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ABSTRACT Cloud computing is considered to be the best solution for addressing the increasing computing
requirements of high-performance applications. The efficient performance of the system requires optimal
mapping of cloud tasks to resources. However, it is challenging to address computing and storage require-
ments of high-performance applications while achieving conflicting scheduling objectives like throughput,
makespan, resource utilization. This work proposes a metaheuristic approach called task schedule using
a multi-objective grey wolf optimizer (TSMGWO) to find near-optimal task scheduling solutions while
handling conflicting objectives. The TSMGWO approach has been evaluated using three benchmark datasets,
namely, GoCJ, HCSP and Synthetic dataset. The results are compared with heuristic FCFS and MT methods,
and metaheuristic methods PSO, GA and WOA. The TSMGWO approach reduces makespan upto 67.52%
over FCFS method, 60.93%, over PSO, 38.05% over GA, and 23.22% over WOA methods for 100 tasked
cloud workload using GoCJ dataset. It reduces makespan upto 60.95% over FCFS method, 55.79% over
MT method, 47.04% over PSO, 33.38% over GA and 19.91% over WOA method using synthetic dataset.
Similarly, TSMGWO reduces makespan upto 27.03% over MT method, 18.95% over PSO, 11.90% over GA
and 7.5% over WOA method using HSCP workload. The comparative analysis demonstrates that TSMGWO
approach outperforms the earlier heuristic and metaheuristic methods using benchmark datasets in the cloud
environment.

INDEX TERMS Optimization, cloud computing, task scheduling, meta-heuristics algorithm, multi-objective
grey wolf optimizer.

I. INTRODUCTION

Cloud Computing has brought a revolutionary change in
business by offering efficient sharing of computing resources.
Cloud customers can provision and release Cloud Com-
puting resources as per their requirement on pay per use
basis through the public interface provided by the Cloud
Service Provider [1], [2]. The recent development in cloud
computing allows the number of geographically distributed
and interconnected cloud data centres operate on-demand
services to the cloud customer on the pay per use basis in
more efficient manner [3]-[5]. As reported in [18], by 2021,
94% of computation workload is likely to shift to cloud data
centers. The innovative idea of cloud computing as provided
many advantages in terms of reduced infrastructure cost,
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execution time, maintenance and many more [6]. However,
the increased workload of cloud computing for executing
multiple applications also resulted in a decrease in resource
utilization, leading to a decrease in return on investment [7].
One of the primary cause of the decrease in cloud computing
resource utilization is incorrect scheduling of the task over
virtual machines, leading to a reduction in their processing
performance. Therefore, task scheduling plays a significant
role in cloud computing to ensure maximum resource utiliza-
tion by providing adequate performance under the different
task constraints such as execution deadlines.

Task scheduling maps the user-submitted task to a suitable
virtual machine in the cloud data centre [1]. To get required
performance cloud users to enter into a service level agree-
ment with the Cloud Service Provider that binds both the
parties on the expected service quality, including the execu-
tion deadline of the task, security and budget. The user can
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demand computing resources required for executing his tasks
as per SLA [8]. Task scheduling has a direct impact on the
performance of cloud computing. An efficient task schedul-
ing can generate more revenue to improve the performance
and decrease the service level agreement violations. Task
scheduling problem can be formulated as Bin packing prob-
lem. It is a non-deterministic polynomial time-based problem
and considered as NP-hard problem [9], [10]. The increased
complexity of cloud computing has also increased the com-
plexity of solving the task scheduling problem. Therefore,
it becomes more challenging to develop an efficient algorithm
for solving the task scheduling problem in a cloud computing
environment.

NP hard problems like task scheduling problem in cloud
computing can be solved by using the enumeration method
or heuristic-based methods [11]. Enumeration methods are
not suitable in a cloud computing environment because they
need to build all possible combinations of task schedules and
select the best solution. This methodology makes it time-
consuming, making it unsuitable for the cloud computing
environment with a massive workload.

The second category of the method applied for solving the
task scheduling problems is heuristic and metaheuristic meth-
ods. Several heuristic algorithms have been used for finding
optimal task scheduling in the cloud computing environ-
ment [1]. Most powerful algorithms proposed in the heuristic
category include Minimum Completion Time (MCT), Max-
Min, Sufferage First Come First Serve (FCFS), Minimum
Execution Time (MET), and Min—Min algorithms. However,
these algorithms suffer from several limitations of trapping in
local minima due to the multimodal nature of task scheduling
in cloud computing environment [12]. Recently, metaheuris-
tic algorithms have obtained considerable attention from the
research community to obtain the near-optimal solution of the
task scheduling problem in a reasonable period [13].

Metaheuristic methods have several advantages like flexi-
bility, simplicity and ergodicity [12] over conventional meth-
ods. Metaheuristic methods can be easily applied and have
low complexity in comparison to conventional methods.
These methods are not problem dependent and can be applied
to a wide range of optimization problems. Additionally,
these algorithms can find multimodal search space in dif-
ferent ways to avoid local minima that address the limita-
tion of heuristic methods in solving cloud computing’s task
scheduling.

Many metaheuristic approaches proposed in recent years
have considered task scheduling problem with multiple
objectives as a single objective. These approaches attempt to
obtain a single optimal solution [1], [11]. A few researchers
have focused on applying a metaheuristic algorithm to
find near-optimal solutions and provide trade-off to the
cloud service providers by considering multiple objectives
simultaneously.

In this study, we focus on answering the research question:
“can metaheuristic algorithms be applied to find an opti-
mal or near-optimal solution to the task scheduling problem
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in a cloud computing environment by taking into account
makespan, resource utilization, degree of imbalance, and
throughput simultaneously”.

To answer this research question, we propose applying a
meta-heuristic grey wolf optimizer to find an optimal or near
optimal solution to the task scheduling problem by consider-
ing multiple conflicting objectives of makespan, resource uti-
lization, degree of imbalance, and throughput simultaneously.
To evaluate the proposed approach’s performance, we imple-
ment and compare it’s performance with the existing heuristic
and metaheuristic algorithms using benchmark datasets using
identified performance metrics. The key deliverables of this
work include.

o Formulation of mathematical models for computing
resource utilization, makespan, Degree of imbalance
and Throughput of the cloud.

o Formulation of task scheduling problem as a multi-
objective optimization problem having multiple con-
flicting objectives like resource utilization, makespan,
Degree of imbalance and Throughput of the cloud.

o Performing multi-objective optimization for task
scheduling problem using grey wolf optimizer to max-
imize resource utilization, minimizes makespan, mini-
mize the degree of imbalance and maximize throughput
of cloud simultaneously.

o Simulate and compare the proposed grey wolf
optimizer-based approach with other meta-heuristic
approaches.

o Evaluate the performance of the proposed grey wolf
optimizer (TSMGWO) based approach in comparison
to the identified existing heuristic methods, FCFS and
MT; and meta-heuristic methods, namely, GA, PSO, and
WOA using three benchmark data sets, namely, GoCJ,
Synthetic and HSCP data sets in terms resource utiliza-
tion, makespan, degree of imbalance and throughput of
the cloud.

The remainder of this article is structured as follows.
Section II provides significant prior research on task
scheduling problem using different optimization algorithms.
Section IIT defines task scheduling problem in the cloud
computing environment. Section IV provides salient fea-
tures of grey wolf optimizer and its functional components.
It highlights the motivation for using grey wolf optimizer
for solving the task scheduling problem in cloud computing.
Section VI describes the basic assumptions and the pro-
posed TSMGWO approach for optimizing multiple objec-
tives in task scheduling of the cloud computing environment.
This section also formulates system models for makespan,
resource utilization, Degree of imbalance and Throughput
used in this work mathematically. Section VII describes
experimental

Section II provides significant prior research on task
scheduling problem using different optimization algorithms.
Section III defines task scheduling problem in the cloud
computing environment. Section IV provides salient fea-
tures of grey wolf optimizer and its functional components.
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It highlights the motivation for using grey wolf optimizer
for solving the task scheduling problem in cloud computing.
Section VI describes the basic assumptions and the pro-
posed TSMGWO approach for optimizing multiple objec-
tives in task scheduling of the cloud computing environment.
This section also formulates system models for makespan,
resource utilization, Degree of imbalance and Throughput
used in this work mathematically. Section VI describes the
experimental setup, results and provides a discussion on the
obtained results. Finally, Section VII concludes the paper.

Il. RELATED WORK

A large number of models and methods have been proposed
for solving the task scheduling problem of cloud computing
and grid computing [14], [15]. This section describes the sig-
nificant research work of solving the task scheduling problem
using metaheuristic methods. Metaheuristic methods can be
further subdivided into two categories, bio-inspired methods
and swarm optimization methods [12], [16].

Several algorithms have been proposed in bio-inspired
method category, such as memetic algorithm, genetic algo-
rithm, imperialism competitive algorithm, lion algorithm, etc.
These algorithms have been used for finding the optimal solu-
tion to the task scheduling problem in cloud computing. For
example, Sheng and Qiang used a genetic algorithm for task
scheduling problems [17]. Whereas Keshanchi ef al. [2] used
the genetic algorithm with some heuristics for solving static
task scheduling problem in the cloud. Similarly, Xiong et al.
used Johnson rule method with a genetic algorithm to solve
the task scheduling problem in cloud data centres [18]. They
proposed a genetic algorithm for assigning tasks to the suit-
able virtual machine and used decoding approach for finding
the proper sequence of the task to be managed on the virtual
machine by using Johnson rule. Akbari et al. [19] improve the
genetic algorithm’s performance by proposing new operators
to ensure solution diversity and reliability of the search space.

Task scheduling problem becomes more complicated in
a heterogeneous cloud environment with large cloud work-
load. Therefore, Swarm intelligence-based method such as
artificial Bee colony method, cuckoo search-based method,
ant colony optimization method, bio geography-based opti-
mization method, particle swarm optimization method is con-
sidered more suitable in solving task scheduling problem.
Many researchers applied these Swarm intelligence-based
methods to solve the task scheduling problem successfully.
Li et al. [20] designed a task scheduling approached using
ant colony optimization (ACO) algorithm for balancing the
workload and minimizing the execution time of the cloud
task. They demonstrated that the proposed approach provided
better performance as compared to the first come first served
approach. Similarly, Liu and Wang [21] also minimizes the
execution time of cloud task using ant colony optimization
method. Gupta and Garg [22] used the particle swarm opti-
mization method for optimizing the execution time of the
tasks and computing resource utilization of the cloud envi-
ronment by solving the task scheduling problem.
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Some authors also hybridized different metaheuristic
methods [23]-[25]. For example, Zhan and Huo [23]
proposed a hybrid approach based on particle swarm opti-
mization and simulated annealing to obtain optimal task
scheduling in cloud computing. The reported results indi-
cate that the hybrid approach can reduce the execution
time of the task and enhance resource utilization of the
cloud. The authors of [26] used hill-climbing method with
a stick for optimizing task schedule in the cloud comput-
ing environment. The proposed method outperformed the
round-robin, and First Come First served basis approach.
Abdullahi et al. [27] used a symbiotic organism search-based
method for obtaining an optimal mapping of cloud tasks to
the virtual machines. They demonstrated that the proposed
method based upon symbiotic organism search method out-
performed particle swarm optimization-based task schedul-
ing in large search space.

Kim et al. [28] suggested biogeography-based optimiza-
tion method for task scheduling problem. Their proposed
method maintains a pool of solutions in different itera-
tions and attempts to find the best possible solutions based
upon specific criteria. However, biogeographical based meth-
ods are not very practical for a middle-sized task schedul-
ing problem in the cloud computing environment [28].
Vasile et al. [29] suggested using hierarchical clustering of
the computing resources in the cloud computing environment
to find an optimal schedule of the task and virtual machines.
Their method is effective in heterogeneous distributed com-
puting such as high-performance computing systems that
require modelling of application with data acquired from
multimedia applications. Despite the effectiveness of the pro-
posed method, this method ignored the dynamic behaviour of
the computing resources. Zuo et al. [30] designed a model
for optimizing resource cost based on the demand of the
computing resources by the cloud tasks using ant colony
optimization algorithm. The proposed model demonstrated
the association between budget cost and the cost of computing
resources. In their model, the authors attempted to optimize
the users’ makespan and budget cost using multi-objective
optimization method.

On similar lines, the authors of [31] suggested the use
of whale optimization method for solving the task schedul-
ing problem in cloud data centres. They suggested a fitness
function in terms of three parameters, resource utilization,
energy consumption and service quality. The propose fitness
function is optimized using a whale optimization method.
The simulation results demonstrate that whale optimization
method outperforms the other methods to minimise energy
consumption and maximise resource utilization while main-
taining the quality of service as per service level agree-
ment. An approach called W-scheduler has been proposed
in [32] by integrating multi-objective model with the whale
optimization method. In this model, the authors used a fitness
function based upon the cost of memory and CPU con-
sumed in addition to makespan. They used wale optimizer
to find the best task schedule that minimizes the cost of
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memory and CPU and minimises the makespan. A compar-
ison of results with traditional algorithms such as PBACO,
SPSO-SA, and SLPSO-SA shows that the performance of
the integrated model is better than that of traditional algo-
rithms in the cloud computing environment. An integrated
approach using MapReduce, genetic algorithm and whale
optimizer were proposed in [33]. Researchers attempted to
extract task-specific features initially. MRQFLDA algorithm
is further applied to reduce the number of features. The
user-submitted task are classified into subtask using the
MapReduce approach. It is followed by applying the genetic
algorithm and whale optimizer for assigning sub-task to
appropriate sized virtual machines in the cloud computing
environment. Experimental results indicate that the proposed
integrated approach outperforms the conventional algorithms
in the cloud computing environment.

Mirjalili et al. [34] proposed a metaheuristic method waste
on the behaviour of grey wolves called grey wolf optimizer.
This method has been successfully implemented for solv-
ing classical engineering problems, namely, welded beam,
pressure vessel designs, and tension/compression spring. This
method has the capability of solving problems with and with-
out constraints. In this method, exploration and exploitation
of the search space are considered for finding an optimal
solution.

Grey wolf optimizer has several advantages over tradi-
tional optimization method like particle swarm optimization
method [33]. Particle swarm optimization method has the
limitation of degraded performance in the task scheduling
context due to low convergence rate in its iterations [35], [36].
Biogeographical based methods were found to be unsuit-
able for middle-sized touch during problems [28]. Whereas,
ant colony optimization-based approaches have ignored the
dynamic behaviour of computing resources.

Despite many advantages of grey wolf optimizer in solv-
ing different optimization problems, few researchers have
used this method for task scheduling problem in a cloud
computing environment with a large workload. Natesan
and Chokkalingam [11] suggested task scheduling prob-
lem using mean grey wolf optimization method in the
heterogeneous cloud environment. They demonstrated that
the proposed method resulted in minimizing makespan and
energy consumption based on effective task scheduling using
grey wolf optimization method. Natesha et al. [14] pro-
posed a multi-objective optimization method using grey
wolf optimization for task scheduling in the cloud envi-
ronment. The proposed method outperforms the perfor-
mance of non-metaheuristic methods such as first come
first serve (FCFS) and Modified Throttle (MT) as well as
metaheuristic methods like Genetic Algorithm (GA), Parti-
cle Swarm Optimization (PSO), and Cat Swarm Optimiza-
tion (CSO) for optimizing resource utilization in terms of
energy consumption and makespan.

Alzagebah et al. [37] suggested the grey wolf optimization-
based method for optimizing multi-objective task schedul-
ing problem into a single fitness function. Their method
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optimized a single fitness function of makespan and
cost to solve the task scheduling problem. The reported
results demonstrated that their modified grey wolf Opti-
mization method had outperformed traditional grey wolf
optimization method and whale Optimization method
in terms of makespan, degree of imbalance, and cost.
Bacanin et al. [38] house adopted a grey wolf optimization
method for solving the task scheduling problem in cloud com-
puting. They showed that the grey wolf optimization-based
method had provided good quality and robust task schedule
over existing methods. Sanaj and Prathap [33] suggested
an enhancement of the grey wolf optimizer-based approach
for task scheduling for optimizing resource utilization, cost,
execution time, communication time, and power usage. The
authors employed epsilon constraint, penalty cost, and the
fractional grey wolf optimizer with a modification in the
position update in their approach. In this method, they used a
combination of alpha and beta solutions in the optimization
process.

IIl. TASK SCHEDULING IN THE CLOUD COMPUTING
ENVIRONMENT

Cloud computing involves allocating computing resources
to different applications as per their requirements [33].
Cloud data centers use several physical servers for providing
computing services for various applications. Each physical
server runs multiple virtual machines. Computing resources
to the different applications are allocated from these virtual
machines. Each user-submitted task is allocated and executed
on a virtual machine-based upon its processing capability and
cost of computing resources. Task scheduling methods aim
to efficiently allocate computing resources for executing the
user-submitted task as per requirement [39]. Efficient alloca-
tion of computing resources requires estimation of memory
consumption, CPU, and bandwidth utilization for executing
the specified task [40]. It is feasible to improve task schedul-
ing performance with suitable values of multiple objectives
like resource utilization, execution time, Degree of imbal-
ance, makespan and Throughput off the cloud data center
using a grey wolf optimization algorithm [40], [41]. This
algorithm enables the allocation of virtual machines to the
user-submitted task as per their requirement while meeting
the cloud data center’s multiple objectives like maximizing
resource utilization, minimizing makespan, minimizing the
degree of imbalance, and maximizing the Throughput of the
cloud data center. The details of the grey wolf algorithm for
optimizing the cloud computing environment’s task schedul-
ing process are described in the following section.

IV. GREY WOLF OPTIMIZATION (GWO) ALGORITHM AND
MOTIVATION

This section describes salient features of the grey wolf opti-
mizer and its functional components.

A. THE MOTIVATION OF GREY WOLF OPTIMIZER
The main benefit of using the grey wolf optimizer is that
it can be applied to solve constrained and unconstrained
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problems in different fields. This optimizer begins with solu-
tions that are initialized using random numbers without com-
puting any derivative of search space for finding the optimal
solution [33], [42]. This benefit enables grey wolf optimizer
to solve real-world problems with unknown derivative infor-
mation or expensive derivative information. This optimizer is
also helpful in solving the problems with the unknown search
space of real problems.

Grey wolf optimizer is a metaheuristic algorithm proposed
by Mirjalili ef al. in 2014 [34] and falls in the category of
swarm intelligence algorithms. Grey wolf optimizer is one of
the most commonly used algorithms for optimizing problems
related to Engineering [43]. This algorithm is inspired by the
social arrangement and hunting procedure of grey wolves.
In 2016, the authors developed a multi-objective version of
Grey wolf optimizer [44]. Grey wolf optimizer is known
for using fewer parameters, fast convergence, scalability,
flexibility, and capability to maintain the balance between
exploitation and exploration during the subspace [45].

It has been shown that standard grey wolf optimizer out-
performs many conventional optimizers like particle swarm
optimization, differential evolution, Gravitational Search
Algorithm, and free energy perturbation algorithm [34].
Mirjalili et al. [34] stated that grey wolf optimizer is easy
to implement, exhibits a fast convergence rate, provides
high accuracy for many optimization problems. The grey
wolf optimizer characteristics make it suitable for time Lim-
ited task scheduling problems like task scheduling in the
cloud computing environment. These features of grey wolf
optimizer enabled it to be successfully used in different
fields such as machine learning, bioinformatics, network-
ing, medical, environment applications, and image processing
applications [45].

B. FUNCTIONAL COMPONENTS OF GREY WOLF
OPTIMIZER

Generally, grey wolves live in an organized structure called
packs. In each pack, grey wolves can be divided into four
types of wolves, namely, alpha, beta, delta, and omega
wolves [34], [44], [45]. The alpha wolf is considered the
strongest animal in the pack and behaves as a leader to
navigate the hunting process. The beta wolf is the second
level of the wolf in the hierarchy for making the decisions
during the hunting process. Delta wolf has the next level of
dominance in decision making after the beta wolf. Omega
wolves are at the lowest level in the hierarchy of Grey
wolves. Figure 1 represents the social hierarchy of the grey
wolves.

In the absence of the powerful alpha wolf, decision-making
capacity moves one step down in the social hierarchy of grey
wolves. This social intelligence is the main inspiration of the
grey wolf optimizer. During the hunting process, grey wolves
also follow a systematic strategy, consisting of different iter-
ative phases namely, search, encircle, and attack [46]. These
phases are described below.
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FIGURE 1. The social hierarchy of the grey wolves.

1) SEARCH PHASE

The search phase is an essential and first step in the hunt-
ing process of Grey wolves. In the mathematical model,
it involves the computation of the distance between the Prey
and Grave wolf. It is computed as per Eq. (1).

Dist = abs(coeff x Ly(t) — Low(?)) (1)

where coeff gives the coefficient vector; Lgw (¢) represents
the location of the grey wolf at a given time interval ¢;
L, indicates the location of prey at a given time interval ¢.
The value of coeff is computed using Eq. (2).

Coeff =2 x Ran(0, 1) 2)

where Ran(0, 1) is a function that returns a random num-
ber between 0 and 1. Table 1 is the notations used in the
modelling.

TABLE 1. Notations used in the proposed TSMGWO task scheduling
approach.

Notation Definition
Avg_RUR Average resource utilization ratio
Coefficient vector in grey wolf optimization
coeff method
cT The computation time of running a task 75
Yy on virtual machine V My,
. Distance vector in grey wolf optimization
Dist
method
II'mbalance_Deg  Degree of imbalance
Laipha Location of Alpha wolf
Lpeta Location of Beta wolf
Lgeita Location of Delta wolf
Law Location of grey wolf
P Location of prey
MS(VMy) Makespan of virtual machine =
Population size of grey wolf optimization
n method
T; Use submitted task 7,1 < j < [
‘ Maximum number of iterations in the grey wolf
maw optimization method
V M; Virtual machine j,! < i < J
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2) ENCIRCLE PHASE

The second phase in the hunting process is encircling the
prey by grey wolves. The encircle phase involves changing
the location of different grey wolves concerning the prey to
encircle it habitually. Mathematically, a change in position of
nth grey wolves at a time interval of ¢ + 1 in this phase can
be simulated as per Eq. (3) below.

Low—n(t + 1) = L,(t) — Mcoeff,, x Dist, 3)

where Dist,, is the distance of nth grey wolf from the prey and
computed as per Eq. (4).

Dist, = abs(coeffy, x Ly(t) — Lew(t) ) @)

Mcoeff, gave the mean coefficient vector for grey wolves and
computed as per Eq. (5).

Mcoeffn =2 x X x ran(0, 1) x X 5)

X 1is a variable that gets decreased from 2 to 0 in the
iterative process. The current value X in an iteration ¢ in
tmax as the maximum number of iterations is computed as
per Eq. (6).

t
X=2-2x — ()

lmax

3) ATTACK PHASE

Grey wolves change their positions as per the position of
prey as simulated in Eq. (1) to Eq. (6). The social hierarchy
of grey wolves is followed to attack the prey. The top three
dominating wolves as alpha, beta and delta in the hierar-
chy are considered as best solutions. At a suitable distance
after encircling the prey, it is assumed that alpha, beta and
delta wolves have a better understanding of the position of
prey. Therefore, the alpha wolf attacks the prey. The position
of prey is updated as per the position of alpha, beta and
delta wolves that is mathematically simulated as per Eq. (7).
Omega wolves update their locations randomly around the
prey as per Eq. (7).

Distaipha = abs(coeffi X Laipha(1)—L(1))

Distpera = abs(coeffz X Lpeta(t)—L(1))

Distgena = abs(coeffs X Laeia(t)—L(1))
Ly = Laipha(t) — coeffi X Distaipha
Ly = Lpea(t) — coeffa X Distpeta

L3 = Lgeia(t) — coeffs X Distgeira
L L L
L:(1+32+ 3) 7

Grey wolf optimizer works by using a set of random solutions
as grey wolves. Set of random solutions are measured in
terms of multiple objective functions [45], [46]. The values
of multiple objective functions as fitness function indicates
the quality of each solution. The top three quality solutions
are denoted as alpha, beta, and delta wolves. Grey wolf
optimizer regularly updates the location of wolves in each
iteration. In any iteration, if any solution becomes better than
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alpha, beta, and delta wolves, then corresponding solutions
are replaced with the identified solution. Grey wolf optimizer
stops iterating the solutions till some stopping criteria are
satisfied [46]. Figure 2 shows the pseudo-code of grey wolf
optimize algorithm.

Input:

1. Parameters of grey wolf optimizer.

2. Task (7;) and virtual machines (VM; ),

foralli €{1, 2, 3,----- ,I}and j €{1,2 3, ----- L Jh

Output:

1. A set of optimal fask schedules.
Parameter initialization:

1. An initial population of size n (Low)

2. Random initialization of coeff vector, Dist vector

3. User defined fiax as the maximum number of iterations

4. Sett = 0 as initial counter
Start
Initialization phase:

I. Setc=1

2. While (c<n)

a. Initial Lgw (¢) randomly

b. compute fitness

(98]

end while

»

Sort population in the order of fitness
5. Top most fit grey wolf denoted as Lajpha
6. Second most fit grey wolf denoted as Lpeza
7. Third most grey wolf denoted as Laeita
Updating phase:
1. While (¢ < fmax) //Maximum number of iterations
2. Loop for each element in the population
a. Update location
End loop
Update value of X

3
4
5. Update value of coeff vector
6. Update value of Dist

7. Update value of Lajpha

8. Update value of Lpera

9. Update value of Lgeita
10. t++
11. end while

// Increment iteration count

Output phase:
1. Return Lajpha as best solution in the search space

End.

FIGURE 2. Pseudo-code of grey wolf optimizer.
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FIGURE 3. Proposed the TSMGWO approach.

V. TSMGWO - GREY WOLF OPTIMIZER BASED TASK
SCHEDULING APPROACH

This article presents a new approach to optimize task resource
mapping using the grey wolf optimization method in the
cloud computing environment. To optimize task resource
mapping, we attempt to optimize multiple objectives of
makespan, resource utilization, Degree of imbalance, and
Throughput using the proposed TSMGWO approach. The
proposed grey wolf optimization method-based approach is
shown in Figure 3. This work assumes that the underlying
cloud environment is heterogeneous, where utilization infor-
mation of physical machines is available. We attempt to opti-
mize makespan, resource utilization, Degree of imbalance,
and Throughput of the tasks simultaneously using grey wolf
optimizer in the form of a Pareto front for providing the
trade-off to the cloud service provider.

Cloud service providers offer virtual machines running on
physical machines through a public interface of their propri-
etary software [47]. The cloud users submit their requests for
processing of different tasks through the public interface. All
the received user tasks are stored in a temporary storage called
task buffer, as shown in Figure 3. The task manager takes user
tasks from the task buffer and calls the task scheduling model.
The task scheduling model applies grey wolf optimizer to
obtain a set of solutions providing trade-off to the cloud ser-
vice provider. This model optimizes the task schedule based
on constrained performance requirements of virtual machines
and different tasks’ execution time. A suitable solution as an
optimized task schedule is selected based on the cloud service
provider’s requirement. Accordingly, tasks are allocated com-
puting resources in the different hosts in the form of virtual
machines, as shown in Figure 3.

The flowchart for the TSMGWO based task scheduling
approach is depicted in Figure 4. Initially the number of
cloudlets and the list of VMs are given as an input for the
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FIGURE 4. Flowchart of the TSMGWO approach.

‘ Return set of non ’

algorithm. After inputting the values, the parameters such
as a and tmax are initialized. In Step 2, the initial schedule
is generated. Using this schedule, we calculated the fitness
function of the VMs. In Step 3, VMs are grouped into alpha,
beta, gamma group of wolves, where alpha will be the least F
value, and beta is greater than alpha and less than other wolves
and delta is greater than beta and less than other wolves and
rest will be considered as omega wolves. Then the values of
a and t max are varied in each loop to identify the better
schedule. By updating the values of wolves group in each
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iteration, the value of a is continuously decreasing from 2 to
0. When the value of a becomes zero or terminating condition
is met, then a set of values of alpha will be returned as the best
values and it will be considered as the non-inferior schedules
for allocating tasks to the VMs.

A. SOLUTION REPRESENTATION

In this work, the solution to the task scheduling problem is
represented as an array of tasks T = {T1, 1>, T3, ... ... , Tt}
that are mapped to virtual machines V = {V{, V,, V3, ...
..., Vj} using grey wolf population as shown in Figure 5.
Initially, resources are allocated as per their cost and capac-
ity. The proposed approach helps to obtain an optimal talks
schedule for allocating resources to the task-based upon mul-
tiple objectives [1].

T; T, T - - - - - - Ty

VM; | VM | VM3 | - | - | PMy | - | - | - | ¥M;

FIGURE 5. Task scheduling solution representation.

B. BASIC ASSUMPTIONS

In this work, we assume the following constraints for exe-
cuting tasks on virtual machines in the cloud data center to
simulate a realistic execution environment.

o Each user-submitted task is assigned to only one virtual
machine.

o Each user-submitted task must be executed to its com-
pletion within the timeframe of the task on the assigned
virtual machine.

o The total capacity of virtual machines mounted on a
physical machine exceeds the total computing require-
ments of the cloud tasks to be executed in that physical
machine.

o User-submitted tasks are independent of each other.

e Each task can be executed on any available virtual
machine that fulfils its computing requirements.

« Multiple tasks can be assigned to any virtual machine.

o The execution time for different tasks depends upon the
capacity of the virtual machine.

C. DEFINITION OF SYSTEM MODELS

This work consists of essential objectives of resource uti-
lization, makespan and execution time for optimization.
These objectives are conflicting with each other acquiring
maximization of resource utilization and minimization of
makespan and execution time.

1) MAKESPAN

Makespan defines the total time required from submitting a
task to the completion of the task by the user. It is obtained
by summing up the waiting time and processing time of the
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task. It signifies the minimization of execution time and hence
meeting the execution constraints of the task [11]. Its lower
value characterizes a good task schedule in terms of execution
time. It is generally computed as the time taken by a task
to complete its execution on various virtual machines. It is
computed using from Eq. (8) to Eq. (11).

Makespan = max(MS(VM,)) (8)

where 1 < x < n; n represents the number of virtual
machines.

MS(VM,) = Z CTyy X Assigned(x, y) )

where, CT gives the computation time of task 7y on VM,;
Assigned (x,y) = 1, if T is scheduled on VM,, otherwise
Assigned (x,y) = 0.

Computation time CT of a virtual machine VM, for running
a task 7, can be computed using Eq. (11).

CTyy = Z(TX.MI / VM, .MIPS) (10)

where, Ty.MI represents a million instructions of Task Ty.
VM, .MIPS gives a million instructions per second of VM,.
Therefore, the first objective of this work is to minimize
makespan as represented in Eq. (11).

Objective I = Minimize(Makespan) an

2) RESOURCE UTILIZATION

In this work, we evaluated the performance of the TSMGWO
based approach using resource utilization in terms of an
average resource utilization ratio. The average resource uti-
lization ratio is the computed ratio of average makespan to
the maximum makespan of the cloud system using Eq. (12)
and Eq. (13) as follows [48], [49].

Avg_RUR = (Avg Makespan | Cloud Makespan) (12)
Avg Makespan = ZMS(VMX) / n, (13)

where 1 < x < n; n represents the number of virtual
machines. Cloud Makespan = Maximum time for the com-
pletion of all the system workload. The value of Avg_RUR
ranges from O to 1. The value O indicates the negligible
utilization of computing resources and value 1 signifies full
utilization of computing resources in the cloud environment.

Therefore, the second objective of this work is to max-
imize the average resource utilization ratio as represented
in Eq. (14).

Objective Il = Maximize (Avg_RUR) (14)

3) DEGREE OF IMBALANCE
The degree of imbalance evaluates the imbalance of work
load distribution of cloud among virtual machines as per
their competencies [1]. It is generally computed as execution
time of tasks on virtual machines. It can be computed using
Eq. (15) as follows.

(Max_CTime; — Min_CTime;)

Imbalance_Deg = e CT0 (15)
vg_CTime;
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where Max_CTime; gives the maximum completion time of
Task; on all virtual machines; Min_CTim; gives the minimum
completion time of Task; on all virtual machines; Avg_CTime;
gives the average completion time of Task; on all virtual
machines. The lower values of Imbalance_Deg indicates that
cloud work load is balanced correctly, whereas higher values
show that load balancing is inefficient. Therefore, the third
objective of this work is to minimize the degree of imbalance
as represented in Eq (16).

Objective III = Minimize (Imbalance_Deg) (16)

4) THROUGHPUT
The Throughput measures the number of cloud tasks exe-

cuted per unit time. It is computed in terms of makespan
as per (17) [5].

Throughput = (Number of tasks) /| (Makespan) (17)

A higher value of the throughput metric is desired for a better
performing task scheduling method. Therefore, the fourth
objective of this work is to maximize Throughput as repre-
sented in Eq. (18).

Objective IV = Maximize (Throughput) (18)

5) TIME COMPLEXITY ANALYSIS

The computational costs of the proposed framework com-
puted like complexity of standard GWO. The proposed
framework involves the initialization (D;,;), position update
(Dupdare), and fitness evaluations (Dyq) for the popula-
tion. Given an N-wolf of pack and D-dimensional optimiza-
tion problem, the computational complexity of the proposed
framework can be calculated as:

D = Djy; + (Dupdate + Devat) X FEvaluations
=N+ (N x D +N) X FEvaluations
=N x (1 + D+ 1) X Feyaluations) (19)

Therefore, the time complexity of the proposed framework is
0] (N X D x FEvaluationS)-

V1. EXPERIMENT AND RESULTS

This section describes the experimental setup, performance
metrics, evaluation data sets, and experimental results. The
discussion of results includes an evaluation of the proposed
TSGWO task scheduling approach along with identified
heuristic and metaheuristic methods using three benchmark
data sets. This evaluation uses benchmark data sets, namely,
GoCJ [50] and HCSP [51] data sets and a realistic cloud
workload-based data set.

A. EXPERIMENT CONFIGURATION

It is a very challenging task to evaluate the task schedul-
ing approach using aerial cloud workload [48]. The real
cloud workload put many constraints for conducting scalable
experiments during the task scheduling approach’s testing
phase. Cloud computing works based on the pay per use
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model, making it very expensive to repeat the experiments
using real cloud workload. A promising alternative is to
simulate the cloud workload using cloud simulators such as
cloudSim(version 5.0) [52].

Therefore, we evaluated the proposed TSGWO task
scheduling approach in a simulated environment using
cloudSim software based upon benchmark datasets. The
experiments are simulated using a machine equipped with
Intel (R) Core (TM) i5-4210 CPU @ 1.70 GHz, 8GBs RAM,
1TB HDD under Windows 10 64-bit operating system.

Our experimental setup assumes two data centers con-
sisting of five physical machines with a total memory
of 8 GB. The bandwidth of the physical machine is
2800 Mpbs. Twenty-five virtual machines were created over
five physical machines. The experimental setup of the data
center, physical machines, and virtual machines are presented
in Table 2.

TABLE 2. Experimental setup for simulated evaluation.

SrNo Item Details Value
Bandwidth 1000
CPU count 01
Virtual machine count 25
. Main memor 1GB
| Vinul g 100 — 1000
machine : -
Operating system Linux
Policy type Time Shared
Size 10000
VMM Xen
Bandwidth 2800
Hard disk drive 1TB
2 Physical Hosts count 05
machine Main memory 8 GB
Policy Time shared
Power 4 Dual core (4000 MIPS),
26 Quad core (4000 MIPS)
3 Data center Data center count 02

B. PERFORMANCE METRICS

We evaluated the proposed TSMGWO approach for task
scheduling in the cloud computing environment in four
performance metrics. These identified performance metrics
are makespan, average resource utilization ratio, Degree
of imbalance and Throughput of the cloud. These met-
rics are the most commonly used evaluation metrics for
comparing and analyzing the performance of task schedul-
ing approaches in cloud computing. The values of perfor-
mance metrics, makespan, average resource utilization ratio,
Degree of imbalance and Throughput are computed using
equations (1), (5), (7), and (9) respectively as described
in Section V-C.

C. EVALUATION DATA SETS

To evaluate and perform a comprehensive comparison of the
proposed TSMGWO approach with the selected heuristic and
metaheuristic approaches, we focused on the best choices for
the selection of simulator, benchmark data set, and evaluation
metrics.
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We selected three benchmark datasets for evaluating the 6000
proposed approach, a realistic cloud workload, two bench-

mark data set, namely, the GoCJ data set proposed by 5000 -

Hussain and Aleem [50] and the HSCP data set proposed by

Braun et al. [51]. The details are described below. 4000 - !
1) GoCJ DATA SET 3000 - H
Hussain and Aleem [50] have developed a realistic cloud

workload data set using Google Cluster traces known as the 2000 - I
GoC]J data set. The GoCJ data set is provided for evaluation

purposes in the form of different text files in the Mendeley |

, , , , , T , , , ,
[ TSMGWO I WOA [ GA I PSO [IMT [ENIFCFS)]

Makespan / Seconds

1000 [

data repository. Data is arranged in the form of rows con-
sisting of numeric values. The numeric value indicates the
size of the cloud job in terms of million instructions (MI). 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of Tasks

This dataset is composed of five types of jobs with different (a)
proportions and is presented in Table 3. Each text file of the €000

, , , , , T , , , ,
[ TSMGWO [ WOA [ GA [ PSO IIMT [EIFCFS]

GoC(]J data set contains a different number of jobs of different
sized cloud workloads as shown in Table 4. 5000 - H
TABLE 3. Job types of GoCJ data set. 4000 - I
Sr no Job type MI range Distribution
1 Small 15,000 - 55,000 20 % s000r |
2 Medium 59,000 - 99,000 40 %
3 Large 101,000 - 135,000 30 % a0l I
4 Extra large 150,000 - 337,500 6 %
5 Huge 525,000 - 900,000 4 %
1000 il
2) HSCP DATA SET

Braun et al. [51] proposed a model for developing the HCSP
cloud workload based data set. The HCSP data set is devel-
oped based on expected computation time consisting of a
fixed number of virtual machines and number of tasks by con-
sidering four factors: distribution of workload, consistency,
heterogeneity of task, and heterogeneity of the resources. The
data instances are represented in the form u_x_yy zz [51].

u represents uniform distribution. x represents consistency
type. Three Types of consistencies have been considered
in this work as fully consistent, partially consistent, and
inconsistent. yy represents the heterogeneity of the task.
zz represents the heterogeneity of the resource. Heterogeneity
of task and resource can take values of high and low. In this
work, we focused on uniformly generated data instances.
The data instances of the HCSP data set are denoted by the
number of tasks multiplied by virtual machines. For example,
(1024 x 32) indicates 1024 tasks in the workload to be mapped
on to 32 virtual machines. Considering u_x_yy zz representa-
tion, the HCSP data set have twelve data formats correspond-
ing to different consistency levels for uniform distribution of
cloud workload as summarized in Table 5.

3) SYNTHETIC DATA SET

Many researchers have evaluated their approaches using
synthetic data set having fixed-sized jobs. For example,
Mehdi et al. [53] conducted many experiments using a
genetic scheduler with the heterogeneous machine for exe-
cuting about 100 cloud task workloads using a synthetic
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FIGURE 6. Makespan-based comparative results of (a) using the GoCJ
data set, (b) using the synthetic data set, and (c) using the HSCP data set.
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dataset. Similarly, Behzad ef al. [54] also performed a com-
parative study of scheduling methods using a synthetic data
set consisting of seven thousand jobs and 15000 jobs with
many processors ranging from 4 to 64 processors. On sim-
ilar lines, we also used a synthetic data set containing five
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TABLE 4. GoCJ data set job statistics.

]?12 File name Job type l\élfl?z)lézr 13; File name Job type lj)?gr:f;r 13:) File name Job type l\é;l?;%:r
Small Jobs 19 Small Jobs 22 Small Jobs 42
GoCJ Medium Jobs 39 GoCJ Medium Jobs 58 GoClJ Medium Jobs 75
1 Dataset Large Jobs 31 2 Dataset Large Jobs 51 3 Dataset Large Jobs 63
100.txt Extra Large Jobs 3 150.txt Extra Large Jobs 6 200.txt Extra Large Jobs 4
Huge Jobs 8 Huge Jobs 13 Huge Jobs 16
Small Jobs 58 Small Jobs 61 GoCJ Small Jobs 60
GoCJ Medium Jobs 93 GoCJ Medium Jobs 114 Dataset Medium Jobs 131
4 Dataset Large Jobs 79 5 Dataset Large Jobs 95 6 Large Jobs 119
250.txt Extra Large Jobs 7 300.txt Extra Large Jobs 7 350 txt Extra Large Jobs 14
Huge Jobs 13 Huge Jobs 23 T Huge Jobs 26
Small Jobs 55 Small Jobs 85 Small Jobs 96
GoClJ Medium Jobs 165 GoCJ Medium Jobs 184 GoCJ Medium Jobs 191
7 Dataset Large Jobs 139 8 Dataset Large Jobs 141 9 Dataset Large Jobs 155
400.txt Extra Large Jobs 18 450.txt Extra Large Jobs 17 500.txt Extra Large Jobs 25
Huge Jobs 23 Huge Jobs 23 Huge Jobs 33
Small Jobs 98 Small Jobs 114 Small Jobs 118
GoCJ Medium Jobs 226 GoCJ Medium Jobs 229 GoCJ Medium Jobs 243
10  Dataset Large Jobs 176 11 Dataset Large Jobs 190 12 Dataset Large Jobs 210
550.txt Extra Large Jobs 17 600.txt Extra Large Jobs 25 650.txt Extra Large Jobs 33
Huge Jobs 33 Huge Jobs 42 Huge Jobs 46
Small Jobs 116 Small Jobs 145 Small Jobs 160
GoCJ Medium Jobs 295 GoCJ Medium Jobs 284 GoCJ Medium Jobs 315
13 Dataset Large Jobs 222 14 Dataset Large Jobs 240 15  Dataset Large Jobs 252
700.txt Extra Large Jobs 29 750.txt Extra Large Jobs 28 800.txt Extra Large Jobs 27
Huge Jobs 38 Huge Jobs 53 Huge Jobs 46
Small Jobs 148 Small Jobs 156 Small Jobs 179
GoCJ Medium Jobs 363 GoCJ Medium Jobs 344 GoCJ Medium Jobs 347
16  Dataset Large Jobs 259 17 Dataset Large Jobs 298 18  Dataset Large Jobs 337
850.txt Extra Large Jobs 33 900.txt Extra Large Jobs 44 950.txt Extra Large Jobs 39
Huge Jobs 47 Huge Jobs 58 Huge Jobs 48
Small Jobs 162
GoCJ Medium Jobs 423
19 Dataset Large Jobs 322
100.txt Extra Large Jobs 33
Huge Jobs 60
TABLE 5. HCSP data set instances.
HCSP Dataset (512 x 16) , (1024 x 32) , (2048 x 64) , (128 x 4096), (256 x 8192)
Uniformity u u u u u u u u u u
Consistency . .
. c c c s s S i i i i
(c/sl)
Task
Heterogeneity Hi hi Lo hi hi lo hi hi lo lo
(hi/lo)
Resource
Heterogeneity hi lo Hi hi lo hi hi lo hi lo
(hi/lo)
data u_c_ u_c_ u_c_ u_c_ u_s_ u_s_ u_s_ u_s_ u_i_ u_i_ u_i_ u_i_
instance hi hi hi lo lo hi lolo hi hi hi lo lo hi lolo hi hi hi lo lo hi lolo

fixed-size cloud task workloads of different sizes like tiny,
small, medium, large, and extra-large cloud workloads in
different proportions and are presented in Table 6.

D. RESULTS AND DISCUSSION

We evaluated the proposed TSMGWO task scheduling
approach with the identified heuristic methods, FCFS and MT
and metaheuristic methodsPSO, GA, and WOA. We used four
evaluation metrics: makespan, Average Resource Utilization
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Ratio (Avg_RUR), Degree of imbalance, and Throughput.
Performance of TSMGWO task scheduling approach is mea-
sured using equations (1), (5), (7) and (9), respectively as
described in Section V-C. The results are presented for
experimental evaluation using three benchmark data sets:
GOCIJ data set, HSCP data set, and Synthetic data set in the
following sub-sections. We computed results using 512 X
16 data instances of the HSCP dataset containing 512 tasks
allocated to 16 virtual machines.
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TABLE 6. Job types of the synthetic data set.

Sr no Job type MI range Distribution
1 Tiny 200 35%

2 Small 1,000 40 %

3 Medium 5,000 5%

4 Large 15,000 15 %

5 Extra large 45,000 5%

1) MAKESPAN BASED EXPERIMENTAL RESULTS

Makespan represents the maximum execution time for all
tasks in the cloud. It is the most commonly used metrics
for Cloud customers in the cloud computing environment.
A lower value of makespan metric indicates better per-
formance. Values of makespan metric are computed using
Eq. (1) for the identified benchmark datasets. Figure 6 rep-
resents the makespan based experimental results obtained
and compared with identified heuristic and metaheuristic
methods. It can be observed from Figure 6 (a) — (c) that the
proposed TSGWO task scheduling approach exhibits better

performance with lower values of makespan in comparison
to the existing heuristic and metaheuristic methods.

Tables 7 shows a reduction in makespan using different
benchmark data sets. It can be observed from Table 7 that
the TSMGWO approach results in a maximum reduction in
makespan 67.52% over FCFS method, 60.93%, 52.33% over
PSO, 38.05% over GA, and 23.22% over WOA methods
for 100 tasked cloud workload using GoCJ data set. It can
also be observed that a minimum of 30.41%, 19.02%, 9.5%,
5.85% reduction in makespan has been achieved using the
TSMGWO approach over FCFS method, MT method, PSO
method, GA method and WOA method respectively using all
possible number of tasks considered in this work using GoCJ
data set.

For the synthetic data set, Table 7 shows that the
TSMGWO approach can result in a maximum reduction
of makespan up to 60.95% over FCFS method, 55.79%
over MT method, 47.04% over PSO, 33.38% over GA and
19.91% over WOA method for 100 tasked cloud workload.
It can also be observed that a minimum of 28.74%, 18.53%,

TABLE 7. Reduction in makespan using the TSMGWO approach over heuristic and meta heuristic methods.

Reduction in Makespan using TSMGWO

Dataset Method / Heuristic methods Meta heuristic methods
: No.of tasks Heuristic methods Meta heuristic methods
FCFS MT PSO GA WOA TSMGWO OverFCFS Over MT OverPSO Over GA Over WOA
100 1293 1075 881 678 547 420 67.52 % 60.93 % 52.33 % 38.05 % 23.22 %
200 1593 1375 1181 978 847 713 55.24 % 48.15 % 39.63 % 27.10 % 15.82 %
300 1943 1675 1481 1278 1147 1006 48.22 % 39.94 % 32.07 % 21.28 % 12.29 %
400 2293 1975 1781 1578 1447 1299 43.35 % 34.23 % 27.06 % 17.68 % 10.23 %
500 2643 2275 2081 1878 1747 1592 39.77 % 30.02 % 23.50 % 15.23 % 8.87 %
GoCl 600 2993 2575 2381 2178 2047 1885 37.02 % 26.80 % 20.83 % 13.45 % 791 %
700 3343 2875 2681 2478 2347 2178 34.85 % 24.24 % 18.76 % 12.11 % 7.20 %
800 3693 3175 2981 2778 2647 2471 33.09 % 22.17 % 17.11 % 11.05 % 6.65 %
900 4043 3475 3281 3078 2947 2764 31.63 % 20.46 % 15.76 % 10.20 % 6.21 %
1000 4393 3775 3581 3378 3247 3057 30.41 % 19.02 % 14.63 % 9.50 % 5.85 %
1100 4893 4275 4081 3878 3747 3350 31.53 % 21.64 % 17.91 % 13.62 % 10.60 %
1200 5393 4775 4581 4378 4247 3643 3245 % 23.71 % 20.48 % 16.79 % 14.22 %
100 1329 1174 980 779 648 519 60.95 % 55.79 % 47.04 % 33.38 % 19.91 %
200 1629 1474 1280 1079 948 812 50.15 % 4491 % 36.56 % 24.75 % 14.35 %
300 1979 1774 1580 1379 1248 1105 44.16 % 37.71 % 30.06 % 19.87 % 11.46 %
400 2329 2074 1880 1679 1548 1398 39.97 % 32.59 % 25.64 % 16.74 % 9.69 %
500 2679 2374 2180 1979 1848 1691 36.88 % 28.77 % 2243 % 14.55 % 8.50 %
Synthetic 600 3029 2674 2480 2279 2148 1984 34.50 % 25.80 % 20.00 % 12.94 % 7.64 %
700 3379 2974 2780 2579 2448 2277 32.61 % 23.44 % 18.09 % 11.71 % 6.99 %
800 3729 3274 3080 2879 2748 2570 31.08 % 21.50 % 16.56 % 10.73 % 6.48 %
900 4079 3574 3380 3179 3048 2863 29.81 % 19.89 % 15.30 % 9.94 % 6.07 %
1000 4429 3874 3680 3479 3348 3156 28.74 % 18.53 % 14.24 % 9.28 % 5.73 %
1100 4929 4374 4180 3979 3848 3449 30.03 % 21.15 % 17.49 % 13.32 % 10.37 %
1200 5429 4874 4680 4479 4348 3742 31.07 % 23.23 % 20.04 % 16.45 % 13.94 %
u-c-hihi 110 105 95 81 80 77 30.00 % 26.67 % 18.95 % 4.94 % 3.75 %
u-c-hilo 89 83 69 73 68 67 24.72 % 19.28 % 2.90 % 8.22 % 1.47 %
u-c-lohi 53 47 39 42 40 37 30.19 % 21.28 % 5.13 % 11.90 % 7.50 %
u-c-lolo 44 37 31 30 28 27 38.64 % 27.03 % 12.90 % 10.00 % 3.57 %
u-1i-hihi 86 82 77 75 78 76 11.63 % 7.32 % 1.30 % -1.33 % 2.56 %
HSCP u-i-hilo 83 79 70 73 72 69 16.87 % 12.66 % 143 % 5.48 % 417 %
u-i-lohi 47 43 36 38 37 36 23.40 % 16.28 % 0.00 % 5.26 % 2.70 %
u-i-lolo 38 33 27 26 28 26 31.58 % 21.21 % 3.70 % 0.00 % 7.14 %
u-s-hihi 90 84 77 78 78 76 15.56 % 9.52 % 1.30 % 2.56 % 2.56 %
u-s-hilo 85 82 77 70 69 67 21.18 % 18.29 % 12.99 % 4.29 % 2.90 %
u-s-lohi 48 43 37 37 38 36 25.00 % 16.28 % 2.70 % 2.70 % 5.26 %
u-s-lolo 38 33 27 28 27 26 31.58 % 21.21 % 3.70 % 7.14 % 3.70 %
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14.24%, 9.28%, and 5.73% reduction in makespan has been
achieved using the TSMGWO approach over FCFS method,
MT method, PSO method, GA method, and WOA method
respectively using all possible number of tasks considered in
this work using synthetic data set.

For the synthetic data set, Table 7 shows that TSMGWO
approach can result into a maximum reduction of makespan
up to 60.95 % over FCFS method, 55.79 % over MT method,
47.04 % over PSO, 33.38 % over GA and 19.91 % over
WOA method for 100 tasked cloud work load respectively.
It can also be observed that a minimum of 28.74 %, 18.53 %,
14.24 %, 9.28 % and 5.73 % reduction in makespan has
been achieved using TSMGWO approach over FCFS method,
MT method, PSO method, GA method and WOA method
respectively using all possible number of tasks considered
in this work using synthetic data set. Similarly, for 512 X
16 data instance of HSCP data set, Table 7 shows that the
TSMGWO approach can result in a maximum reduction of
makespan up to 38.64% over FCFS method for u_c_lolo data
pattern, 27.03% over MT method for u_c_lolo data pattern,
18.95% over PSO for u_c_hihi data pattern, 11.90% over
GA for u_c_lohi data pattern, and 7.5% over WOA method
for u_c_lohi data pattern of HSCP cloud workload. It can also
be observed that minimum 11.63%, 7.32%, 0.00%, -1.33%,
and 1.47% reduction in makespan has been achieved using the
TSMGWO approach over FCFS method, MT method, PSO
method, GA method and WOA method respectively using all
possible number of tasks considered in this work using HSCP
data set.

It can be concluded from Table 7 that there is a large
reduction in makespan for workload having less number
of tasks in comparison to more number of tasks using the
TSMGWO approach over-all state of art methods considered
in this work. The main reason behind the better performance
of the TSMGWO approach is the improved optimizing ability
of GWO over the other methods. Results delineate that the
TSMGWO approach outperforms in reducing makespan by
a considerable amount, leading to better performance of the
cloud computing environment over the existing heuristic and
metaheuristic methods using benchmark data sets.

2) AVERAGE RESOURCE UTILIZATION RATIO BASED
EXPERIMENTAL RESULTS

Figure 7 represents the average resource utilization ratio
based on experimental results obtained in this work and
compared with identified heuristic methods and metaheuris-
tic methods. The average resource utilization ratio for var-
ious benchmark data sets is computed using Eq 5. It can
be observed from Figure 7 (a) — (c) that the TSMGWO
approach has reported better performance than the identified
heuristic and metaheuristic methods by increasing resource
utilization.

Tables 8 shows the increase in resource utilization using
different benchmark data sets. It can be observed from
Table 8 that the TSMGWO approach can result in a maximum
increase of up to 462.50% over FCFS method, 275% over
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FIGURE 7. Average resource utilization ratio based results of (a) using the
Go(J data set, (b) using the synthetic data set, and (c) using the HSCP
data set.

MT method, 200% over PSO, 107.32% over GA, 11.11%
over WOA methods for 100 tasked cloud workload of GoCJ
data set. It can also be observed that a minimum of 117.78%,
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TABLE 8. Increase in Average RUR using the TSMGWO approach over heuristic and meta heuristic methods.

Increase in Avg RUR using TSMGWO

Dataset Method / Heuristic methods Meta heuristic methods
: No.of tasks Heuristic methods Meta heuristic methods
FCFS MT PSO GA WOA TSMGWO OverFCFS OverMT OverPSO Over GA Over WOA
100 0.08 0.12 0.15 025 042 0.45 462.50 % 275.00 %  200.00 % 80.00 % 7.14 %
200 0.15 0.18 0.25 035 0.55 0.59 293.33 % 22778 %  136.00 % 68.57 % 7.27 %
300 0.2 0.23 038 04 0.45 0.5 150.00 % 117.39 % 31.58 % 25.00 % 11.11 %
400 0.25 0.3 04 051 0.7 0.75 200.00 % 150.00 % 87.50 % 47.06 % 7.14 %
500 0.2 0.24 044 055 0.73 0.81 305.00 % 237.50 % 84.09 % 47.27 % 10.96 %
GoCJ 600 0.29 0.33 0.52 041 0.81 0.85 193.10 % 157.58 % 63.46 % 107.32 % 4.94 %
700 0.34 0.37 0.55 058 0.82 0.88 158.82 % 137.84 % 60.00 % 51.72 % 7.32 %
800 0.36 0.38 0.63 061 0.85 0.9 150.00 % 136.84 % 42.86 % 47.54 % 5.88 %
900 0.38 0.55 0.68 0.64 0.88 0.93 144.74 % 69.09 % 36.76 % 4531 % 5.68 %
1000 0.4 0.44 0.71  0.67 0.9 0.95 137.50 % 11591 % 33.80 % 41.79 % 5.56 %
1100 0.41 0.43 075 0.7 0.92 0.97 136.59 % 125.58 % 29.33 % 38.57 % 543 %
1200 0.45 0.5 0.78 0.75 0.95 0.98 117.78 % 96.00 % 25.64 % 30.67 % 3.16 %
100 0.12 0.14 0.19 029 046 0.49 308.33 % 250.00 %  157.89 % 68.97 % 6.52 %
200 0.19 0.22 0.29 039 0.59 0.63 231.58 % 186.36 % 117.24 % 61.54 % 6.78 %
300 0.24 0.27 042 044 049 0.54 125.00 % 100.00 % 28.57 % 22.73 % 10.20 %
400 0.29 0.34 044 055 074 0.79 172.41 % 132.35 % 79.55 % 43.64 % 6.76 %
500 0.24 0.28 048 059 0.77 0.85 254.17 % 203.57 % 77.08 % 44.07 % 10.39 %
Synthetic 600 0.33 0.37 0.56 045 0.85 0.89 169.70 % 140.54 % 58.93 % 97.78 % 471 %
700 0.38 0.41 0.59 062 0.86 0.92 142.11 % 124.39 % 55.93 % 48.39 % 6.98 %
800 0.4 0.42 0.67 065 0.87 0.94 135.00 % 123.81 % 40.30 % 44.62 % 8.05 %
900 0.42 0.59 0.72 0.68 0.88 0.95 126.19 % 61.02 % 31.94 % 39.71 % 7.95 %
1000 0.44 0.48 0.75 0.71 0.9 0.96 118.18 % 100.00 % 28.00 % 3521 % 6.67 %
1100 0.45 0.47 079 074 091 0.97 115.56 % 106.38 % 22.78 % 31.08 % 6.59 %
1200 0.49 0.54 0.82 079 0.93 0.98 100.00 % 81.48 % 19.51 % 24.05 % 5.38 %
u-c-hihi 0.56 0.63 0.76  0.79 091 0.99 76.79 % 57.14 % 30.26 % 2532 % 8.79 %
u-c-hilo 0.44 0.56 0.65 069 0.86 0.94 113.64 % 67.86 % 44.62 % 36.23 % 9.30 %
u-c-lohi 0.23 0.31 0.52 041 0.68 0.76 230.43 % 145.16 % 46.15 % 85.37 % 11.76 %
u-c-lolo 0.09 0.13 0.26 0.16 0.38 0.46 411.11 % 253.85 % 76.92 % 187.50 % 21.05 %
u-i-hihi 0.52 0.62 072 0.76  0.93 0.98 88.46 % 58.06 % 36.11 % 28.95 % 5.38 %
HSCP u- 1 - hi ]q 0.42 0.51 0.62 0.64 0.86 0.91 116.67 % 78.43 % 46.77 % 42.19 % 5.81 %
u-i-lohi 0.21 0.39 0.56 045 0.77 0.82 290.48 % 11026 % 4643 % 82.22 % 6.49 %
u-i-lolo 0.16 0.19 036 026 0.55 0.6 275.00 % 215.79 % 66.67 % 130.77 % 9.09 %
u-s-hihi 0.5 0.59 0.68 072 0.89 0.96 92.00 % 62.71 % 41.18 % 3333 % 7.87 %
u-s-hilo 0.37 0.47 0.6 057 082 0.89 140.54 % 89.36 % 48.33 % 56.14 % 8.54 %
u-s-lohi 0.3 0.35 042 053 079 0.86 186.67 % 14571 %  104.76 % 62.26 % 8.86 %
u-s-lolo 0.15 0.21 041 039 04 0.51 240.00 % 142.86 % 24.39 % 30.77 % 1591 %

69.09%, 25.64%, 25%, and 3.16% increase in avg-ARUR
has been achieved using the TSMGWO approach over the
FCFS method, MT method, PSO method, GA method, and
WOA method, respectively using the different number of
tasks.

For the synthetic data set, Table 8 shows that the
TSMGWO approach can result in a maximum increase in
resource utilization up to 308.33% over FCFS method, 250%
over MT method, 157.89% over PSO, 97.78% over GA, and
10.39% over WOA method for 100 tasked cloud workload.
It can also be observed that a minimum 100%, 61.02%,
19.51%, 22.73%, and 4.71% increase in resource utilization
has been achieved using the TSMGWO approach over FCFS
method, MT method, PSO method, GA method, and WOA
method respectively using the different number of tasks using
the synthetic data set. Similarly, for 512 X 16 data instance of
HSCP data set, Table 8 shows that the TSMGWO approach
can result in a maximum increase in resource utilization
up to 411.11% over FCFS method for u_c_lolo data pat-
tern, 253.85% over MT method for u_c_lolo data pattern,
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104.76% over PSO for u_c_lohi data pattern, 187.5% over
GA for u_c_lolo data pattern and 21.05% over WOA method
for u_c_lolo data pattern of HSCP cloud workload. It can
also be observed that a minimum 76.79%, 57.14%, 24.39%,
25.32%, and 5.38% increase in resource utilization has been
achieved using the TSMGWO approach over FCFS method,
MT method, PSO method, GA method, and WOA method
respectively using the different number of tasks based on
HSCP data set.

It can be concluded from Table 8 that there is a large
increase in average resource utilization for workload having
less number of tasks in comparison to more number of tasks
using the TSMGWO approach over the other methods. The
main reason behind the better performance of the TSMGWO
approach is its improved optimizing ability over the other
methods. Results prove that TSMGWO approach increases
resource utilization by a considerable amount, leading to
better performance of the cloud computing environment over
the existing heuristic and metaheuristic methods using bench-
mark data sets.
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FIGURE 8. Degree of imbalance based comparative results of (a) using the GoCJ data set, (b) using the synthetic data set, and (c) using the HSCP data

set.

TABLE 9. Reduction in the degree of imbalance using the TSMGWO approach over heuristic and meta heuristic methods.

Reduction in degree of imbalance using TSMGWO

Dataset Method / Heuristic methods Meta heuristic methods — =
No.of tasks Heuristic methods Meta heuristic methods
FCFS MT PSO GA WOA TSMGWO OverFCFS Over MT OverPSO Over GA Over WOA
200 0.35 0.3 02 023 024 0.18 48.57 % 40.00 % 10.00 % 21.74 % 25.00 %
400 0.25 0.22 0.1 0.16 0.12 0.05 80.00 % 77.27 % 50.00 % 68.75 % 58.33 %
600 0.18 0.15 0.09 0.1 0.09 0.07 61.11 % 53.33 % 22.22 % 30.00 % 22.22 %
800 0.15 0.1 0.08 0.08 0.07 0.04 73.33 % 60.00 % 50.00 % 50.00 % 42.86 %
1000 0.1 0.08 0.06 0.06 0.05 0.02 80.00 % 75.00 % 66.67 % 66.67 % 60.00 %
GoCI 1200 0.08 0.05 0.02 0.04 0.03 0.01 87.50 % 80.00 % 50.00 % 75.00 % 66.67 %
200 0.38 0.33 023 026 0.27 0.21 44.74 % 36.36 % 8.70 % 19.23 % 22.22 %
400 0.28 0.25 0.13 0.19 0.15 0.08 71.43 % 68.00 % 38.46 % 57.89 % 46.67 %
600 0.21 0.18 0.12 0.13 0.12 0.1 52.38 % 44.44 % 16.67 % 23.08 % 16.67 %
800 0.18 0.13 0.11 0.11 0.1 0.07 61.11 % 46.15 % 36.36 % 36.36 % 30.00 %
1000 0.13 0.11 0.09 0.09 0.08 0.05 61.54 % 54.55 % 44.44 % 44.44 % 37.50 %
1200 0.11 0.08 0.05 0.07 0.06 0.04 63.64 % 50.00 % 20.00 % 42.86 % 33.33 %
200 0.42 0.37 027 03 0.31 0.25 40.48 % 3243 % 741 % 16.67 % 19.35 %
400 0.32 0.29 0.17 023 0.19 0.12 62.50 % 58.62 % 29.41 % 47.83 % 36.84 %
600 0.25 0.22 0.16 0.17 0.16 0.14 44.00 % 36.36 % 12.50 % 17.65 % 12.50 %
800 0.22 0.17 0.15 0.15 0.14 0.11 50.00 % 35.29 % 26.67 % 26.67 % 21.43 %
1000 0.17 0.15 0.13 0.13 0.12 0.09 47.06 % 40.00 % 30.77 % 30.77 % 25.00 %
Synthetic 1200 0.15 0.12 0.09 0.11 0.1 0.08 47.06 % 40.00 % 30.77 % 30.77 % 25.00 %
200 0.35 0.3 02 023 024 0.18 48.57 % 40.00 % 10.00 % 21.74 % 25.00 %
400 0.25 0.22 0.1 016 0.12 0.05 80.00 % 77.27 % 50.00 % 68.75 % 58.33 %
600 0.18 0.15 0.09 0.1 0.09 0.07 61.11 % 53.33 % 22.22 % 30.00 % 22.22 %
800 0.15 0.1 0.08 0.08 0.07 0.04 73.33 % 60.00 % 50.00 % 50.00 % 42.86 %
1000 0.1 0.08 0.06 0.06 0.05 0.02 80.00 % 75.00 % 66.67 % 66.67 % 60.00 %
1200 0.08 0.05 0.02 0.04 0.03 0.01 87.50 % 80.00 % 50.00 % 75.00 % 66.67 %
200 0.38 0.33 023 026 0.27 0.21 44.74 % 36.36 % 8.70 % 19.23 % 22.22 %
400 0.28 0.25 0.13 0.19 0.15 0.08 71.43 % 68.00 % 38.46 % 57.89 % 46.67 %
600 0.21 0.18 0.12  0.13 0.12 0.1 52.38 % 44.44 % 16.67 % 23.08 % 16.67 %
800 0.18 0.13 0.11  0.11 0.1 0.07 61.11 % 46.15 % 36.36 % 36.36 % 30.00 %
1000 0.13 0.11 0.09 0.09 0.08 0.05 61.54 % 54.55 % 44.44 % 44.44 % 37.50 %
HSCP 1200 0.11 0.08 0.05 0.07 0.06 0.04 63.64 % 50.00 % 20.00 % 42.86 % 3333 %
200 0.42 0.37 027 03 0.31 0.25 40.48 % 3243 % 7.41 % 16.67 % 19.35 %
400 0.32 0.29 0.17 023 0.19 0.12 62.50 % 58.62 % 29.41 % 47.83 % 36.84 %
600 0.25 0.22 0.16 0.17 0.16 0.14 44.00 % 36.36 % 12.50 % 17.65 % 12.50 %
800 0.22 0.17 0.15 0.15 0.14 0.11 50.00 % 35.29 % 26.67 % 26.67 % 21.43 %
1000 0.17 0.15 0.13 0.13 0.12 0.09 47.06 % 40.00 % 30.77 % 30.77 % 25.00 %
1200 0.15 0.12 0.09 0.11 0.1 0.08 47.06 % 40.00 % 30.77 % 30.77 % 25.00 %

3) DEGREE OF IMBALANCE BASED EXPERIMENTAL RESULTS
The degree of imbalance determines the imbalanced load
distribution in context to its execution as per the capacities
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of virtual machines. It is computed using Eq. (5). A lower
value of the degree of imbalance metric indicates the more
balanced distribution of workload among virtual machines.
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Figure 5 represents the degree of imbalance obtained and
compared with identified heuristic methods and metaheuris-
tic methods.

It can be observed from Figure 8 (a) — (c¢) that the proposed
TSGWO task scheduling approach exhibits better perfor-
mance by resulting in lower values of degree of imbalance
in comparison to the existing heuristic and metaheuristic
methods. Tables 9 shows the reduction in the degree of imbal-
ance using different benchmark data sets. It can be observed
from Table 9 (a) that the TSMGWO approach can result in
a maximum reduction of up to 87.5% over FCFS method
for 1200 tasked work load, 80.00% over MT method for
1200 tasked work load, 66.67% over PSO for 1000 tasked
workload, 75% over GA for 1200 tasked work load, and
66.67% over WOA method for 1200 tasked cloud workload.
It can also be observed that a minimum 48.57%, 10%, 10%,
21.74%, and 22.22% reduction in the degree of imbalance
has been achieved using the TSMGWO approach over FCFS
method, MT method, PSO method, GA method, and WOA
method respectively using all possible number of tasks con-
sidered in this work using GoCJ data set.

For synthetic data set, Table 9 shows that the TSMGWO
approach can result in a maximum reduction of the degree
of imbalance up to 71.43% over FCFS method for 400 tasked
workload, 68.00% over MT method for 400 tasked workload,
44.44% over PSO for 1000 tasked workload, 57.89% over
GA for 400 tasked workload and 46.67% over WOA method
for 400 tasked cloud workload. It can also be observed that
a minimum 44.74%, 36.36%, 8.7%, 19.23%, and 16.67%
reduction in the degree of imbalance has been achieved using
the TSMGWO approach over FCFS method, MT method,
PSO method, GA method, and WOA method respectively
using all possible number of tasks considered in this work
using synthetic data set.

Similarly, for 512 X16 data instance of HSCP data set,
Table 9 shows that the TSMGWO approach can result into a
maximum reduction of the degree of imbalance up to 62.50%
over FCFS method for 400 tasked workload, 58.62% over
MT method for 400 tasked workload, 30.77% over PSO for
1000 tasked workload, 47.83% over GA for 400 tasked work-
load and 36.84% over WOA method for 400 tasked cloud
workload. It can also be observed that a minimum 40.48%,
32.43%, 7.41%, 16.67%, and 12.50% reduction in degree of
imbalance has been achieved using the TSMGWO approach
over FCFS method, MT method, PSO method, GA method
and WOA method respectively using all possible number of
tasks considered in this work using HSCP data set.

It can be concluded from Table 9 that there is a considerable
reduction in the degree of imbalance for workload having
more number of tasks in comparison to work load with less
number of tasks using the TSMGWO approach over other
methods considered in this work. Results demonstrated that
the TSMGWO approach outperforms in reducing degree of
imbalance by a considerable amount, leading to better per-
formance of cloud computing environment over the existing
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FIGURE 9. Throughput-based comparative results of (a) using the GoCJ
data set, (b) using the synthetic data set, and (c) using the HSCP data set.

heuristic and meta heuristic methods using benchmark data
sets.
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TABLE 10. Increase in Throughput using the TSMGWO approach over heuristic and meta heuristic methods.

Increase in Throughput using TSMGWO

Dataset Method / Heuristic methods Meta heuristic methods

No.of tasks Heuristic methods Meta heuristic methods
FCFS MT PSO GA WOA TSMGWO Over FCFS Over MT Over PSO Over GA Over WOA
100 0.05 0.1 0.24  0.25 0.3 0.32 540.00 % 220.00 % 3333 % 28.00 % 6.67 %
200 0.1 0.15 027 03 0.34 0.36 260.00 % 140.00 % 3333 % 20.00 % 5.88 %
300 0.16 0.17 03 033 037 0.39 143.75 % 129.41 % 30.00 % 18.18 % 541 %
400 0.19 0.21 0.31 0.35 0.4 0.45 136.84 % 114.29 % 45.16 % 28.57 % 12.50 %
500 0.25 0.29 0.35 038 044 0.49 96.00 % 68.97 % 40.00 % 28.95 % 11.36 %
GoCJ 600 0.13 0.23 0.38 04 0.48 0.53 307.69 % 130.43 % 3947 % 32.50 % 1042 %
700 0.18 0.27 04 043 052 0.58 222.22 % 114.81 % 45.00 % 34.88 % 11.54 %
800 0.25 0.35 045 048 0.56 0.61 144.00 % 74.29 % 35.56 % 27.08 % 8.93 %
900 0.31 0.36 049 0.51 0.6 0.66 112.90 % 83.33 % 34.69 % 29.41 % 10.00 %
1000 0.27 0.4 0.5 053 0.62 0.69 155.56 % 72.50 % 38.00 % 30.19 % 11.29 %
1100 0.29 0.44 0.53 056 0.65 0.72 148.28 % 63.64 % 35.85 % 28.57 % 10.77 %
1200 0.36 0.46 0.57 0.6 0.7 0.76 111.11 % 65.22 % 3333 % 26.67 % 8.57 %
100 0.03 0.08 025 027 034 0.4 123333 %  400.00 % 60.00 % 48.15 % 17.65 %
200 0.08 0.13 028 032 0.38 0.44 450.00 % 238.46 % 57.14 % 37.50 % 15.79 %
300 0.14 0.15 0.31 035 041 0.47 235.71 % 213.33 % 51.61 % 34.29 % 14.63 %
400 0.17 0.19 032 037 044 0.53 211.76 % 178.95 % 65.63 % 43.24 % 20.45 %
500 0.23 0.27 036 04 0.48 0.57 147.83 % 111.11 % 58.33 % 42.50 % 18.75 %
Synthetic 600 0.11 0.21 039 042 0.52 0.61 454.55 % 190.48 % 56.41 % 45.24 % 17.31 %
700 0.16 0.25 041 045 0.56 0.66 312.50 % 164.00 % 60.98 % 46.67 % 17.86 %
800 0.23 0.33 046 0.5 0.6 0.69 200.00 % 109.09 % 50.00 % 38.00 % 15.00 %
900 0.29 0.34 0.5 053 0.64 0.74 155.17 % 117.65 % 48.00 % 39.62 % 15.63 %
1000 0.25 0.38 0.51 0.55 0.66 0.77 208.00 % 102.63 % 50.98 % 40.00 % 16.67 %
1100 0.27 0.42 0.54 058 0.69 0.8 196.30 % 90.48 % 48.15 % 37.93 % 15.94 %
1200 0.34 0.44 0.58 0.62 0.74 0.84 147.06 % 90.91 % 44.83 % 3548 % 13.51 %
u-c-hihi 0.05 0.07 0.36 026 0.28 0.43 760.00 % 514.29 % 19.44 % 65.38 % 53.57 %
u-c—hilo 0.19 0.18 046 033 0.38 0.56 194.74 % 211.11 % 21.74 % 69.70 % 47.37 %
u-c—1lohi 0.18 0.24 0.58 042 046 0.69 283.33 % 187.50 % 18.97 % 64.29 % 50.00 %
u-c-lolo 0.27 0.37 0.68 0.52 0.56 0.8 196.30 % 116.22 % 17.65 % 53.85 % 42.86 %
u-i-hihi 0.1 0.12 04 029 033 0.47 370.00 % 291.67 % 17.50 % 62.07 % 42.42 %
HSCP u- 1 —hi 19 0.25 0.26 0.5 037 041 0.6 140.00 % 130.77 % 20.00 % 62.16 % 46.34 %
u-i-1lohi 0.25 0.32 0.62 047 0.51 0.72 188.00 % 125.00 % 16.13 % 53.19 % 41.18 %
u-i—-lolo 0.29 0.41 0.71 055 0.59 0.83 186.21 % 102.44 % 16.90 % 50.91 % 40.68 %
u-s—hihi 0.16 0.14 043 032 0.36 0.5 212.50 % 257.14 % 16.28 % 56.25 % 38.89 %
u-s—hilo 0.13 0.2 0.54 04 0.43 0.64 392.31 % 220.00 % 18.52 % 60.00 % 48.84 %
u-s—1lohi 0.31 0.33 0.66 0.51 0.54 0.77 148.39 % 133.33 % 16.67 % 50.98 % 42.59 %
u-s—1lolo 0.36 0.43 0.76 059 0.63 0.87 141.67 % 102.33 % 14.47 % 47.46 % 38.10 %

4) THROUGHPUT BASED EXPERIMENTAL RESULTS
Throughput refers to the number of tasks executed during
a unit time in the cloud environment. It is computed using
Eq. (9). The objective is to maximize the value of Through-
put. Figure 9 represents the Throughput based experimental
results obtained in this work and compared with identified
heuristic methods and metaheuristic methods.

It can be observed from Figure 9 (a) — (c) that the proposed
TSGWO task scheduling approach exhibits better perfor-
mance by resulting in high values of throughput in compari-
son to the existing heuristic and metaheuristic methods.

Tables 10 shows the increase in throughput using different
benchmark data sets. It can be observed from Table 10 that
the TSMGWO approach can result in a maximum increase
in throughput up to 540% over FCFS method for 100 tasked
workload, 220% over MT method for 100 tasked work-
load, 45.16% over PSO for 400 tasked workload, 34.88%
over GA for 700 tasked workload, and 12.50% over WOA
methods for 400 tasked cloud workload of GoCJ data set.
It can also be observed that a minimum 96.00%, 63.64%,

VOLUME 9, 2021

30.00%, 18.18%, and 5.41% increase in throughput has been
achieved using the TSMGWO approach over FCFS method,
MT method, PSO method, GA method, and WOA method,
respectively using a different number of tasks considered in
this work. It can be concluded from Table 10 that there is a
large increase in throughput for workload having a smaller
number of tasks in comparison to workload having a greater
number of tasks using the TSMGWO approach over other
methods considered in this work. Results delineate that the
TSMGWO approach outperforms in increasing throughput
by a considerable amount, leading to better performance of
the cloud computing environment over the existing heuristic
and metaheuristic methods using benchmark GoClJ data set.
For synthetic data set, Table 10 shows that the TSMGWO
approach can result in a maximum increase in throughput
up to 1233.33% over FCFS method for 100 tasked work-
load, 400% over MT method for 100 tasked workload,
65.63% over PSO for 400 tasked workload, 48.15% over GA
for 100 tasked workload, and 20.45% over WOA method
for 400 tasked cloud work load. It can also be noticed
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that a minimum 147.06%, 90.48%, 44.83%, 34.29%, and
13.51% increase in throughput has been achieved using the
TSMGWO approach over FCFS method, MT method, PSO
method, GA method, and WOA method, respectively using
a different number of tasks considered in this work using
synthetic data set.

Similarly, for 512 X16 data instance of HSCP data set,
Table 10 shows that the TSMGWO approach can result in
a maximum increase in throughput up to 760% over FCFS
method for u_c_hihi data pattern, 514.29% over MT method
for u_c_hihi data pattern, 21.74% over PSO for u_c_hilo
data pattern, 69.70% over GA for u_c_hilo data pattern and
53.57% over WOA method for u_c_hihi data pattern of
HSCP data set. It can also be noticed that a minimum 140%,
102.33%, 14.47%, 47.46%, and 38.10% increase in through-
put has been achieved using THE TSMGWO approach over
FCFS method, MT method, PSO method, GA method, and
WOA method respectively using a different number of tasks
considered in this work using HSCP data set.

It can be concluded from Table 10 that there is a consid-
erable increase in throughput for workload having a smaller
number of tasks in comparison to workload with a high
number of tasks using the TSMGWO approach over other
methods considered in this work. Results demonstrated that
the TSMGWO approach increases the throughput by a con-
siderable amount, leading to better performance of cloud
computing environment over the existing heuristic and meta-
heuristic methods using benchmark data sets.

VII. CONCLUSION

Optimal mapping of user-submitted tasks to the virtual
machines in the cloud computing environment is consid-
ered one of the most challenging tasks. This mapping is
critical in fulfilling the computing and resource require-
ments of high-performance applications while achieving the
scheduling objectives like maximizing Throughput, minimiz-
ing makespan, maximizing resource utilization, and balanc-
ing the cloud workload distribution among virtual machines
in a cloud data centre.

This article proposes a metaheuristic Grey wolf optimizer-
based approach called the TSMGWO for finding an optimal
or near-optimal solution to the task scheduling problem by
considering multiple conflicting objectives of makespan,
resource utilization, Degree of imbalance, and Throughput
simultaneously. The primary motivation for using the grey
wolf optimization method is the to exploit social hierarchy
of grey wolves and their organized structure while hunting
the prey. Grey wolf optimizer considers exploitation and
exploration equally while determining the best solution in
the search space. The performance analysis of the TSMGWO
approach has been done using three sets of experiments
using different benchmark data sets GOCJ data set, Synthetic
data set, and HSCP data set. The results were compared
with two heuristic methods, FCFS and MT; and three meta-
heuristic methods, PSO, GA, and WOA. From the results
of these experiments, it can be concluded that the proposed
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TSMGWO approach outperforms the identified heuristic
and metaheuristic methods to a considerable level. The
obtained results indicate that the TSMGWO approach can
lead to a maximum reduction of makespan up to 67.52%
over FCFS method, 60.93%, 52.33% over PSO, 38.05%
over GA, and 23.22% over WOA methods for 100 tasked
cloud workload using GoCJ data set. Whereas, a maximum
reduction of makespan up to 60.95% over FCFS method,
55.79% over MT method, 47.04% over PSO, 33.38% over
GA and 19.91% over WOA method can be obtained using the
TSMGWO approach based on synthetic data set. Similarly,
the TSMGWO approach can reduce makespan up to 27.03%
over MT method, 18.95% over PSO, 11.90% over GA and
7.5% over WOA method based on HSCP cloud workload.
A notable improvement of results in resource utilization,
Degree of imbalance and Throughput of the cloud has been
observed for the identified benchmark data sets. The exper-
imental results demonstrate that the proposed TSMGWO
approach is a useful and practical task scheduler that max-
imises resource utilization and Throughput of the cloud
while minimizing the makespan and Degree of imbalance in
the cloud.

In our future work, we will focus on enhancing the
TSMGWO approach’s performance by using parallel pro-
gramming and concentrating on other parameters of the cloud
environment like memory usage during peak loads etc.
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