI model.
Subsequently, the error of the system declined. The mean absolute error of the proposed system which was
used for evaluating the maximum height of high-heeled shoes was 1.21 cm, which is less than the typical
increment for commercially available high-heeled shoes.

INDEX TERMS High-heeled shoes, calcaneal varus, plantar pressure, convolutional neural network (CNN),
artificial intelligence (AI).

I. INTRODUCTION
Women generally wear high-heeled shoes, which position
the heels higher than the toes, to appear taller and increase
their perceived attractiveness [1]. Moreover, many women
feel pressure to wear high-heeled shoes for long periods for
social or job requirements. According to related research,
wearing inappropriate high-heeled shoes causes severe bur-
dens and effects on the body. Of all injuries related to
high-heeled shoes, >72% are related to either the ankle or
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foot [2], including hallux valgus, musculoskeletal pain, and
osteoarthritis [3]. In addition, wearing unsuitable high-heeled
shoes for a long time may change the distribution of plantar
pressure, which affects height of the longitudinal arch and
tends to flatten the arch of the foot [4]. Women who wear
high-heeled shoes must know their bodily limits and wear
shoes that will not injure them. Because wearing high-heeled
shoes will affect change of gaits [5], studies have mainly
focused on the effects on health when people wear high-
heeled shoes by analyzing gaits, and changes of the cen-
ter of pressure (COP) and plantar pressure while walking
in high-heeled shoes. In 2002, [6] evaluated the level of

38374 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0498-3190
https://orcid.org/0000-0002-8653-2571
https://orcid.org/0000-0002-9774-7770


S.-H. Lee et al.: AI-Based Assessment System for Evaluating Suitable Range of Heel Height

muscle fatigue caused by walking in high-heeled shoes
through plantar pressure and surface electromyography and
noted that the lateral andmedial gastrocnemius muscle activi-
ties of the females who frequently wear high-heeled shoes are
unbalanced. These findings might be related to the abnormal
lateral shift of sole COPs. In 2005, [7] found that walking
while wearing high-heeled shoes increased displacement of
COP by 200% comparedwith bare feet and that varying speed
of COP was twice that of bare feet. Analyses of change of
plantar pressure can obtain states of walking and comfortable
levels when subjects are wearing high-heeled shoes. When
walking in high-heeled shoes, plantar pressures of the heel
and mid-foot will shift to the inner side of the forefoot. The
higher the heels are, the more plantar pressure is transferred
to the inner side of the forefoot and the greater the pain is in
the feet [8]–[10]. Reference [11] performed comprehensive
analysis of pressure distribution and change of COP and noted
increased pressure on the right foot when the subjects walked
in high-heeled shoes, which was due to an unstable gait.

When a high-heeled shoe user is evaluated at a clinic, the
physician observes heel deformation and medial and lateral
longitudinal arch changes and determines whether the heel
height of the shoes is suitable for the user. The deformation
of heels is caused by the tibialis anterior muscle and tibialis
posterior contracting excessively. If the subject’s heel bones
are deformed, it means the heel heights of her shoes are
inappropriate for her. In the early 21st century, deep learning
has been widely used to classify photographs; starting from
a dataset of foot measurements, the execution process of a
deep learning classification program may be the same as
the process of a physician’s diagnosis. Therefore, this study
used deep learning to make judgments about the suitability of
wearing high-heeled shoes of various heights.

For classifying photographs (including photographs of
humans), convolutional neural networks (CNNs) have
demonstrated excellent performance [12]. In 2018, [13]
applied CNNs to sign language recognition and determined
letters with different gestures. In addition to the Basic CNN
model, numerous simple and effective image classification
models have also been developed. Transfer learning is a com-
mon method for improving models’ accuracy by using a pre-
trained model, such as VGG16 and MobileNetV2 [14], [15].
In 2017, [16] adopted VGG16 for transfer learning to clas-
sify different gestures and obtained markedly high accuracy
(0.93). In 2019, [17] used VGG16 for transfer learning and
reached notably high accuracy (0.96) in American sign lan-
guage recognition. In 2019, [18] used MobileNetV2 devel-
oped by Google for transfer learning. The accuracy reached
0.99 in sign language recognition. MobileNetV2 can also
deliver rapid results onmobile devices and embedded systems
because of its small size.

To the best of our knowledge, no relevant system that
automatically and objectively evaluates the height limit of
high-heeled shoes for female shoe users has been reported
thus far. Thus, this study proposed an evaluating platform
to automatically provide the highest heel height that a

physician would advise for female users. Artificial intel-
ligence (AI) models were trained; foot image and plantar
pressure data were collected at each heel height as train-
ing data. Three models, including the Basic CNN, VGG16,
and MobileNetV2, were selected as the cores of AI models.
By using the proposed system, all female shoe users can
obtain their suitable heel height range without physicians’
assistance.

FIGURE 1. System overview.

II. SYSTEM ARCHITECTURE AND DESIGN
A. SYSTEM OVERVIEW
This study proposed an AI-based system for evaluating a suit-
able height range of high-heeled shoes. As depicted in Fig.
1, the system comprises five parts: measurement platform,
mainboard, lifting mechanism, battery, and host. The mea-
surement platform is used to collect images of plantar pres-
sure, medial longitudinal arch, lateral longitudinal arch, and
deformation of Achilles tendon under different heel heights.
The mainboard is mainly used to collect force data from
force-sensing resistor (FSR) sensors, to control the electric
lifting jack in the lifting mechanism, and to read the height
value of the digital caliper. The host provides a graphical user
interface (GUI) used to control the whole system, collect data,
display the suitable height range of high-heeled shoes, and
train AI models. The system must be used indoors with suf-
ficient lighting and have little shadows on the measurement
platform.

B. MEASUREMENT PLATFORM
In this study, the size of the measurement platform was
approximately 40 × 40 × 18.6 cm3 excluding camera frame
parts. It wasmainly used to collect foot data. Its architecture is
illustrated in Fig. 2. Six universal serial bus (USB) webcams
(C270, Logitech, Lausanne, Switzerland) were set up around
the measurement platform, with 270p resolution, a 30-fps
sampling rate, and a fixed focal length. The image data were
collected through a USB hub and then transmitted to the
host. 42 FSR sensors (FlexiForce A301, Tekscan, Boston,
MA, USA; with thickness 0.203 mm, length 25.4 mm, width
14 mm, radius of sensing area 9.53 mm) were installed on
the plane of the measurement platform to detect plantar pres-
sure. The locations of 42 FSR sensors is based on related
research [8]–[11]. The force range of each FSR sensor was
0 to 111 N (0–25 lb.). For this type of FSR, the greater the
force is, the lower the resistance is; the force is proportional
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FIGURE 2. Measurement platform architecture.

to the conductance. Two multiplexers (CD74HC4067, Texas
Instruments, Dallas, TX, USA) integrated 42 FSR sensors
and sent the analog values of FSRs to the analog-to-digital
converter in the TTGO.When the measurement platform was
lifted by the electric lifting jack, photographs of Achilles
tendon, medial longitudinal arch, and lateral longitudinal arch
were taken at every 0.5 cm of motion. The USB webcams
taking pictures of Achilles tendons were 33 cm away from the
platform plane, 25 cm high, and parallel to the ground. The
USB webcams on both laterals of the platform were 35 cm
away from the platform plane, 20.5 cm high, and tilted 10◦

upward. TheUSBwebcams in front of the platformwere 8 cm
away from the platform plane, 39.8 cm high, and tilted 15◦

downward.

C. MAINBOARD AND LIFTING MECHANISM
The architecture of the mainboard is presented in Fig. 3(a),
including a TTGO module (TTGO ESP32 16MB Flash 8MB
PSRAMmodule, Shenzhen Xin Yuan Electronic Technology
Co., Shenzhen, China), a dc–dc step-down power supply
module (LM2596S), and anH-bridge (BTS7960). The overall
size is 15× 9 cm2, and a photograph is presented in Fig. 3(b).
The first function of the TTGO is to collect data from 42 FSRs
and the digital caliper and transmit it to the host through the
ESP32Wi-Fi module in TTGO; the second function is to con-
trol the electric lifting jack. The lifting mechanism includes
an electric lifting jack and a digital caliper. When adjusting
the height of the measurement platform, the host transmits a
target height to TTGO through Wi-Fi, and then the TTGO
instructs the H-bridge through pulse width modulation to
control the speed and up/down direction of the electric lifting
jack. To exactly lift or lower the measurement platform to the
specified height, the TTGO first reads the value of the digital
caliper through an integrated circuit and raises or lowers the
lifting jack to the specified height. The power of the entire

FIGURE 3. (a) Mainboard and lifting mechanism architecture.
(b) Photograph of mainboard.

system was supplied by a 12-V 7800-mAh lithium-ion bat-
tery module. The battery module consisted of 12 lithium-ion
batteries (3.65 V and 2600 mAh; 18650, Shenzhen Baiguan
Battery Co., Ltd., Shenzhen, Guangdong, China) in series and
parallel, which supplied 5 V to the mainboard, 12 V to the
electric lifting jack, and 3.3 V to FSRs. When the battery
module was supplying power to the mainboard and FSRs,
12 V power was converted to 5 V and 3.3 V through two
independent dc–dc step-down power supply modules.

D. HOST
The host was a personal computer equipped with an Intel
Core i7@3 GHz CPU, 64GB DRAM, and a graphics card
(GeForce RTX 2080 Ti, MSI Computer Corp., New Taipei
City, Taiwan); the operating system was Windows 10. The
host provided a GUI to control the whole system, collected
data, displayed the suitable height ranges, and trained AI
models. When collecting data, the host received values of
plantar pressure and foot photographs transmitted from the
TTGO and webcams through Wi-Fi and USB respectively to
form a dataset for training AI models. This system entered
different combinations of datasets as inputs for three AI
models; the optimal combination of AI models and input
datasets was selected. The three AI models were executed in
Tensorflow (Version 1.14.0, Google Brain, Mountain View,
CA, USA) and Keras (Version 2.3.1) using the Python pro-
gramming language [19], [20].

III. SOFTWARE DESIGN
The software architecture is presented in Fig. 4. It consists
of four parts, including the GUI, image preprocessing, pro-
posed CNNs, and statistical algorithm. The GUI is applied to
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FIGURE 4. Software architecture.

FIGURE 5. GUI in collecting data mode.

collect training data for AI models and displays a maximum
suitable height of high-heeled shoes. Image preprocessing
involves generating images of plantar pressure distribution,
foot image preprocessing, and image merging. In generating
images of plantar pressure distribution, collected pressure
values from FSR sensors would convert into a continuous
distribution map. The foot image preprocessing is used to
bound the precise area of the foot in the image and remove the
background. The last part is to merge images, and the dataset
inclusive of merged images is applied to training CNNs. After
model training, a CNN is conducted to classify images into
two categories: wearable and nonwearable. After acquiring
the result of CNN, the statistical algorithm modifies errors
in 21 increments of heights which are represented wearable
or nonwearable status to obtain maximum wearable height.

A. GRAPHICAL USER INTERFACE
A GUI was implemented in Python. That GUI consists
of three modes: collecting data mode, physician evaluation

mode, and AI evaluation mode. The collecting data mode
has five buttons for operating and an interface to display
foot images, plantar pressure values, and current height of
the platform, as illustrated in Fig. 5. The ‘‘Collect’’ button,
‘‘Next’’ button, ‘‘Save’’ button, ‘‘Set’’ button, and ‘‘Restart’’
button are applied to collect photographs, raise the platform
by 0.5 cm, save foot images and plantar pressure values to
the host, set the height of the platform, and reset the platform
to the horizontal state respectively. The physician evaluation
mode provides an explicit interface through which doctors
can set the height of the platform and stores the height value
after evaluating. TheAI evaluationmode determines themax-
imum of suitable heel heights for users after measurement by
the platform.

B. IMAGE PREPROCESSING
Image Preprocessing comprises three parts: generation of
plantar pressure distribution images, foot image bounding
and matting, and image merging. For generating of plantar
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pressure distribution images, the collected data from FSR
sensors cannot directly be used as training data for CNNs
because the data are discrete values rather than images.
Therefore, an interpolation method is used to make up the
areas that are not covered by the FSR sensors to fill in the
regions with no values. When making a plantar pressure
distribution image, we first made a base map with the foot
shape, and the size of this base map is larger than the size
of any subject’s foot. The distribution of plantar pressure
shows on the base map, which can ensure that there isn’t any
pressure value ignored. Because of no value being ignored,
the consistency of images can be ensured. Eventually, discrete
values are represented as corresponding to different colors
on a color ramp; they are used to plot the image of plan-
tar pressure distribution with Python’s Matplotlib (Version:
2.2.2). The transformed image of plantar pressure distribution
is presented in Fig. 6, which yellowmeans no value of plantar
pressure and darker color means the larger value of plantar
pressure. Images of plantar pressure distribution are used to
observe the trend of change in pressure; values generated
from the interpolation method are not used as training data.
Therefore, it is helpful to use images of plantar pressure
distributions as training data.

FIGURE 6. Plantar pressure distribution.

For foot image bounding and matting, Python’s OpenCV
package (Version 4.2.0.34) was used to process foot images
taken by six cameras. Original images contain redundant
information around the foot, which reduces the accuracy of
classification. To eliminate redundant information and retain
the region inclusive of the foot, cropping can be used to
make foot in the center of the images. Moreover, setting color
threshold was used to remove the non–skin-colored region;
reserving the foot area in the whole picture minimized the
possibility of erroneous judgment due to background inter-
ference.

After generating images of plantar pressure distribution
and preprocessing of foot images, the process must merge
images of the heel, the medial longitudinal arch, the lat-
eral longitudinal arch, and the image of plantar pressure
distribution into a single image. The image size must be
224 × 224 pixels, as illustrated in Fig. 7. In this study,
we experimented on images with and without matting to
confirm whether image matting would increase the accuracy
in proposed models.

FIGURE 7. Merged image with matting.

FIGURE 8. CNN architectures of the system: (a) Basic CNN. (b) VGG16.
(c) MobileNetV2.

C. PROPOSED CNNS
A typical CNN architecture includes an input layer, several
convolutional and pooling layers, one flattening layer, one or
more fully connected layers, and one output layer. The size of
input image is set in the input layer. After the size of the input
image has been set, the features of the input image can be
extracted by convolutional layers, and noise can be reduced
through pooling layers. After a two-dimensional feature vec-
tor has been acquired, it can be converted to a one-dimension
feature vector through a flattening layer. The fully connected
layer is used to calculate the weights of neurons and to
select significant features to map final output. In this study,
the three CNN architectures presented in Fig. 8 (Basic CNN,
VGG16, and MobileNetV2) were used to experiment. The
Basic CNN model was based on Keras and modified for this
study. The VGG16 and MobileNetV2 models were based on
high-performance image classification system architectures
presented in other studies [14]–[18]. To select the CNNmodel
with the best performance, numerous experiments were con-
ducted with these CNN architectures. The Basic CNN model
was equipped with an input layer, three convolutional, max
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TABLE 1. Different network configurations.

pooling, and dropout layers, one flattening layer, two fully
connected layers, and an output layer using Softmax. The size
of input image was set as 224× 224 pixels. Thus, the system
is not affected by the camera resolution. For parameter set-
ting, the optimizer was set according to Adam [21], and the
activation function was set as ReLu. Moreover, the number
of channels was three due to red–green–blue (RGB) chan-
nels in the input images. In this study, the batch size and
the number of epochs were set as 16 and 200 respectively.
The kernel size of convolutional layer was 3 × 3, as listed
in Table 1. Table 1 offers additional details regarding the
parameter settings for three CNN architectures; C denotes
the convolutional layer, and the values in the parentheses
following C are sequentially the number of filters and kernel
size; C followed by D denotes the dropout layer, and the
value in the parentheses is the proportion of dropping data;
P denotes the pooling layer that follows the convolution
layer, and the value in the parentheses is the size of max
pooling layer; the hyphen denotes the connection between
two adjacent layers. For example, the first layer of Basic
CNN model is presented as C[32, (3 × 3)] D(0.25) P(2 ×
2), indicating that 32 filters with the kernel size 3 × 3 were
used in the convolutional layer which was followed by a
dropout function and a max pooling. In the VGG16 architec-
ture, original layers comprised 13 convolutional layers with
pooling layers among convolutional layers and three fully
connected layers; an output layer using Softmax was added
finally. In the MobileNetV2 architecture, the original layers
comprised three convolutional layers, one pooling layer, and
seven inverted residual bottleneck layers; an output layer
using Softmax was added. The details regarding the param-
eter settings for VGG16 and MobileNetV2 architectures are
also listed in Table 1, where IR denotes the inverted residual
bottleneck layer, and the values in the parentheses are sequen-
tially the number of filters and kernel size.

All proposed CNNmodels in this study were used to deter-
mine whether the heights of tested high-heeled shoes were
appropriate according to the collected data. Any shoes that

a physician would describe as suitable were noted as appro-
priate, whereas any shoes that a physician would describe as
injurious were noted as inappropriate. The maximum suitable
heights were acquired from clinical diagnoses by physicians,
and these results were used as models’ labels. To obtain
maximum suitable height, first 21 judgments that represented
wearable or nonwearable were predicted by trained CNN
model. The maximum suitable height was obtained for each
case because it occurs at a critical point between the sets of
wearable and nonwearable heights. However, the predicted
results from proposed CNNmodelsmay be less than perfectly
precise because none of the models had a 100% accuracy
regarding the critical point. Therefore, a statistical algorithm
was used to modify errors to improve the accuracy of the
proposed system.

FIGURE 9. Statistical algorithm graphs. (a) Original model-predicted
result. (b) Algorithmic modification process. (c) Modified result.

D. STATISTICAL ALGORITHM
The statistical algorithm considered 21 judgments evaluated
by the model and determined each critical point more exactly.
Fig. 9(a) depicts the original result predicted by a model. The
vertical axis of Fig. 9 represents whether the heel height is
suitable; the values one and zero denote that it is wearable and
nonwearable respectively; the horizontal axis represents the
unit of height. As illustrated in Fig. 9(a), the results contain
scattered errors, not continuous. Therefore, each data point
can be set to the mode of the five-member set containing its
adjacent four data points and itself, as presented in Fig.9(b).
Taking Fig. 9(b) as an example, the data at 7 cm should be
modified because continuous data should not vary for a single
subject. As illustrated in Fig. 9(b), The values from left to
right for 6, 6.5, 7, 7.5, and 8 are 0, 0, 1, 0, and 0; the value at
7 cm is modified from one to zero because the mode is zero.
Fig. 9(c) indicates the modified results. As revealed in Fig
9(a) and Fig. 9(c), the number of critical points decreases
from two to one. The mode algorithm can more exactly
determine the critical point without interference from model
errors, and the system can evaluate the maximum height more
precisely. The system evaluates maximum wearable height
according to single critical point. As Fig. 9(c) for example,
the maximum wearable height is 4.5 cm.

IV. EXPERIMENT DESIGN
The flow chart of the experiment design in this study is
presented in Fig. 10. It consists of three parts, including
selection and exclusion of subjects, evaluation of suitable
range of heel height, and data collection process. Subjects are
firstly screened whether they are suitable for all conditions
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FIGURE 10. The flow chart of the experiment design.

mentioned in next section. The selected subjects then stand
at the designated position on the measurement platform to
allow physicians to judge the critical height of high-heeled
shoes. After physicians finishing to estimate the maximum
safe height of high-heeled shoes for female wearers, data of
subjects are collected by using the system platform.

A. SELECTION AND EXCLUSION OF SUBJECTS
In this study, data of female subjects were collected after the
subjects had been screened. During condition screening, the
recruited subject was asked to stand naturally, with the inner
sides of the feet parallel, with the backs of the heels on a single
horizontal line. The screening and exclusion conditions based
on [22]–[24] and included the following points:
• Arch rate = 11%–14% [calculated as (the height from
the most convex point of the scaphoid bone to the
ground/foot length) × 100]

• Skew angle of the back heel ≤ 4◦

• Valgus of the big toe ≤ 20◦

• Varus of the little toe ≤ 20◦

• No congenital scoliosis
• No calluses on the soles of feet
• No history of serious lower limb injuries

B. EVALUATION OF SUITABLE RANGE OF HEEL HEIGHT
When physicians want to determine the height limit of high-
heeled shoes that the subject can wear, the subject must nat-
urally stand on the system platform with her hands hanging
beside her thighs, and the position of her transverse arch of
the feet should be at the turning point of platform when the
platform rises, as indicated by the arrow in Fig. 11. Because
the contact point between the jack and the platform is fixed,
the subject’s heels may not likely be on this contact point dur-
ing the ascent process, and the actual height of the subject’s

FIGURE 11. Position of the transverse arch (red arrow), which is the
turning point when the platform rises.

heel may not match the returned value from the digital caliper.
To adjust the height of each rise that can actually raise the heel
of the subject by 0.5 cm, this study sets four specifications
of A, B, C, and D according to the common foot length
range of Asian women, which are marked on the platform for
researchers to determine what specification of the subject’s
foot length is. The four specifications are 13.2 cm, 13.8 cm,
14.4 cm, and 15 cm respectively from the axis of rotation on
the platform, as illustrated in Fig. 12.

FIGURE 12. Schematic of the four specifications at the position of the
platform. A, B, C, and D are at 13.2, 13.8, 14.4, and 15 cm from the shaft,
respectively.

FIGURE 13. (a) Natural stance and (b) inversion of the calcaneus during
elevation.

Physicians estimate the critical height of high-heeled shoes
by diagnosing whether the subject’s calcaneus is inverse
during the continuous elevation of heels of the subject,
as depicted in Fig. 13. The entire diagnosis process is repeated
three times to avoid misjudgments and averaged to reduce
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errors. The tibialis anterior muscle attaches from the front
of the ankle to the medial foot, and the tibialis posterior
attaches from the posterior surface of the ankle to the medial
foot. When a female wears high-heeled shoes in a standing
position, the anklewill be locked in plantar flexion. These two
muscles contract simultaneously to act as antagonist muscles
and thus maintain ankle plantar flexion. When the height
of shoes just exceeds the threshold, two muscles contract
so strongly that they cause calcaneus inversion. When the
calcaneus is inverse, the program converts the height value
of the digital caliper to actual height of the heels according to
a conversion table and records the value. The aforementioned
movements must be repeated three times for the left and right
feet; the system calculates the average. In a later stage, this
average serves as a label for training AI models.

C. DATA COLLECTION PROCESS
When data are collected from a subject, the subject naturally
stands on the system platform with hands hanging beside
the thighs, and the data starts to be collected after deter-
mining the specifications of the subject’s foot length (A -
D). When the experimenter operates the apparatus, the GUI
must be switched to data collection mode. Each time the
platform rises, it automatically transforms the height, which
is converted to a 0.5-cm rise on the heel of the subject. The
researcher uses the GUI to control the platform, from 0 cm
to 10 cm; the platform rises in 0.5-cm steps. Each time the
platform rises, the photographs from six cameras and 42 FSR
sensor values are collected and stored in the host, as material
for AI training; the overall collecting process requires approx-
imately 12 minutes. The actual situation of collecting data are
presented in Fig. 14.

FIGURE 14. Actual data collection: (a) platform height = 0 cm and (b) the
rising platform.

V. RESULTS
A. DATA DISTRIBUTION OF ALL PARTICIPANTS
In this study, we recruited 175 female subjects. The
experiment procedure had been approved by the Institu-
tional Review Board (IRB) of En Chu Kong Hospital
(IRB No. ECKIRB1090404). All subjects provided written
informed consent before participating in the trial. A total
of 100 subjects passed the screening, with average age
of 21 (standard deviation (SD) = 1.245), an average height

TABLE 2. Accuracy obtained when different CNN architectures were used
with and without image preprocessing.

of 159 cm (SD = 5.42 cm), an average weight of 51 kg
(SD = 6.38 kg), and an average foot size of 24 cm
(SD = 1.02 cm). With the system set to physician evaluation
mode, 200 labeling data on maximum left and right heel
heights were labeled by physicians; the distribution of labels
is illustrated in Fig. 15. In data collection mode, we collected
42 items of left-foot and right-foot data from each subject,
and collected 4200 pieces of data from 100 subjects in total.
The data distribution was close to a normal distribution, and
the ratio of wearable and nonwearable data was 1.1:1, which
(statistically speaking) is close to 1:1.

FIGURE 15. Distribution of 200 labeling data on maximum heel height of
left and right feet labeled by physicians.

B. MODEL PERFORMANCE WITH AND WITHOUT IMAGE
PREPROCESSING
This experiment explores whether the model can perform
better with image preprocessing. Two datasets were used
for categorizing the heights of the high-heeled shoes as
wearable or unwearable. The foot images in one dataset
were cropped but not image matted. The foot images in
the other dataset were cropped and image matted. Three
CNN architectures (Basic CNN, VGG16, and MobileNetV2)
were trained on these two datasets; we verified the accuracy
through 10-fold cross-validation. The performance of three
models is listed in Table 2. The accuracies of Basic CNN,
VGG16, andMobileNetV2 for preprocessing cropped but not
image-matted datasets were 0.88, 0.88, and 0.86, respectively,
all higher than or equal to cropped and image-matted datasets.

C. MODEL PERFORMANCE WITH DIFFERENT
INPUT IMAGES
To compare performance of different models with different
input combinations, this experiment used the same three CNN
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architectures, namely Basic CNN, VGG16, MobileNetV2,
and nine datasets (of which the details are summarized
in Table 3). The foot and plantar pressure distribution images
in nine datasets were used without image matting and data
augmentation. Each dataset contains 4200 pictures, which
90% of dataset for training and 10% of dataset for testing
through three CNN architectures. Each model was verified
by 10-fold cross-validation.

Three CNN architectures and nine datasets were used
to generate nine binary classifiers for training and testing
to classify wearable and unwearable. Therefore, the study
obtained 27 models and used them for 10-fold cross-
validation. Then, this experiment compared the advantages
and disadvantages of models by averaged accuracy, loss,
precision, recall, and F1-score. The experiment results are
displayed in Table 3. It can be observed that the performance
of the model decreased when it used plantar pressure distri-
bution as a training dataset, and the dataset including Achilles
tendon, medial longitudinal arch, and lateral longitudinal arch
had high performance. In general, Basic CNN had the best
performance among all models when it used a dataset con-
taining Achilles tendon, medial longitudinal arch, and lateral
longitudinal arch data for training. The time for this trained
model to analyze a set of 21 judgments was about 5 seconds.

D. RESULTS OF MODE ALGORITHM
According to the results in Table 3, the dataset contain-
ing cropped pictures of Achilles tendon, medial longitudinal
arch, and lateral longitudinal arch without augmentation was
selected to train Basic CNN as model in this study. Basic
CNN was used to testing every 420 data for ten runs because
of 10-fold cross-validation. The experiment had 20 sets of left
and right feet for 10 subjects, and each set had 21 prediction
results of wearable and unwearable judgments of different
height. Next, a set of 21 prediction results of model were
converted in a single batch job through a mode algorithm to
reduce error. We compared the modified result with answers
evaluated by physicians; the overall average mean absolute
error (MAE) for each of the ten tests was 1.21 through
10-fold cross-validation.

VI. DISCUSSION
This study proposed an AI-based system for evaluating the
appropriate heights of high-heeled shoes using foot images.
Two experiments were conducted to evaluate whether the
system requires image preprocessing and to determine which
combination of input dataset and CNNmodel had the highest
accuracy.

In the first experiment, the datasets processed image mat-
ting and nonmatting respectively were evaluated to choose
which one could provide higher accuracy for AI models.
Table 2 shows that image nonmatting yields a higher accu-
racy in judging whether the height is wearable. The image
matting achieved a lower accuracy than image nonmatting in
judging whether such height is wearable because the system
used a threshold method of image matting so that some

foot-color-like components around the foot were reserved.
That is, the image had some irregular noise elements that
could influence the judgment of a typical AI model. A typical
AI model could perceive the changes of the feet between
different images because the backgrounds of the nonmatted
images were consistent.

Table 3 lists the results of training three different CNN
architectures using nine different datasets. It can be observed
fromTable 3 that when images of plantar pressure distribution
are used individually as the dataset, the accuracy of the model
is lower than that of other datasets. This result is caused
by two reasons. The first is that when a person is standing,
the center of gravity is divided into left or right foot. That
is, the subject is upheld primarily by the pivot foot, and the
nonpivot foot bear less pressure. The tilted center of gravity
would cause inaccurate measurement of the values of plantar
pressure, which causes irregular changes in plantar pressure
distribution images and affects AI model classification. The
second reason is that each subject had feet of an idiosyncratic
size. The subjects with small feet could not step on all the
sensors or could only half-step on some sensors, but those
with large feet could step on all the sensors. This situation
leads to the fact that not all pressure values used in illustrating
images of the plantar pressure distribution are derived from
all sensors.When the specifications are inconsistent, the trend
changes on images of the plantar pressure distribution of each
subject are also different, which reduces the performance of
AI models.

In Table 3, in addition to acquiring the result that the poor
accuracy is achieved when using images of plantar pressure
distribution individually as a training dataset, it could also
be found that the datasets including parts or all of Achilles
tendon, medial longitudinal arch, and lateral longitudinal
arch achieve high accuracy. Although some datasets include
images of plantar pressure distribution, the characteristics
of other foot pictures are sufficient for the model to make
correct judgments. As revealed in Table 3, datasets with
only pictures of Achilles tendon, or medial longitudinal arch,
or lateral longitudinal arch for training could achieve high
performance; the accuracy was equivalent to use of a dataset
containing more than three pictures. Therefore, it is only
necessary to select one of the pictures from Achilles tendon,
the medial longitudinal arch, and the lateral longitudinal arch
as the training dataset. By reducing the types of images in
the dataset, we can also reduce the complexity of the mea-
surement platform. Finally, we use Achilles tendon images
individually as the training dataset, because the physician
determines the height of subject’s suitable high-heeled shoes
based on the changes in Achilles tendon during clinical evalu-
ation. Therefore, our AI model uses Achilles tendon pictures
as the training dataset that it is the most identical evaluation
method close to the physician.

As listed in Table 3, by using images of Achilles ten-
don as the training dataset, the accuracy of Basic CNN and
VGG16 is higher than that of MobileNetV2. This is because
MobileNetV2 slightly sacrifices accuracy in pursuit of a
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TABLE 3. Overall results of different CNN architectures with different datasets.

smaller architecture and faster execution efficiency, whereas
Basic CNN and VGG16 have higher accuracy but have larger
model architectures. VGG16 and MobileNetV2 have over-
fitting because the models are more complex, resulting in
higher loss. Basic CNN uses dropout function [25] to solve
the problem of overfitting, so the loss is lower. Overall, Basic
CNN has the best performance. In Table 3, we observed the
values of indicators when Basic CNN only uses Achilles
tendon images as the training dataset. Precision is 0.86 and
recall is 0.92, which means this model has the best image
recognition; F1-score is 0.89, which means this model has
the most stable performance; area under the curve (AUC) is
0.96, which means this model has the best performance for
binary classification. Thus, this study used Basic CNN as its
favored classification model.

The MAE of the system used to evaluate the height
of high-heeled shoes suitable for subjects in this study is
1.21 cm. High-heeled shoes can be classified into three
classes according to height of heels: shoes with heel height
of <1 inch (<2.54 cm), 1–2.5 inches (2.54–6.35 cm),
and >2.5 inches (>6.35 cm) are termed low-, mid-, and
high-heeled shoes, respectively [26]. The MAE (1.21 cm) of
this system is <0.5 inches, which indicates that the system
has ability to differentiate these three classes. Moreover, this
system can even be applied to choose high-heeled shoes

whose increment is only 1 inch high; the system does not
affect user’s choice of suitable high-heeled shoes.

VII. CONCLUSION
The study proposed an innovative system to evaluate the
heel height limitations of high-heeled shoes for female shoe
users. Nine datasets and three CNN architectures were used
to evaluate the comprehensive performance of the system.
The experimental results indicated that the proposed system
attained the highest performance and faster computing speed
as using Basic CNN model with the dataset including only
Achilles tendon. As Basic CNN with the dataset includ-
ing only Achilles tendon was used as the training model,
multiple experimental results were obtained through 10-fold
cross-validation, inclusive of accuracy (0.88), loss (0.28),
precision (0.86), recall (0.92), F1-score (0.89), and AUC
(0.96). The experimental results also prove that comprehen-
sive performance of the system declines when the system uses
undesirable images of distribution of plantar pressure. Next,
the MAE of the system could reach only 1.21 cm through
mode algorithm. The most significant contribution of the
study is that we are the first team to propose an AI system to
evaluate the suitable range of heel height of high-heeled shoes
for females.Moreover, theMAEof the system is only 1.21 cm
(i.e., <0.5 inches). Therefore, this system is practical and
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effective for the prediction of heel height. This system makes
females more convenient to realize their heel height limita-
tion of high-heeled shoes without assistance from physicians.
However, the system is only suitable for particular females;
the dataset of the system was limited because data were only
collected from females who were eligible for the screening
conditions and whose plantar lengths were between 22 and
26 cm. Furthermore, this systemmust be used in a bright envi-
ronment to avoid erroneous judgment from AI model. In the
future, the measurement platform may be improved to reduce
measurement time by using Wi-Fi cameras or other types
of cameras, which can improve user comfort and make it
easier for subjects to maintain the same position. The current
approach is to provide a video for subjects to watch, which
is used to distract their attention to mitigate their discomfort.
In addition, more foot images from females whose plantar
lengths are not between 22 and 26 cm or who are unsuitable
for the screening conditions could be collected by increasing
the number of FSR sensors and arranging the positions of
FSR sensors more densely such that our proposed system can
be suitable for more extensive groups of female shoe users.
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