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ABSTRACT Increasing evidence from recent research demonstrates that aberrant expressions of microR-
NAs (miRNAs) are linked to the development of chronic human diseases. Targeting miRNAs with bioactive
small-molecules (or drugs) to regulate their activities provide an innovative insight into human disease
treatment. Identifying the drugs that target particular miRNAs through the experimental study is complicated,
time-consuming, and tremendously expensive. Therefore, computational researches by integrating infor-
mation on drugs and miRNAs are essential for discovering potential drug-miRNA associations. Realizing
the appropriate drugs that target the causal miRNAs behind diseases will contribute to miRNA mediated
disease therapeutics and drug clinical applications. This study proposes an ensemble learning approach,
ELDMA, that predicts novel drug-miRNA associations based on deep architecture-based classification.
The method constructed features based on the integrated pairwise similarities of drugs and miRNAs and
reduced the feature dimensions with principal component analysis (PCA). With the resulting features,
the convolutional neural network is trained to extract intricate, high-level patterns. The deep retrieved features
are given to the support vector machine classifier to infer potential drug-miRNA associations. We conducted
global leave-one-out cross-validation (LOOCYV), drug-fixed local LOOCYV, miRNA-fixed local LOOCYV,
and 5-fold cross-validation to evaluate the model performance. ELMDA achieved corresponding AUCs
of 0.9862, 0.7426, 0.9847 and 0.9928 for Dataset 1 and AUCs of 0.8643, 0.6742, 0.8671 and 0.8521 for
Dataset 2, respectively. The results and case studies illustrate the effectiveness of ELDMA in identifying

novel drug-miRNA candidates. The top predicted relationships are released for future wet-lab studies.

INDEX TERMS Convolutional neural network, disease, drug, MiRNA, PCA, support vector machine.

I. INTRODUCTION

MiRNAs are a novel class of non-coding RNAs involved in
the process of RNA silencing and post-transcriptional regu-
lation of gene expression [1], [2]. They are involved in many
basic functions for the growth and development of living
organisms. MiRNAs act as regulators of various cellular path-
ways [3], and they achieve their function by binding with the
complementary sequences of mRNA molecules. Although
the first MiRNA was found in the early 1990s in Caenorhab-
ditis elegans [4], miRNAs gained increasing attention from
researchers recently. Many recent experiments disclose that
miRNAs play essential roles as biomarkers and treatment
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targets for chronic diseases [5], [6]. Abnormal miRNA
expressions are correlated with complex diseases, including
cancer, Parkinson’s, and immune-related diseases [7], [8].
Most of the drugs are small molecules that bind with
specific target molecules to achieve their therapeutic func-
tions. Restoration of dysregulated miRNA expressions by
small molecule drugs provides a novel and promising way
for disease treatment. The particular secondary structure and
conserved sequences make miRNAs suitable to be drug tar-
gets [9]. Drugs can act on different targets rather than a
single target [10]. Therefore, drugs designed for a particular
miRNA target can be used to target another miRNA. As drug
discovery is high-cost and complicated, drug developers are
struggling to discover alternate applications for known drugs.
Since experimental methods for finding the relationships
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between drugs and miRNAs are expensive, computational
approaches are vital for identifying novel drug-miRNA
relationships [11].

As disclosed by the HMDD V3.0-Human miRNA Dis-
ease Database [12], there are about 35000 known miRNA-
disease associations. Recently, many studies have been taken
place to discover potential miRNA/non-coding RNA-disease
associations [13]-[18]. However, very few researches have
been conducted to analyze the drugs that can act on miRNAs
systematically. Li ef al. [19] suggested a network-oriented
approach to identify novel drug-miRNA associations. They
built a heterogeneous network consisting of drugs and MiR-
NAs. A method based on the topology information of the
constructed network was used to infer potential drug-miRNA
relationships. In brief, the algorithm situated the initial
resources of the drug of interest to its adjacent miRNAs.
The miRNAs partitioned these resources equally to their
related drugs. The drugs in the last step allocated the obtained
resources to their related miRNAs. Finally, the end resource
score of each miRNA indicated its probability of being asso-
ciated with the initial drug. Lv et al. [20] proposed a computa-
tional approach for predicting new drug-miRNA associations.
They built a network that relied on the drug, miRNA pairwise
similarities, and known associations between them. Next,
they performed an improved version of the conventional ran-
dom walk with restart algorithm by introducing the transition
probability matrix, which enabled the random walker to walk
on both the drug and miRNA networks rather than on the
single-layer drug or miRNA network. Thus, the method could
identify new miRNA targets for drugs without relying on
whether the drug has any verified miRNA relationship.

Qu et al. [21] suggested a triple layer heterogeneous
network-oriented approach for inferring new miRNAs asso-
ciated with drugs. They utilized integrated drug, miRNA,
disease similarities, and existing drug-miRNA and miRNA-
disease relationships for network construction. Considering
this network, they built two formulas that update iteratively to
identify new drug-miRNA and miRNA-disease associations.
The formulas were updated until the convergence criteria
were met, and the final scores of the drug-miRNA association
matrix were used to recognize novel miRNAs associated
with drugs. Wang et al. [22] suggested a machine-learning
approach to prioritize potential drug-miRNA relations. They
constructed features based on drug and miRNA pairwise
similarities and trained the random forest classifier with
these features to identify new drug-miRNA associations.
Qu et al. [23] introduced a network-based method for pre-
dicting novel miRNAs associated with drugs. They built a
heterogeneous network utilizing the drug, miRNA similari-
ties, and the confirmed associations among them. The method
then calculated the relevance score between the drugs and
miRNAs based on a path-based approach of HeteSim [24]
in the constructed network. The HeteSim method calculates
the affinity score between two nodes of the same or different
types in the heterogeneous network considering the path that
links the node pair through a sequence of nodes.
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Guan et al. [25] developed a Graphlet Interaction based
method for prioritizing novel miRNAs associated with drugs.
They built a heterogeneous network by integrating infor-
mation on the drug, miRNA similarities, and confirmed
drug-miRNA associations. They assessed the affinity scores
between drugs and miRNAs based on the number of graphlet
interactions relied on the drug and miRNA similarity net-
works. Graphlet interaction describes the relation between
any node pair in a graphlet, which is a kind of non-isomorphic
subgraph in a large network. Deepthi and Jereesh [26] pro-
posed a method predicting new drug-miRNA associations
based on the inductive matrix completion (IMC) algorithm.
The method aimed at identifying the unknown entries of the
drug-miRNA association matrix, whose values indicate the
probability of association for each drug-miRNA pair. They
utilized drug and miRNA similarities as side information for
the IMC algorithm. Liu et al. [27] proposed an approach
for identifying new drug-miRNA relationships by utilizing
multiple biological data and negative sample selection. They
presented a method that selects highly credible negative
drug-miRNA relationships, utilizing the similarity data. Next,
they constructed a triple layer network that relied on drug,
miRNA, and disease similarities and experimentally con-
firmed relationships between them. The method then per-
formed the random walk with restart algorithm for new
drug-miRNA relationship prediction. Negative sample selec-
tion improved the model performance by providing more
reliable negative samples for validation instead of randomly
choosing negative samples from unknown drug-miRNA
relations.

Zhao et al. [28] conducted a study that utilized symmet-
ric non-negative matrix factorization and regularized least
squares to identify novel drug-miRNA relationships. They
applied matrix factorization on the combined similarity matri-
ces and computed the Kronecker product of the new matrices
to derive similarities of drug-miRNA pairs. Then they applied
regularized least square to identify new drug-miRNA rela-
tionships. Wang and Chen [29] proposed an approach consid-
ering the cross-layer dependency inference on heterogeneous
networks to prioritize novel drug-miRNA candidates. In addi-
tion to drug-miRNA associations and drug, miRNA similarity
data, they utilized miRNA-disease associations and disease
similarity data for network construction. Considering the
network topology and existing cross-layer relationships, they
framed the drug-miRNA relationship prediction task as a reg-
ularized optimization problem. They solved the optimization
problem using the block coordinate descent algorithm and
built a feature matrix corresponding to each layer. Based on
these matrices, they computed the drug-miRNA association
score matrix to identify novel associations. Shen et al. [30]
presented a computational method that relied on graph reg-
ularization techniques for inferring new miRNAs related to
drugs. The method first built a heterogeneous network by
incorporating drug-miRNA and miRNA-disease association
data and their similarity information. Then the K-nearest
neighbor profile method is applied to overcome the problems
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of sparsity in the association data and handle the prediction
of isolated items. Next, they fused multi-source information
based on graph regularization techniques and computed the
correlation score for each drug-miRNA pair by an iterative
graph inference method.

Yin et al. [31] suggested a method based on sparse
learning and heterogeneous graph inference for inferring
new drug-miRNA relationships. First, they factorized the
drug-miRNA association matrix using the sparse learning
method (SLM) to eliminate noise present in the original
data. Then, they constructed a heterogeneous network based
on drug, miRNA similarity data, and the relationship data
present in the association matrix after factorization. Finally,
they computed the drug-miRNA correlation score by
analyzing the path between the specific drug and miRNA
in the constructed network. Luo et al. [32] conducted a
study that predicts new drug-miRNA relationships relied
on non-negative matrix factorization. They utilized drug,
miRNA similarities, and existing associations between drugs
and miRNAs to infer novel associations. They exploited the
clinical and chemical information of drugs and miRNA-gene
associations for similarity score calculation. To avoid over-
fitting and improve the model’s predictive power, they
incorporated a new objective function that relied on both
graph Laplacian and Tikhonov regularizations into the non-
negative matrix factorization to discover new drug-miRNA
relationships.

Here, we present an ensemble method, ELDMA, that
predicts novel drug-miRNA associations. ELDMA involves
three main steps: PCA-based dimension reduction, convo-
lutional neural network-based feature extraction, and sup-
port vector machine (SVM)-based classification. Ensemble
approaches combine results from multiple learning algo-
rithms to produce more accurate results. Far as we know,
the neural network-relied approach is applying the first time
for drug-miRNA relationship prediction. ELDMA combines
multiple sources of information, including drug similari-
ties based on chemical structure, functional consistency,
side effect, and miRNA similarities considering their target
genes and target diseases. The method constructed features
based on these similarities and minimized the feature dimen-
sion with the PCA. With the reduced dimensional features,
the convolutional neural network is trained to retrieve the
implicit input patterns. The extracted features are sent to
the SVM classifier to infer new drug-miRNA relations. The
predicted candidates with probabilities above the thresh-
old are regarded as novel drug-miRNA associations, and
they are promising candidates for future biological tests.
ELMDA obtained AUCs of 0.9862, 0.7426, 0.9847 and
0.9928 for Dataset 1 and AUCs of 0.8643,0.6742,0.8671 and
0.8521 for Dataset 2, under global LOOCYV, drug-fixed
local LOOCYV, miRNA-fixed local LOOCYV and 5-fold cross-
validation, respectively. We compared ELDMA performance
with previous methods and other machine learning classi-
fiers. We implemented the model with distinct datasets. The
results and case studies reveal that ELDMA is a powerful
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and efficacious tool for identifying new drugs that target
particular miRNAs.

Il. MATERIALS AND METHODS

A. DATASETS

1) DRUG-miRNA ASSOCIATIONS

The experimentally verified drug-miRNA associations
were downloaded from SM2miR v1.0 [33]. We acquired
664 experimentally verified drug-miRNA relationships from
this database. We collected 831 drugs from SM2miR,
DrugBank [34], and PubChem [35], and 541 miR-
NAs from SM2miR, HMDD [36], PhenomiR [37], and
miR2Disease [38]. We constructed a dataset based on the
664 known drug-miRNA associations from SM2miR, the col-
lected 831 drugs, and 541 miRNAs, termed it as Dataset 1.
We constructed another dataset named Dataset 2 by retaining
only drugs and miRNAs with at least one known association.
Dataset 2 contains 664 associations between 39 drugs and
286 miRNAs. Corresponding to each dataset, an Ny X N,
association matrix A was defined based on equation (1).

Ad @) ,m () =1 drugd (i) has an association with
miRNA m (j)
A(d @),m(§) =0 drugd (i) has no association with
miRNA m (j)
()

where Ny, N, denote the total number of drugs and miRNAs
in the dataset, respectively.

2) DRUG CHEMICAL STRUCTURE SIMILARITY

Drug chemical structures were obtained from the DRUG and
COMPOUND sections of the KEGG LIGAND database [39],
and their structural similarity S, was computed by using
SIMCOMP (http://www.genome.jp/tools/simcomp/). SIMP-
COMP is a graph-based method developed for measuring the
structural similarity between two chemical compounds.

3) DRUG SIDE EFFECT SIMILARITY
The drug side effect-based similarity was calculated based on
the presumption that drugs that share common side effects
tend to be similar. The side effect similarity Sy between two
drugs, i and j, was calculated based on the Jaccard score [40],
according to equation (2).

Ss = Jaccard score = w 2)

|M (i) UMl

where M (i) and M (j) are the side effects obtained from the
SIDER database [41] related to drug i and drug j. Here, |X|
denotes the cardinality of X.

4) GENE FUNCTIONAL CONSISTENCY-BASED SIMILARITY
FOR MiRNAs AND DRUGS

The functional similarity of miRNAs based on their target
genes S, was computed relied on the presumption that if the
target gene sets of two miRNAs have functional consistency,
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the miRNAs will be similar. The target genes associated
with each miRNA were downloaded from the webserver Tar-
getScan [42]. Gene set functional consistency was computed
using the Gene Set Functional Similarity (GSFS) method [43]
to measure miRNA functional similarity based on their target
genes. Using the same method, the drug functional similarity
Sf, was computed based on their target genes. The target
genes related to the drugs were acquired from DrugBank [34]
and Therapeutic Targets Database (TTD) [44].

5) DISEASE PHENOTYPE-BASED SIMILARITY FOR MiRNAs
AND DRUGS

MiRNA (drug) similarities based on the target diseases
were measured by considering the presumption that miR-
NAs (drugs) that share common diseases tend to be more
similar. MiRNA-associated diseases were obtained from
HMDD [36], miR2Disease [38], and PhenomiR [37]. The
miRNA target disease-based similarity S,,, was calculated
using the Jaccard score according to equation (2). Here, M (i)
and M (j) denote the disease sets associated with miRNA
i and miRNA j, respectively. Similarly, the drug similarity
Sr, was computed based on the Jaccard score to specify the
target disease-based similarity among drug i and drug j. The
diseases associated with drugs were obtained from the Com-
parative Toxicogenomics Database (CTD) [45], DrugBank,
and TTD.

6) DRUG-DRUG SIMILARITIES

The integrated drug pairwise similarity used in our study
was calculated based on drug side effect similarity S [40],
chemical structure similarity S. [46], functional consistency
based on their target genes S, [43], and target diseases Sy,
[40]. The integrated drug similarity Sp was measured based
on equation (3).

Sp = (Y18 + Y28, + Y38z, + Y4Sy)/ Zi ;
i=1,234 O3

Here, the default value Y; = 1 denotes that each similarity is
assigned the same weight.

7) MiRNA-miRNA SIMILARITIES

The integrated miRNA similarity Sp; was measured by aver-
aging the gene functional consistency-based and disease
phenotype-based miRNA similarities [43], [40], according to
equation (4).

S = (1Smg + maSm)/ Y i (=12 (4

Here, the default value ;; = 1 indicates that each similarity
possesses the same weight. We acquired the integrated drug
and miRNA pairwise similarities from [20].

B. METHOD

In this work, we proposed an architecture for identifying
novel drug-miRNA relationships that consist of 3 main
segments: PCA, Convolutional neural network (CNN), and
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support vector machines (SVM). For each drug-miRNA pair
(di, m;) in the dataset, we built feature vectors considering
the integrated similarities of drugs and miRNAs. Feature
vector FV (d;) for the drug d; includes integrated similarities
of d; to all other drugs in the dataset, equation (5). Similarly,
the feature vector F'V (m;) for the miRNA m; includes inte-
grated similarities of m; to all other miRNAs in the dataset
equation (6).

FVd) = fi.ouf3r e N Syl 5)
FV (m;) = (81,82, 83, - 28X .8n, ] (0)

where f;, g; represent corresponding integrated similarities
of drug d; and miRNA m; and N;, N, represent the total
number of drugs and miRNAs, respectively, in the dataset.
Since these feature vectors are very long and upon concate-
nation, they produce vectors with almost double size; we
employed PCA for dimensionality reduction. The new drug,
miRNA feature vectors with reduced sizes nd, nm, respec-
tively, obtained from PCA output, were concatenated to build
features with size nd + nm. We set nd and nm to 100 and
202, respectively, as these values gave optimum results. There
were Ny x N, such sample features; each corresponds to a
drug-miRNA pair. The corresponding label was selected from
the association matrix. The label was set to one if there is
an existing relationship between the corresponding drug and
the miRNA; otherwise, it was set to zero. The positive set
comprises the samples with label one. We randomly picked
unknown drug-miRNA relationships and created the negative
set with the same size as the positive set. There is a possibility
for unknown positive relationships in the created negative set,
but the probability, 664 = (831 x 541 — 664) & 0.15%, can
be neglected compared to the entire unverified relationships
in the dataset. Finally, we constructed the training set with
1328 samples by combining the positive and negative sets.
These features were sent to CNN to retrieve unique input
patterns. With the retrieved deep features, the SVM classifier
was trained to predict new drug-miRNA relationships and
corresponding probabilities.

1) FEATURE EXTRACTION BASED ON CONVOLUTIONAL
NEURAL NETWORK

CNN is a feed-forward neural network structure composed of
three kinds of layers: convolution layer, subsampling layer,
and fully connected layer. The power of a CNN lies in the
particular layer called the convolutional layer. CNN con-
tains multiple convolutional layers, and each one is capable
of retrieving more sophisticated input patterns. CNN was
proposed by LeCun et al. [47], and they were proved to
be effective for the feature extraction and classification in
prediction problems such as the identification of drug/circular
RNA/long non-coding RNA-disease relationships [48]-[50].
This neural network structure consists of two main segments:
feature extraction and classification. Feature extraction com-
prises multiple convolution and pooling layers followed by
activation functions. The classifier is composed of fully
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FIGURE 1. The basic architecture of CNN.

connected layers. In our study, we used CNN to extract
high-level patterns from the input features. Convolutional
and pooling layers can retrieve the special features from
the input. We implemented the convolution operation on the
concatenated input feature matrix with multiple convolution
kernels to obtain the feature map. The parameters of the filters
need to be learned. The convolution operation at layer ¢ can
be represented as:

X = £X QW + by) @)

W; represents the convolution kernel weight matrix, b, the
offset vector, and X, the feature map of layer t. ® indicate
the convolution operation and £(k) the activation function.
In the subsampling (pooling) layer, the sampling formula can
be represented as:

X; = Subsampling(X;_1) (8)

We used max-pooling to down-sample the latent features
after the convolutional layer. It picks the maximum element
from the region of the feature map covered by the filter. The
convolutional layer and max-pooling layer can extract the
best features from the input. The CNN is designed using
alternate sets of convolution and subsampling layers, fol-
lowed by the hidden layers. The training goal of CNN is
to minimize the loss function of the network. The feature
matrix corresponding to the training set was given to CNN to
generate a matrix with essential features. We optimized the
parameters of CNN by conducting a series of experiments.
We selected the kernel size at convolution and pooling layers
as 16 x 16 and 2 x 2, respectively. We used the sigmoid
as the activation function, binary cross-entropy as the error
function, and Adam as the optimization algorithm in model
construction. Finally, the high-level features obtained after
multiple convolution and pooling operations are extracted
for association prediction. The basic structure of the CNN is
depicted in Figure 1.

2) SUPPORT VECTOR MACHINE-BASED CLASSIFICATION
SVM is a powerful classification algorithm proposed by
Vapnik et al. [51], [52] that partitions data into separate cat-
egories. SVM aims to construct a hyperplane that maximizes
the margin between the two classes. They solve classification
tasks by mapping training samples to points in space, such as
it maximizes the distance between the two categories. The
trained model maps new samples to that same space and
predicts the class according to the side of the hyperplane they
fall.
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SVM has been previously applied to various biologi-
cal problems, including identification of long non-coding
RNA/microRNA-disease relationships [53]-[55], drug-target
interaction predictions [56], identification of druggable pro-
teins [57], etc. In the proposed method, the SVM classifier
was trained with the compact high-level features obtained
from the CNN after convolution and pooling operations.
The trained classifier was able to predict novel drug-miRNA
associations and their corresponding probabilities as the clas-
sification result. The drug-miRNA relationships with proba-
bilities higher than the threshold were regarded as promising
candidates for biological experiments. The complete work-
flow of the proposed model is outlined in Figure 2.

Based on our tests and prior studies [58], [59], we uti-
lized Radial Basis Function (RBF) as the kernel in SVM.
We implemented ELDMA with different combinations of
similarity data, as Lv et al. [20], to analyze the impact of
multiple similarity data on model performance. We obtained
optimum results by combining the four drug similarity met-
rics and two miRNA similarity metrics, as described by
equations (3) and (4).

Ill. RESULTS

A. PERFORMANCE EVALUATION

We adopted global and local LOOCV as well as 5-fold
cross-validation to evaluate the model performance. In global
LOOCY, each positive sample in the training set was consid-
ered as the test sample in turn, while the other positive sam-
ples were used for training. The test sample score is compared
with the scores of all unknown samples in the dataset. Local
LOOCYV is conducted in two ways by fixing the drugs and by
fixing the miRNAs. In the drug-fixed local LOOCY, the test
sample score is compared with the scores of the candidate
samples, which includes all unknown miRNA associations
with the test drug. In the miRNA-fixed local LOOCY, the test
sample score is compared with the scores of the candidate
samples, which include all unknown drug associations with
the test miRNA. In 5-fold cross-validation, the training set is
segmented into 5 subsets with roughly equal size. When the
method is executed, one subset was reserved for validation,
and other subsets were used for training the model. The
process was repeated 5 times until all subsets been validated
once, and the average results were adopted for evaluation.
In the cross-validation results, verified associations with pre-
dicted probabilities above the threshold were considered as
True Positives (TP), and below the threshold were considered
as False Negatives (FN). Similarly, unverified associations
with predicted probabilities below the threshold were consid-
ered as True Negatives (TN), and above the threshold were
considered as False Positives (FP).

We conducted cross-validation experiments using
Dataset 1 and Dataset 2 and measured the true posi-
tive rate and false-positive rate by varying the thresholds.
Based on this, the Receiver Operating Characteristic curves
(ROC) [60], [61] are constructed and measured the Area
Under the ROC curves (AUC) [62]. ELDMA obtained AUCs
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FIGURE 2. The flowchart of ELDMA to infer novel drug-miRNA relationships. With the integrated features of
drugs and miRNAs as input, ELDMA consists of three main steps: PCA-based dimension reduction,
CNN-based feature extraction, and SVM-based association prediction.

TABLE 1. 5-fold cross-validation results of ELDMA on Dataset 1 and Dataset 2.

Method Accuracy  Sensitivity F1-score MCC AUC AUPR
Dataset 1 0.9698 0.9775 0.9705 0.9403 0.9928 0.9931
Dataset 2 0.8635 0.8725 0.8623 0.8296 0.8521 0.8873

of 0.9862, 0.7426, 0.9847, and 0.9928 in global LOOCY,
drug-fixed local LOOCYV, miRNA-fixed local LOOCYV, and
5-fold cross-validation, respectively, for Dataset 1. For
Dataset 2, the model obtained AUCs of 0.8643, 0.6742,
0.8671, and 0.8521, respectively, under the above-mentioned
cross-validations. The ROC curves based on Dataset 1 and
Dataset 2 using 5-fold cross-validation are plotted in Figure 3.
To further evaluate the model, we measured the Area under
the Precision-Recall curve (AUPR) [63]. We also computed
Accuracy, Sensitivity, Fl-score, and Matthews correlation
coefficient (MCC) as the evaluation criteria to measure
the model’s effectiveness, based on 5-fold cross-validation,
Table 1. To decrease the variations from random sample
divisions, we carried out 5-fold cross-validations ten times
and averaged the results.
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B. COMPARISON WITH OTHER METHODS

In order to assess the efficacy of the suggested method,
we compared it with related methods predicting potential
drug-miRNA associations. We compared the performance
of these approaches based on Dataset 1 and Dataset 2,
using the 5-fold cross-validation method. The selected
methods include the network-based inference method,
SMiR-NBI [19], triple-layer heterogeneous network-based
approach, TLHNSMMA [21], Symmetric non-negative
matrix factorization-based model, SNMFSMMA [28], and
random forest-based approach, REFSMMA [22]. The first two
models were network-based, the third one was matrix-based,
and the latter was machine-learning-based. All these methods
used the same 664 verified associations between 831 drugs
and 541 miRNAs (Dataset 1) and 664 verified associations
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FIGURE 3. ROC curves obtained by ELDMA on Dataset 1 (Left) and Dataset 2 (Right) based on 5-fold cross-validation.

TABLE 2. Comparison of ELDMA with related methods based on Dataset1 and Dataset 2, through the AUC scores under 5-fold cross-validation.

Dataset ELDMA* RFSMMA  TLHNSMMA SNMFSMMA  SMiR-NBI
Dataset 1 0.9928 0.9917 0.9851 0.9644 0.8554
Dataset 2 0.8521 0.8389 0.8168 0.8814 0.7104

TABLE 3. Comparison between ELDMA and SMiR-NBI under different cross-validations using Dataset 1 and Dataset 2.

Dataset Method ELDMA¥* SMiR-NBI
(AUC) (AUC)
Dataset 1 Global LOOCV 0.9862 0.8843
Drug-fixed local LOOCV 0.7426 0.7497
MiRNA-fixed local LOOCV 0.9847 0.8837
5-fold cross-validation 0.9928 0.8554
Dataset 2 Global LOOCV 0.8643 0.7264
Drug-fixed local LOOCV 0.6742 0.6100
MiRNA-fixed local LOOCV 0.8671 0.7846
5-fold cross-validation 0.8521 0.7104

between 39 drugs and 286 miRNAs (Dataset 2) for implemen-
tation. The detailed comparison results are listed in Table 2.
Since there is no significant difference between the AUC
scores of ELDMA, RFSMMA, SNMFSMMA, and TLHNS-
MMA on Dataset 1, we compared the performance of
ELDMA with SMiR-NBI under different cross-validations,
Table 3. The SMiR-NBI was a network-inference model
predicting novel drug-miRNA associations. The compari-
son results, Table 2 and Table 3, reveal the robustness of
the proposed approach in identifying novel drug-miRNA
associations.

C. COMPARISON WITH OTHER CLASSIFIERS
We further evaluated ELDMA by comparing it to dif-
ferent machine learning classifiers such as deep neural
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networks (DNN), SVM, random forest (RF), and Decision
tree. We implemented these classifiers with the proposed
raw features on Dataset 1. We sent the reduced dimensional
features obtained from the PCA directly to these classifiers
without processing with CNN. We utilized a deep neural
network with three hidden layers as it gave optimum results.
‘We obtained AUC scores of 0.9928, 0.9904, 0.9042, 0.9379,
and 0.9126 for ELDMA, RF, SVM, DNN, and Decision
tree classifiers, respectively in 5-fold cross-validations. The
corresponding ROC curve is shown in Figure 4. We further
evaluated the model by training the DNN with the features
extracted from the CNN after convolution and pooling oper-
ations, which is nothing but a CNN with multiple hidden
layers. We could achieve the AUC score of 0.9808, which
is about 1.2% less than that of ELDMA. With the same
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TABLE 4. Top 50 drug-miRNA associations predicted by ELDMA with their evidence in the literature.

Drug MiRNA Evidence Drug MiRNA Evidence
CID: 3385 hsa-mir-126 26062749 CID: 5757 hsa-mir-18a 24245576
CID: 3366 hsa-mir-24-1 Unconfirmed CID: 6256 hsa-mir-126 Unconfirmed
CID: 6256 hsa-mir-24-1 Unconfirmed CID: 60750 hsa-mir-107 Unconfirmed
CID: 60750 hsa-mir-17 23001407 CID: 3385 hsa-mir-7b 25789066
CID: 3385 hsa-mir-195 Unconfirmed CID: 60750 hsa-mir-219a Unconfirmed
CID: 3385 hsa-mir-221 Unconfirmed CID: 3385 hsa-mir-146a 28466779
CID: 60750 hsa-mir-24-2 25841339 CID: 6256 hsa-mir-24-2 Unconfirmed
CID: 5790 hsa-mir-126 Unconfirmed CID: 60750 hsa-mir-106b Unconfirmed
CID: 3385 hsa-mir-107 Unconfirmed CID: 3385 hsa-mir-19b-1 Unconfirmed
CID: 3366 hsa-mir-126 Unconfirmed CID: 5757 hsa-mir-155 23568502
CID: 3385 hsa-mir-143 19843160 CID: 3366 hsa-mir-24-2 Unconfirmed
CID: 3385 hsa-mir-181a-1 Unconfirmed CID: 3385 hsa-mir-204 27095441
CID: 5311 hsa-mir-146a 24107356 CID: 60750 hsa-mir-7e Unconfirmed
CID: 3385 hsa-mir-145 24447928 CID: 60750 hsa-mir-125a Unconfirmed
CID: 60750 hsa-mir-195 Unconfirmed CID: 5757 hsa-mir-27b 26198104
CID: 3385 hsa-mir-125b-1 Unconfirmed CID: 5578 hsa-mir-24-1 Unconfirmed
CID: 54575 hsa-mir-24-1 Unconfirmed CID: 3366 hsa-mir-195 Unconfirmed
CID: 5790 hsa-mir-195 Unconfirmed CID: 3385 hsa-mir-34a 25333573
CID: 3385 hsa-mir-26a-1 Unconfirmed CID: 60750 hsa-mir-103a-1 Unconfirmed
CID: 5757 hsa-mir-27b 26198104 CID: 60750 hsa-mir-143 Unconfirmed
CID: 3385 hsa-mir-103a-1 Unconfirmed CID: 5790 hsa-mir-195 Unconfirmed
CID: 3385 hsa-mir-29b-1 Unconfirmed CID: 5757 hsa-mir-27a 26198104
CID: 5757 hsa-mir-221 21057537 CID: 60843 hsa-mir-24-1 Unconfirmed
CID: 6256 hsa-mir-126 Unconfirmed CID: 3385 hsa-mir-29c¢ Unconfirmed
CID: 3385 hsa-mir-214 Unconfirmed CID: 5757 hsa-mir-142 Unconfirmed

ROC curve:Comparison with Different Classifiers

TABLE 5. Top predicted miRNAs associated with the drug 5-AZA-CdR,

with their evidence in the literature.
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FIGURE 4. Comparison of ELDMA with different classifiers based on
Dataset 1, using 5-fold cross-validation.

features, we trained the random forest classifier, but it did
not show improvements on the RF. Feature extraction with
CNN helped increase the AUC score of the SVM classifier
by 9%, and it was the highest among other classifiers. These
results indicate that ELDMA outperforms other competing
classifiers in prediction power.

D. CASE STUDIES
To verify the ability of the suggested approach in infer-
ring new drug-miRNA associations, we carried out case
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Drug MiRNA Evidence
CID: 451668  hsa-mir-195 23333942
CID: 451668  hsa-mir-23a Unconfirmed
CID: 451668  hsa-mir-132 26198104
CID: 451668  hsa-mir-221 Unconfirmed
CID: 451668  hsa-mir-7e 22053057
CID: 451668  hsa-mir-143 28391715
CID: 451668  hsa-mir-30a Unconfirmed
CID: 451668  hsa-mir-7b 26708866
CID: 451668  hsa-mir-199b 24659709
CID: 451668  hsa-mir-7a-1 Unconfirmed
CID: 451668  hsa-mir-19b-1 Unconfirmed
CID: 451668  hsa-mir-143 28391715
CID: 451668  hsa-mir-15b Unconfirmed
CID: 451668  hsa-mir-7d 26802971
CID: 451668  hsa-mir-30c-1 Unconfirmed

studies on the top-ranked results. We trained the model with
all known samples and predicted association scores for all
unconfirmed drug-miRNA relationships in the dataset. The
predicted scores were sorted in descending order along with
corresponding drug-miRNA relationships. Among the top 10,
20, and 50 predicted relationships, 3, 7, and 16 relation-
ships were verified with the recent literature. Table 4 lists
the detailed results. We further conducted a case study on
the drug 5-AZA-CdR (CID:451668), an epigenetic drug that
inhibits DNA methylation [64]. We evaluated our approach
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by observing the top predicted miRNAs related to 5-AZA-
CdR. Among the top fifteen predicted miRNAs related to
5-AZA-CdR, 8 of them have been verified with the latest
literature, Table 5. The case studies indicate the reliability of
the proposed method in practical applications.

IV. DISCUSSION AND CONCLUSION

MiRNAs have been demonstrated to play vital roles in the
pathogenesis of multiple chronic diseases. As miRNAs have
the potential to be targeted by drugs, they are being con-
sidered as novel therapeutic targets in many diseases [65].
Since drug discovery is challenging and expensive, discov-
ering new relationships between existing drugs and miR-
NAs through the computational study will contribute to
the miRNA-associated therapeutic strategy. Here, we pre-
sented an ensemble learning-based framework, ELDMA,
that predicts potential drug-miRNA relationships. We uti-
lized drug, miRNA similarities and experimentally con-
firmed drug-miRNA associations for feature construction.
The constructed feature dimensions were reduced with the
PCA. The resulting feature vectors were fed to CNN to
extract the hidden characteristics of input data. With the
extracted features, the SVM classifier was trained to pre-
dict novel drug-miRNA associations. We compared ELDMA
with the previous method SMiR-NBI under different cross-
validations, and the model showed significant improve-
ments in results. Cross-validation results and case studies
reveal the capability of ELDMA in drug-miRNA association
predictions.

The following several factors account for the robust per-
formance of our model. Since ensemble methods combine
predictions from multiple classifiers, they are more accu-
rate than single classifiers. Analyzing noisy samples poses
great challenges to classification problems. The performance
of SVM can fall when applied to noisy data [66]. The
CNN-based feature extraction removes noise and retrieves
the most prominent features from the input data. Training the
classifier with these unique non-linear features improved the
predictive performance of the model. To further enhance
the model performance and reduce the high computational
cost, PCA has been employed. The employment of PCA
eliminated the requirement of a high-power computing unit.
Besides, PCA minimized the feature dimension and thereby
significantly reduced the computational complexity, both in
terms of space and time. The original feature vector proposed
by our approach was very long with N; + Ny, size; there were
Ny x N,, such features. The utilization of PCA could reduce
the feature dimension by one-fourth.

The number of available training samples for this study is
limited. Generally, deep architectures suffer from the prob-
lem of over-fitting when the training samples are less. Shal-
low learning algorithms can overcome the problems of deep
learning techniques when input data size is limited. SVM
works well with small datasets [67]. This study utilized
the shallow machine learning algorithm SVM for classifica-
tion. Although SVM is a powerful classification algorithm,
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it requires discriminative features. The extracted non-linear
features from CNN have more discriminative power than the
raw input features. So, combining the feature extraction tech-
niques of deep architectures with shallow classifier improved
the model performance. The strength of SVM lies in the
kernel method. By determining a suitable kernel, SVM can
be applied to resolve complex problems [68].

Numerous reliable biological datasets were incorporated in
the study, such as drug side effect similarity, chemical struc-
ture similarity, gene functional consistency-based similarity
for drugs and miRNAs, and disease phenotype-based simi-
larity for miRNAs and drugs improved the predictive accu-
racy of ELDMA. In Network-based models, the constructed
networks must be rebuilt when novel drugs or miRNAs are
added to the dataset. The majority of the network-based mod-
els predicting drug-miRNA relationships have the drawback
that they cannot be applied to drugs for which no known
miRNAs or miRNAs for which no known drugs, associated
with them in the dataset [19], [21]. The proposed method can
be applied to drugs (miRNAs) with no verified miRNA (drug)
relationships. Similar to other machine learning models,
the suggested method can adapt to changes very well. Newly
identified drugs, miRNAs, and drug-miRNA associations can
be easily added to the dataset after computing similarities.

However, there are some limitations to the suggested
method. Positive and negative samples are required for train-
ing ELDMA. But it is difficult or impractical to obtain the
actual negative samples. So, we formed negative samples by
randomly selecting unconfirmed drug-miRNA relationships.
There is a chance for unverified positive samples among
the selected negative samples, even though the probability
is less. Besides, existing drug-miRNA associations available
for this study are limited in number, and the presented model
could be further improved as more verified drug-miRNA
relationships are added to the dataset. Adopting more robust
similarity calculation strategies can also boost the method’s
predictive power. Integrating more biological characteristics
like miRNA sequence, expression profile similarities to the
features also may produce a more robust result.

Investigating the molecular mechanism behind the thera-
peutic effects of drugs is essential for drug development and
disease therapy. Although the problem of predicting poten-
tial drug-miRNA associations is critically important, few
studies attempted to explore the target miRNAs associated
with drugs systematically. The work proposed here presents
a deep-learning-based computational model that identifies
novel drug-miRNA relationships. The approach integrated
existing drug-miRNA associations and multiple biological
data sources for feature construction. CNN was used to mine
the deep underlying features. With the retrieved deep
features, the SVM classifier was trained to discover novel
drug-miRNA associations. Cross-validation results and case
studies indicate that the presented learning-based model is
appropriately designed. We compared the model performance
with other competing methods and different shallow and deep
classifiers. We conducted experiments with both raw and
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deep features, and our approach outperformed other com-
peting classifiers. We expect the model to perform better as
more and more experimentally verified drug-miRNA rela-
tionships are available. In the future, the suggested method
can be used to infer novel associations between drugs and
other non-coding RNAs like circular RNAs, long non-coding
RNAs, etc.

Data Availability: Supplementary data associated with

ELDMA are

available at https://github.com/Deepthi-

K523/ELDMA.
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