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ABSTRACT In this article, a multiobjective multiproduct production planning (MOMPP) problem discussed
for a hardware firm. The hardware firm produces various types of hardware locks and other items in a
production run. The firmmanager’s objectives are minimizing the production cost and inventory holding cost
while maximizing the net profit subject to some system constraints. The multiproduct production planning is
solved with the last production run information precisely known to the decision-maker, and finally, the model
is solved using the intuitionistic and neutrosophic programming approaches, respectively. Also, the multi-
product production planning problem is discussed for situations when the product information is vague.
The interval-valued trapezoidal neutrosophic numbers used to define this Vagueness. The multiobjective
multiproduct production planning problem under fuzziness is solved using the neutrosophic compromise
programming. The stepwise solution procedures are discussed using the case study.

INDEX TERMS Interval-valued trapezoidal neutrosophic numbers, intuitionistic fuzzy programming,
multiobjective optimization, multiproduct production planning, neutrosophic programming.

I. INTRODUCTION
Production planning is a well-organized strategy under which
raw material optimally transformed into finished products
while maintaining the quality and costs of the manufactured
product. The primary goal of any production planning is to
understand the market demands and requirements and keep
changing the product design and other up-gradation accord-
ing to the customer’s needs and finally earning profit. For a
specific product, it is necessary to evaluate the universal char-
acter of machinery, the amount of producing products for the
particular period, the number of products types, the demands
of the employee’s qualification, and the production cycle
(process), and the labour character division. Production plan-
ning influences the firm’s profit and level of the service for
customers that are imperative to elasticity in the production
planning process and more thoughtfulness to comfort high
profit and service level. Many manufacturing enterprises are
forced to optimize the production process to win the glob-
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alized market’s business race. Nowadays, most researchers
and industries specialists used optimization techniques on
production planning models to ensure the optimum profit
with the optimum production of units. Ghosh and Mondal [1]
described a production-distribution planning model for a
two-echelon supply chain, and the genetic algorithm is used
to make the decision. Sohn et al. [2] discussed a production
planning of L.G. display and presented a mixed-integer pro-
gramming model. Mosadegh et al. [3] considered inventory
and shortage, idle time and overtime, workforce level, and
currency saving like four criteria in a mid-term planning
horizon. Gupta et al. [4] described a two-stage transporta-
tion problem under a certain and uncertain environment,
and for optimal shipment, the fuzzy goal programming was
used.

The main aims of the study are to discuss a MOMPP
model for a hardware firm. The proposed work is a layout for
multiproduct production while achieving the following goals
- optimize the production cost, the inventory holding cost,
and the net profit. The intuitionistic and neutrosophic fuzzy
programming approaches are used to obtain the solution for
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MOMPP. The case of interval-valued fuzzy-based informa-
tion also has been discussed.

II. LITERATURE REVIEW
An essential activity for manufacturing enterprises is pro-
duction planning. The production plan is usually prepared
in many manufacturing companies before the beginning of
every financial year. The production plan provides a strategic
framework for the production to fulfil each period’s demand
during the financial year. The perfect production plan exe-
cuted weekly, monthly, quarterly or even years depends on
the products’ demand. Production scheduling is allocating
the available production resources overtime to satisfy some
criteria such as quality, delivery time, demand and sup-
ply. A production problem includes machine capacity plan-
ning problem, production scheduling problem, storage and
freight scheduling problems. Technological advancements,
market dynamics and international competitions have signif-
icantly impacted the manufacturing industries in the past two
decades.

Most of the productions planning problems are multiob-
jective. Some of the researchers have used the e-constraint
method for transforming the multiobjective problem into
a single objective, where the objectives functions treated
as additional constraints of the problem. Chandra and
Fisher [5] described solving the problem for coordinating
the production and distribution functions. A single-plant for
multi-commodities for multi-periods manufacturing environ-
ments where produced items are stored in the plant until
products are delivered using a fleet of trucks to the customers.
Yan et al. [6] described a strategic production-distribution
model that included multiple producers, suppliers, distribu-
tion centres and customers in which multiple products are
manufactured in a single period. The fuzzy multiobjective
linear programming model is more efficient in solving real
production planning problems, mainly because most com-
panies seek to satisfy more than one objective function to
develop a response and flexibility production planning sys-
tem. Several studies on the application of fuzzy optimiza-
tion include Zimmermann [7], who first used the concept of
the fuzzy set given by Zadeh [8] and studied fuzzy linear
programming with several objectives. Some related authors
research work on production planning is briefly reported
in Table 1.

Ebrahimnejad [29] described the multiobjective linear pro-
gramming problem where all parameters are represented in
terms of fuzzy triangular numbers and solved by the lexi-
cographical approach. Abbaszadeh et al. [30] discussed the
route planning of robotics research to find the shortest route
without colliding from initiation point to destination point so
that the amount of energy consumption by a robot would not
exceed a predefined amount. The elite artificial bees’ colony
algorithm is used to solve the robot’s fuzzy constrained short-
est route problem and compared with the performance of
the genetic algorithm and particle swarm optimization algo-
rithm. Bagheri et al. [31] discussed a transportation problem

with fuzzy costs in the presence of multiple and conflicting
objectives is investigated; a fuzzy data envelopment analysis
approach was proposed to solve the fuzzy multiobjective
transportation problem. Bagheri et al. [32] described a fully
fuzzy multiobjective transportation problem, and a new fuzzy
data envelopment analysis based approach was developed to
solve the problems.

Angelov [33] used the concept intuitionistic fuzzy set
in optimization problem and converted intuitionistic fuzzy
optimization into crisp. Pramanik and Roy [34] proposed
the intuitionistic fuzzy goal programming approach to solve
vector optimization problems under uncertainty using the
concept of an intuitionistic fuzzy set. Pramanik [35] described
neutrosophic linear goal programming under fuzzy set the-
ory. Pramanik [36] described neutrosophic multiobjective
linear/non-linear programming, neutrosophic goal program-
ming in which the degrees of indeterminacy and falsity (rejec-
tion) of objectives and constraints are simultaneously con-
sidered together with the degrees of truth membership (sat-
isfaction/acceptance). The author presented the drawbacks
of the existing neutrosophic optimization models, and a new
framework ofmultiobjective optimization in the neutrosophic
environment was proposed. Abdel-Basset et al. [37] describe
the technique for solving the linear programming problem in
which neutrosophic set theory plays a vital role in a real-life
example. Their parameters were presented with the trape-
zoidal neutrosophic number and presented a neutrosophic
linear programming model technique. Abdelfattah [38] rep-
resented the entire linear programming coefficient by trian-
gular neutrosophic numbers and used the fuzzy set theory to
deal with neutrosophic linear programming models. Bera and
Mahapatra [39] used a single-valued trapezoidal neutrosophic
number for the linear programming problem with the objec-
tive function’s coefficient and the constraints’ right-hand
side. The author also described the simplex algorithm for
solving the modified linear programming problem. Das and
Edalatpanah [40] build a framework for neutrosophic integer
programming with triangular neutrosophic numbers using the
aggregate ranking function.

III. PREREQUISITES (SOME BASIC DEFINITIONS)
In this section, we discussed some fundamental definitions
regarding the intuitionistic fuzzy number and neutrosophic
fuzzy numbers.
Definition 1 (Zadeh [8]): Let X be a fixed set. A fuzzy set

Ã of X is an object having the form Ã =
{
(x, µÃ(x)) : x ∈ X

}
where µÃ(x) ∈ [0, 1] represents the degree of membership of
the element x ∈ X being in Ã, and µÃ : X → [0, 1] is called
the membership function.
Definition 2: A fuzzy set Ã on < is convex if and if for

every pair of points x1, x2 in X , the membership function of
Ã satisfies the inequality

µÃ(λx1 + (1− λ)x2) ≥ min
{
µÃ(x1), µÃ(x2)

}
∀x1, x2 ∈ X , λ ∈ [0, 1]

VOLUME 9, 2021 37467



M. F. Khan et al.: MOMPP Problem Using Intuitionistic and Neutrosophic Fuzzy Programming

TABLE 1. Research review summary.

Definition 3 (Mahajan and Gupta [41]): An intuitionistic
fuzzy (IF) set ÃI in X is a set of ordered triples ÃI ={(
x, µÃI (x), υÃI (x)

)
: x ∈ X

}
, where µÃI (x) : X → [0, 1]

and υÃI (x) : X → [0, 1] represent the degree of membership
and degree of non-membership of the element x ∈ X being in
ÃI , respectively, such that ∀x ∈ X , 0 ≤ µÃI (x)+ υÃI (x) ≤ 1.

An IF set ÃI =
{(
x, µÃI (x), υÃI (x)

)
: x ∈ X

}
in X

v The value of hÃI (x) = 1−µÃI (x)− υÃI (x) is called the
degree of non-determinacy (hesitancy) of the element
x ∈ X to ÃI .

v is normal if there exists x0, x1 ∈ X such that µÃI (x0) =
1 and υÃI (x1) = 1.

v is convex if ∀x1, x2 ∈ X , 0 ≤ λ ≤ 1,

µÃI (λx1 + (1− λ)x2) ≥ min
{
µÃI (x1), µÃI (x2)

}
and

υÃI (λx1 + (1− λ)x2) ≤ max
{
υÃI (x1), υÃI (x2)

}
.

Definition 4 (Ebrahimnejad and Verdegay [42]): An IF set
ÃI =

{(
x, µÃI (x), υÃI (x)

)
: x ∈ <

}
of the real number < is

called an IF if

v ÃI is normal and convex IF set,
v µÃI is upper semi-continuous and υÃI is lower

semi-continuous and
v SuppÃI =

{
x ∈ < : υÃI (x) < 1

}
is bounded.
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Definition 5 (Smarandache [43]): Let X be a universe of
discourse and let x ∈ X . A neutrosophic set A in X is charac-
terized by a truth-membership function µTA (x), an indetermi-
nacy membership function σ IA(x), and a falsity-membership
function υFA (x), where µ

T
A (x), σ

I
A(x), υ

F
A (x) ∈ (0, 1),∀x ∈ X

and 0+ ≤ supµTA (x)+ sup σ IA(x)+ sup υFA (x) ≤ 3−.
Definition 6 (Haibin et al. [44]): If X be a universe of

discourse and if x ∈ X , a truth-membership function charac-
terizes a single-valued neutrosophic set µTA (x), an indetermi-
nacy membership function σ IA(x), and a falsity-membership
function υFA (x), where µ

T
A (x), σ

I
A(x), υ

F
A (x) ∈ [0, 1],∀x ∈ X

and 0 ≤ supµTA (x)+ sup σ IA(x)+ sup υFA (x) ≤ 3.
Definition 7 (Ishibuchi and Tanak [45]): An interval on
< is defined as A =

[
aL , aR

]
=
{
a : aL ≤ a ≤ aR, a ∈ <

}
,

where aL is left limit and aR is the right limit of A.
Definition 8 (Ishibuchi and Tanak [45]): The interval is

also defined by
A = 〈ac, aw〉 = {a : ac − aw ≤ a ≤ ac + aw, a ∈ <},

where ac = 1
2

(
aR + aL

)
is the centre and aw = 1

2

(
aR − aL

)
is the width of A.
Definition 9 (Interval-Valued Neutrosophic (I.V.N.): set,

Broumi and Smarandache [46]) Let X be a non-empty set.
Then an interval-valued neutrosophic set ÃIV of X is defined
as:

ÃIV =
{ 〈
x;
[
µT L
k , µTU

k

]
,
[
σ IL
k , σ

IU
k

]
,
[
υFLk , υFUk

]〉
: x ∈ X

}
,

where
[
µTL
k , µTU

k

]
,
[
σ IL
k , σ

IU
k

]
and

[
υFLk , υFUk

]
⊂ [0, 1] for

each x ∈ X
Definition 10 (Broumi and Smarandache [46]): Let

ÃIV =
{ 〈
x;
[
µTL
k , µTU

k

]
,
[
σ IL
k , σ

IU
k

]
,
[
υFLk , υFUk

]〉
: x ∈ X

}
be I.V.N. set, then

(i) ÃIV is empty if µTL
k = µTU

k = 0, σ IL
k = σ IU

k =

1, υFLk = υ
FU
k = 1, for all x ∈ Ã

(ii) Let 0 = 〈x; 0, 1, 1〉 , and 1 = 〈x; 1, 0, 0〉.

Definition 11 (Interval-Valued Trapezoidal Neutrosophic
(IVTN)Number):Letµã, σã, υã ⊂ [0, 1], and a1, a2, a3, a4 ∈
< such that a1 ≤ a2 ≤ a3 ≤ a4. Then an interval-valued
trapezoidal fuzzy neutrosophic number,

ã =
〈
(a1, a2, a3, a4) ;

[
µLã , µ

U
ã

]
,
[
σ Lã , σ

U
ã

]
,
[
υLã , υ

U
ã

]〉
,

Whose degrees of membership, the degrees of indeterminacy
and the degrees of non-membership are

µã(x) =



µUã

(
x − a1
a2 − a1

)
, for a1 ≤ x ≤ a2,

µUã , for a2 ≤ x ≤ a3,

µUã

(
a4 − x
a4 − a3

)
, for a3 ≤ x ≤ a4,

0, Otherwise

σã(x) =



a2 − x + σ Lã (x − a1)

a2 − a1
, for a1 ≤ x ≤ a2,

σ Lã , for a2 ≤ x ≤ a3,
x − a3 + σ Lã (a4 − x)

a4 − x3
, for a3 ≤ x ≤ a4,

1, Otherwise

υã(x) =



a2 − x + υLã (x − a1)

a2 − a1
, for a1 ≤ x ≤ a2,

υLã , for a2 ≤ x ≤ a3,
x − a3 + υLã (a4 − x)

a4 − x3
, for a3 ≤ x ≤ a4,

1, Otherwise

Definition 12 (Arithmetic Operations): Let, ã =〈
(a1, a2, a3, a4) ;

[
µLã , µ

U
ã

]
,
[
σ Lã , σ

U
ã

]
,
[
υLã , υ

U
ã

]〉
, and b̃ =〈

(b1, b2, b3, b4) ;
[
µL
b̃
, µU

b̃

]
,
[
σ L
b̃
, σU

b̃

]
,
[
υL
b̃
, υU

b̃

]〉
be two

I.V.N. number. Then,

1. ã+ b̃ = 〈(a1+b1, a2+b2, a3 + b3, a4 + b4) : A,B,C〉 ,

2. ã− b̃ = 〈(a1−b1, a2 − b2, a3−b3, a4 − b4) : A,B,C〉 ,

3. ã ∗ b̃ =



〈(a1b1, a2b2, a3b3, a4b4) : A,B,C〉 ,
if a4 > 0, b4 > 0
〈(a1b4, a2b3, a3b2, a4b1) : A,B,C〉 ,
if a4 < 0, b4 > 0
〈(a4b4, a3b3, a2b2, a1b1) : A,B,C〉 ,
if a4 < 0, b4 < 0

4. ã/b̃ =



〈(a1/b4, a2/b3, a3/b2, a4/b1) : A,B,C〉 ,
if a4 > 0, b4 > 0
〈(a4/b4, a3/b3, a2/b2, a1/b1) : A,B,C〉 ,
if a4 < 0, b4 > 0
〈(a4/b1, a3/b2, a2/b3, a1/b4) : A,B,C〉 ,
if a4 < 0, b4 < 0

5. kã =



〈(
ka1, ka2,
ka3, ka4

)
;
[
µLã , µ

U
ã

]
,[

σ Lã , σ
U
ã

]
,
[
υLã , υ

U
ã

]
〉
, if ã > 0〈(

ka4, ka3,
ka2, ka1

)
;
[
µLã , µ

U
ã

]
,[

σ Lã , σ
U
ã

]
,
[
υLã , υ

U
ã

]
〉
, if ã < 0

6. ã−1 =
〈
(1/a4, 1/a3, 1/a2, 1/a1) ;[
µLã , µ

U
ã

]
,
[
σ Lã , σ

U
ã

]
,
[
υLã , υ

U
ã

] 〉 , ã 6= 0

where,

A =
[
min

[
µLã , µ

U
ã

]
, min

[
µL
b̃
, µU

b̃

]]
,

B =
[
max

[
σ Lã , σ

U
ã

]
, max

[
σ L
b̃
, σU

b̃

]]
and

C =
[
max

[
υLã , υ

U
ã

]
,max

[
υL
b̃
, υU

b̃

]]
.

Definition 13 (Score Function, Tharmaraiselvi and San-
thi [47]): the score function for the I.V.N. number
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ã =
〈
(a1, a2, a3, a4) ;

[
µLã , µ

U
ã

]
,
[
σ Lã , σ

U
ã

]
,
[
υLã , υ

U
ã

]〉
is

defined as

S(ã) =
1
16
(a1 + a2 + a3 + a4)

× [µã(x)+ (1− σã(x))+ (1− υã(x))] (1)

IV. SOLUTION METHODOLOGIES
Let define the standard form of a multiobjective optimization
model, mathematically it can be expressed as follows:

Max (Min) f (x) = {Z1(x),Z2(x), . . . ,Zk (x)}

S.t. g(x) ≤ 0, x ∈ X

The multiobjective optimization problem is solved for each
objective function separately to obtain the individual optimal
solution while ignoring the other objective functions. This
procedure repeated for getting individual objective function
optimal solution for each objective functions. After that,
the upper and lower bounds for each objective functions
Uk and Lk (k = 1, 2, . . . ,K ) are identified.
In the following sections, we will be discussed the Intu-

itionistic Fuzzy Programming and Neutrosophic Compro-
mise Programming approaches for solving such MOMPP of
a firm.

A. INTUITIONISTIC FUZZY PROGRAMMING
1) MAXIMIZE TYPE OBJECTIVE FUNCTION
Maximize Type Objective Function: The membership and
non-membership functions, when the objective functions are
maximized type can be defined as follows:

Membership function

µk (Zk (x)) =


0, Zk(x) < Lk
Zk (x)− Lk
Uk − Lk

, Zk(x) ∈ [Lk ,Uk ]

1, Zk(x) > Uk

Non-membership function

υk (Zk (x)) =


1, Zk(x) < Rk
Uk − Zk (x)
Uk − Rk

, Zk(x) ∈ [Rk ,Uk ]

0, Zk(x) > Uk

where, Rk < Lk < Uk

2) MINIMIZE TYPE OBJECTIVE FUNCTION
Minimize Type Objective Function: Consequently, The mem-
bership and non-membership functions for the minimization
type objective functions are as follows:

Membership function

µk (Zk (x)) =


1, Zk(x) < Lk
Uk − Zk (x)
Uk − Lk

, Zk(x) ∈ [Lk ,Uk ]

0, Zk(x) > Uk

Non-membership function

υk (Zk (x)) =


0, Zk(x) < Lk
Zk (x)− Lk
Wk − Lk

, Zk(x) ∈ [Lk ,Wk ]

1, Zk(x) > Wk

where, Lk < Uk < Wk .
The membership and non-membership functions defined

above are used to convert the multiobjective optimization
problem to a single objective optimization problem is as
follows:

Max µk, Min υk

Subject to µMk =
Zk (x)− Lk
Uk − Lk

, υNMk =
Uk − Zk (x)
Uk − Rk

,

for maximize type objective where Rk < Lk < Uk

µMk =
Uk − Zk (x)
Uk − Lk

, υNMk =
Zk (x)− Lk
Wk − Lk

,

for minimize type objective where Lk < Uk < Wk

µk ≥ µ
M
k , υk ≤ υ

NM
k , µk ≥ υk , µk + υk ≤ 1,

µk, υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0, x ∈ X

Or equivalently,

Max
K∑

k=1

(µk − υk)

Subject to µMk =
Zk (x)− Lk
Uk − Lk

, υNMk =
Uk − Zk (x)
Uk − Rk

,

for maximize type objective, where Rk < Lk < Uk

µMk =
Uk − Zk (x)
Uk − Lk

, υNMk =
Zk (x)− Lk
Wk − Lk

,

for minimize type objective, where Lk < Uk < Wk

µk ≥ µ
M
k , υk ≤ υ

NM
k , µk ≥ υk , µk + υk ≤ 1,

µk, υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0, x ∈ X

B. NEUTROSOPHIC COMPROMISE PROGRAMMING
1) MAXIMIZE TYPE OBJECTIVE FUNCTION
Consider the multiobjective optimization problem wherein
objective functions are maximization type. In the neutro-
sophic compromise programming approach first step is to
define the lower and upper values, that is,

UT
k = Uk , LTk = Lk , (for truth membership)

U I
k = UT

k , LIk = LTk + q
′
k (U

T
k − L

T
k ),

(for Indeterminacy membership)

UF
k = LTk + qk (U

T
k − L

T
k ), LFk = LTk ,

(for falsity membership, k = 1, 2, . . . ,K )
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where qk and q′k are tolerance variables, which are chosen
for the falsity and indeterminacy Membership function. The
membership functions for the neutrosophic environment can
be defined as follows:

µTk =


0, Zk ≤ LTk
Zk − LTk
UT
k − L

T
k

, LTk ≤ Zk ≤ U
T
k

1, Zk ≥ UT
k

σ Ik =


0, Zk ≤ LIk
Zk − LIk
U I
k − L

I
k

, LIk ≤ Zk ≤ U
I
k

1, Zk ≥ U I
k

υFk =


1, Zk ≤ LFk
UF
k − Zk

UF
k − L

F
k

, LFk ≤ Zk ≤ U
F
k

0, Zk ≥ UF
k

2) MINIMIZE TYPE OBJECTIVE FUNCTION
Consider the multiobjective optimization problem wherein
objective functions are minimization type. In the neutro-
sophic compromise programming approach first step is to
define the lower and upper values, that is,

UT
k = Uk , LTk = Lk , for truth membership

U I
k = LTk + q

′
k (U

T
k − L

T
k ), LIk = LTk ,

for Indeterminacy membership

UF
k = UT

k ,L
F
k = LTk + qk (U

T
k − L

T
k ),

for falsity membership k = 1, 2, . . . ,K

where qk and q′k are tolerance variables, which are chosen
for the falsity and indeterminacy membership functions. The
membership functions for the neutrosophic environment can
be defined as follows:

µTk =


1, Zk ≤ LTk
UT
k − Zk

UT
k − L

T
k

, LTk ≤ Zk ≤ U
T
k

0, Zk ≥ UT
k

σ Ik =


1, Zk ≤ LIk
U I
k − Zk

U I
k − L

I
k

, LIk ≤ Zk ≤ U
I
k

0, Zk ≥ U I
k

υFk =


0, Zk ≤ LFk
Zk − LFk
UF
k − L

F
k

, LFk ≤ Zk ≤ U
F
k

1, Zk ≥ UF
k

a: MODEL I
Maximize the Truth (µTk ) and Indeterminacy (σ Ik ) member-
ship functions; and minimize the falsity (υFk ) membership
functions.

The above-discussed membership function is used, and the
final problem is defined as follows:

Max µk,Max σk ,Min υk

Subject to µTk =
UT
k − Zk

UT
k − L

T
k

, σ Ik =
U I
k − Zk

U I
k − L

I
k

,

υFk =
Zk − LFk
UF
k − L

F
k

µk ≥ µ
T
k , σk ≥ σ

I
k , υk ≤ υ

F
k

µk ≥ σk , µk ≥ υk , µk + σk + υk ≤ 3,

µk, σk , υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0

x ∈ X

Or equivalently

Max
K∑

k=1

(µk + σk − υk)

Subject to µTk =
UT
k − Zk

UT
k − L

T
k

, σ Ik =
U I
k − Zk

U I
k − L

I
k

,

υFk =
Zk − LFk
UF
k − L

F
k

µk ≥ µ
T
k , σk ≥ σ

I
k , υk ≤ υ

F
k

µk ≥ σk , µk ≥ υk , µk + σk + υk ≤ 3,

µk, σk , υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0

x ∈ X

b: MODEL II
Maximize the Truth (µTk ) membership functions, and min-
imize the Indeterminacy (σ Ik ) and falsity (υFk ) membership
functions.

The above-discussed membership function is used, and the
final problem is defined as follows:

Max µk, Min σk , Min υk

Subject to µTk =
UT
k − Zk

UT
k − L

T
k

, σ Ik =
U I
k − Zk

U I
k − L

I
k

,

υFk =
Zk − LFk
UF
k − L

F
k

µk ≥ µ
T
k , σk ≤ σ

I
k , υk ≤ υ

F
k

µk ≥ σk , µk ≥ υk , µk + σk + υk ≤ 3,

µk, σk , υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0

x ∈ X
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Or equivalently

Max
K∑

k=1

(µk − σk − υk)

Subject to µTk =
UT
k − Zk

UT
k − L

T
k

, σ Ik =
U I
k − Zk

U I
k − L

I
k

,

υFk =
Zk − LFk
UF
k − L

F
k

µk ≥ µ
T
k , σk ≤ σ

I
k , υk ≤ υ

F
k

µk ≥ σk , µk ≥ υk , µk + σk + υk ≤ 3,

µk, σk , υk ∈ [0, 1] , k = 1, 2, . . . ,K

g(x) ≤ 0

x ∈ X

V. MULTIOBJECTIVE MULTIPRODUCT PRODUCTION
PLANNING PROBLEM
Every production firms want to maximize profit while main-
taining the manufactured product. Quality and reliability are
always in priority. Some factors are considered to realize
the firm’s objectives, and those include the satisfaction of
customers demand, timely delivery of goods and services
and many others. The firm’s manager always wants a perfect
balance between total production management and market
demands to achieve such objectives. The firms must be for-
mulated a production plan by using scientific methods to
provide exact layouts before starting the production process.
This case study seeks to establish an efficient production plan
that will minimize the production cost and holding cost and
maximize a manufacturing firm’s profit. The study’s primary
objective is to determine the optimal number of goods to be
produced regarding the products’ future expected demands.
The production planning and control model for the organiza-
tion are represented as in fig. 1.

FIGURE 1. Production planning and control model.

NOMENCLATURE
INDICES
k - Index for the objective function, k = 1, 2, . . . , K
j - Index for the manufactured item, j = 1, 2, . . . , J

i - Index for machine timing, i = 1, 2, . . . , I
l - Index for the raw-material, l = 1, 2, . . . ,L

DECISION VARIABLE
xj -Manufactured items

PARAMETERS
Ij -Inventory holding cost of the jth unit (in Rs.)
Rj -Profit of jth unit (in Rs.)
Pj -The production cost of the jth unit (in Rs.)
qkj -Quantity of k th Raw material in the jth product
Q∗l -Economic order quantity of l th raw material
sj -The volume of the jth unit (in ft3)
S -The volume of the warehouse (in ft3)
Mij -Working time (in hours) of the ith machine on

jth unit
bi -Total Working time (in hours) for ith machine
DMj -Lower (mean) limit of demand
DUj -Upper (3σ ) limit of demand

OBJECTIVE FUNCTION
Z1 -Minimize the production cost
Z2 -Minimize the holding cost
Z3 -Maximize the profit

Haq et al. [48] has discussed the multiobjective multiprod-
uct production planningmathematical model is as follows (2),
as shown at the bottom of the next page.

PROBLEM OBJECTIVES
The primary aim is to minimize the total production cost

of manufacture items which includes different types of cost
(raw material cost, labour cost, transportation cost)

Min Z1 =
J∑
j=1

Pjxj

The second objective is tominimize the holding/ carrying cost
to reach the lower limit of demand under constraints.

Min Z2 =
J∑
j=1

Ijxj

Every company has one primary goal to maximize its profit
which can be achieved by minimizing its overall production
cost.

Max Z3 =
J∑
j=1

Rjxj

SYSTEM CONSTRAINTS
The first constraint is related to the availability of the

warehouse’s space

J∑
j=1

sjxj ≤ S
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TABLE 2. Machine availability.

The second constraint is related to the total machine timing

J∑
j=1

Mijxj ≤ bi, i = 1, 2, . . . , I

The third constraint is related to the total availability of the
raw materials

J∑
j=1

qljxj ≤ Q∗l , l = 1, 2, . . . ,L

moreover, the fourth constraint is about the upper and lower
limit of the demands

DMj ≤ xj ≤ DUj, j = 1, 2, . . . , J

TABLE 3. Product detail.

VI. CASE STUDY (HARDWARE FIRM)
A case study of a product mix production planning is used to
validate the solution procedure. The data is used to formulate
themultiproduct production planning for a hardware firm that
produces different types of hardware metals items, such as
(i) Hinges, (ii) Door and Window Hardware, (iii) Gate Hard-
ware, (iv) Georgian scroll Lever Handle, (v) Home Acces-
sories, (vi) Hooks, (vii) Security Hardware, (viii) Numerals
and Alphabets, (ix) Cabinet Hardware, (x) Handrail Bracket,
(xi) Floor Mounted Door Stop, (xii) Reinforcement Hard-
ware. The following data are collected from a firm: machine
availability, production cost, expected profit, production run
time of the machine and the demand for each item. These data
are summarized in Tables 2-8.

Table 5 summarizes the average time consumed by each
machine during production hours.

optimize



Min Z1 =
J∑
j=1

Pjxj (Related to production cost)

Min Z2 =
J∑
j=1

Ijxj (Relatec to holding/carring cost)

Max Z3 =
J∑
j=1

Rjxj (Related to profit)

Subject to set of constraints:
J∑
j=1

sjxj ≤ S (constraint related to warehouse space)

J∑
j=1

Mijxj ≤ bi, i = 1, 2, . . . , I (constraint related to machine timing)

J∑
j=1

qljxj ≤ Q∗l , l = 1, 2, . . . ,L (constraint related to raw material)

DMj ≤ xj ≤ DUj, j = 1, 2, . . . , J (constraint related to demands)

(2)
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TABLE 4. Production cost, inventory holding cost, profit and volume of
per dozen unit.

Table 6 summarizes the monthly demand for each item (in
Dozen)

Before formulating the problem, we have to find out the
3σ limit of the demand (given in Table 6) for the items to be
produced by the manufacturer.

Table 7 for the upper and lower limit of the items to be
manufactured during the production run. Table 8 summarized
the expected annual demand, ordering cost and carrying cost
for raw material.

where the economic order quantity Q∗ is calculated by
using the expression:

Economic order quantity
(
Q∗
)

=

√
2× Annual Demand× Ordering cost

Carrying cost

Table 7 for the upper and lower limit of the items which are
to be manufactured during a production run.

First, we solved the problem as the single objective opti-
mization problem to set the goals values. Z1,Z2,Z3, as shown
at the bottom of the page.

Based on the goal values, a payoff matrix is
constructed.

The payoff matrix is used to define the aspiration levels for
the objective functions. The bounds for all the three objective
functions are determined as: 1427045 ≤ Z1(x) ≤ 1634160,
10770.25 ≤ Z2(x) ≤ 11994.50 and 309315 ≤ Z3(x) ≤
355510. The memberships and non-membership functions
for the three objective functions for using intuitionistic fuzzy

Z1 = 540x1 + 1250x2 + 460x3 + 2530x4 + 3480x5 + 830x6 + 475x7 + 1465x8 + 3270x9 + 585x10 + 2315x11 + 435x12

Z2 = 12x1 + 5x2 + 6.5x3 + 19.75x4 + 14.25x5 + 8x6 + 6x7 + 10.5x8 + 13.5x9 + 9.25x10 + 18.5x11 + 8.25x12

Z3 = 75x1 + 215x2 + 85x3 + 535x4 + 875x5 + 190x6 + 95x7 + 410x8 + 725x9 + 115x10 + 450x11 + 105x12

Subject to constraints

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99, 86 ≤ x6 ≤ 104,

76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88, 68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81,

xj ∈ integer j = 1, 2, . . . , 12
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TABLE 5. Average time consumed.

TABLE 6. The demand for each item (in Dozen).

TABLE 7. 3σ limit for the demand.

TABLE 8. Annual demand, ordering cost and carrying cost of raw
material.

programming are constructed as follows:

µ1(Z1(x))

=


1 if Z1(x) < 1427045
1634160− Z1(x)

1634160− 1427045
if Z1(x) ∈ [1427045,1634160]

0 if Z1(x) > 1634160

υ1(Z1(x))

=


0 if Z1(x) < 1447756.5
Z1(x)− 1447756.5

1634160− 1447756.5
if Z1(x)

∈ [1447756.5, 1634160]
1 if Z1(x) > 1634160

µ2(Z2(x))

=


1 if Z2(x) < 10770.25
11994.5− Z2(x)

11994.5− 10770.25
if Z2(x) ∈ [10770.25,11994.5]

0 if Z2(x) > 11994.5
υ2(Z2(x))

=


0 if Z2(x) < 10892.675
Z2(x)− 10892.675

11994.5− 10892.675
if Z2(x)

∈ [10892.675, 11994.5]
1 if Z2(x) > 11994.5
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µ3(Z3(x))

=


0 if Z3(x) < 309315
Z3(x)− 309315
355510− 309315

if Z3(x) ∈ [309315, 355510]

1 if Z3(x) > 355510
υ3(Z3(x))

=


1 if Z3(x) < 309315
350890.5− Z3(x)
350890.5− 309315

if Z3(x) ∈ [309315, 350890.5]

0 if Z3(x) > 350890.5

The intuitionistic fuzzy programmingmodel for the discussed

problem of Eqn. 2 is as followsMax
3∑

i=1
(µi − υi), as shown

at the bottom of the page. The compromise solution for the
intuitionistic model is calculated and summarized in Table 9.

TABLE 9. Intuitionistic compromise solution.

The Truth, Indeterminacy and falsity membership func-
tions for using neutrosophic programming are constructed as
follows:

µT1 (Z1(x))

=


1 if Z1(x) < 1427045
1634160− Z1(x)

1634160− 1427045
if Z1(x) ∈ [1427045, 1634160]

0 if Z1(x) > 1634160

Max
3∑

i=1

(µi − υi)

Subject to the constraints

µ1 ≥
1634160− Z1(x)

1634160− 1427045
, υ1 ≤

Z1(x)− 1447756.5
1634160− 1447756.5

µ2 ≥
11994.5− Z2(x)

11994.5− 10770.25
, υ2 ≤

Z2(x)− 10892.675
11994.5− 10892.675

µ3 ≥
Z3(x)− 309315
355510− 309315

, υ3 ≤
350890.5− Z3(x)
350890.5− 309315

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


Z1 = 540x1 + 1250x2 + 460x3 + 2530x4 + 3480x5 + 830x6 + 475x7 + 1465x8 + 3270x9 + 585x10 + 2315x11 + 435x12

Z2 = 12x1 + 5x2 + 6.5x3 + 19.75x4 + 14.25x5 + 8x6 + 6x7 + 10.5x8 + 13.5x9 + 9.25x10 + 18.5x11 + 8.25x12

Z3 = 75x1 + 215x2 + 85x3 + 535x4 + 875x5 + 190x6 + 95x7 + 410x8 + 725x9 + 115x10 + 450x11 + 105x12

110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99, 86 ≤ x6 ≤ 104,

76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88, 68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81,

xj ∈ integer j = 1, 2, . . . , 12, µi ≥ υi, µi + υi ≤ 1, ∀µi & υi ∈ [0, 1] , i = 1, 2, 3.
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σ I1 (Z1(x))

=


1 if Z1(x) < 1427045
1613448.5− Z1(x)

1613448.5− 1427045
if Z1(x)

∈ [1427045,1613448.5]
0 if Z1(x) > 1613448.5

υF1 (Z1(x))

=


0 if Z1(x) < 1447756.5
Z1(x)− 1447756.5

1634160− 1447756.5
if Z1(x)

∈ [1447756.5, 1634160]
1 if Z1(x) > 1634160

µT2 (Z2(x))

=


1 if Z2(x) < 10770.25
11994.5− Z2(x)

11994.5− 10770.25
if Z2(x) ∈ [10770.25,11994.5]

0 if Z2(x) > 11994.5

σ I2 (Z2(x))

=


1 if Z2(x) < 10770.25
11872.075− Z2(x)

11872.075− 10770.25
if Z2(x)

∈ [10770.25,11872.075]
0 if Z2(x) > 11872.075

υF2 (Z2(x))

=


0 if Z2(x) < 10892.675
Z2(x)− 10892.675

11994.5− 10892.675
if Z2(x)

∈ [10892.675, 11994.5]
1 ifZ2(x) > 11994.5

µT3 (Z3(x))

=


0 if Z3(x) < 309315
Z3(x)− 309315
355510− 309315

if Z3(x) ∈ [309315, 355510]

1 if Z3(x) > 355510

σ I3 (Z3(x))

=


0 if Z3(x) < 313934.5
Z3(x)− 313934.5
355510− 313934.5

if Z3(x) ∈ [313934.5, 355510]

1 if Z3(x) > 355510

υF3 (Z3(x))

=


1 if Z3(x) < 309315
350890.5− Z3(x)
350890.5− 309315

if Z3(x)

∈ [309315, 350890.5]
0 if Z3(x) > 350890.5

The neutrosophic programming model I for the Eqn. 2 is as
shown at the bottom of the next page. The neutrosophic pro-
grammingmodel II for Eqn. 2 is as shown at the bottom of the

TABLE 10. Neutrosophic compromise solution.

TABLE 11. Optimal compromise solution.

page 37479. The compromise solution for both neutrosophic
models is calculated and summarized in table 10.

It can be observed that from the solutions in Table 10, max-
imizing indeterminacy (Model I) improve the maximizing-
type objective function aswell as the other objective functions
while minimizing the indeterminacy (Model II) reduced the
maximizing-type objective function & increase the value of
other minimize type objectives function. Therefore, it can be
concluded that maximizing indeterminacy (Model I) can be
slightly better than minimizing it (Model II) for exact data.

The intuitionistic and neutrosophic compromise solution is
given in table 11.

The graphical presentation of the compromise optimal
number of units of each item is shown in fig. 2.

VII. PRODUCTION PLANNING MODEL UNDER
INTERVAL-VALUED NEUTROSOPHIC NUMBERS
The earlier discussed production planning problem is for-
mulated under interval-valued trapezoidal neutrosophic num-
bers. Since most of the production planning cases, the data
availability is not a specific value in general. To illustrate
the case, let suppose the multiobjective production planning
model’s objective functions are in the form of interval-valued
trapezoidal neutrosophic numbers. The stepwise solution pro-
cedure is given in the next section.

A. SOLUTION PROCEDURE
The step of the solution procedure to solve the interval-valued
trapezoidal neutrosophic numbers production planning prob-
lem is as follows:

Step 1: State the interval-valued trapezoidal neutrosophic
numbers problem.
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Step 2: Convert the interval-valued trapezoidal neutro-
sophic numbers problem using the score function of Eqn. 1
into the interval-valued problem.

Step 3: Convert interval-valued problem into the crisp
form using α− cut method. As for [a, b]

αa+ (1− α)b

Step 4: Estimate the ideal points for each objective func-
tion of the interval-valued problem subject to given con-
straints.

Step 5: Determine the maximum and minimum values for
each objective function subject to given constraints.

Step 6: Applied Neutrosophic Compromise Programming
Approach and use LINGO software to obtain the optimum
compromise solution.

The resultingmathematical model of interval-valued trape-
zoidal neutrosophic numbers is as follows:

Min Z1 =
J∑
j=1

〈 (
P1j ,P

2
j ,P

3
j ,P

4
j

) [
µL
P̃j
, µU

P̃j

]
,[

σ L
P̃j
, σU

P̃j

]
,

[
υL
P̃j
, υU

P̃j

]
〉
xj

Min Z2 =
J∑
j=1

〈 (
I1j , I

2
j , I

3
j , I

4
j

) [
µL
Ĩj
, µU

Ĩj

]
,[

σ L
Ĩj
, σU

Ĩj

]
,

[
υL
Ĩj
, υU

Ĩj

]
〉
xj

Max Z3 =
J∑
j=1

〈 (
R1j ,R

2
j ,R

3
j ,R

4
j

) [
µL
R̃j
, µU

R̃j

]
,[

σ L
R̃j
, σU

R̃j

]
,

[
υL
R̃j
, υU

R̃j

]
〉
xj

Model I

Maximize =
3∑

i=1

(µi + σi − υi)

Subject to constraints

µ1 ≥ µ
T
1 (Z1), σ1 ≥ σ

I
1 (Z1), υ1 ≤ υ

F
1 (Z1)

µ2 ≥ µ
T
2 (Z2), σ2 ≥ σ

I
2 (Z2), υ2 ≤ υ

F
1 (Z2)

µ3 ≥ µ
T
3 (Z3), σ3 ≥ σ

I
3 (Z3), υ3 ≤ υ

F
1 (Z3)

Z1 = 540x1 + 1250x2 + 460x3 + 2530x4 + 3480x5 + 830x6 + 475x7 + 1465x8 + 3270x9 + 585x10 + 2315x11 + 435x12

Z2 = 12x1 + 5x2 + 6.5x3 + 19.75x4 + 14.25x5 + 8x6 + 6x7 + 10.5x8 + 13.5x9 + 9.25x10 + 18.5x11 + 8.25x12

Z3 = 75x1 + 215x2 + 85x3 + 535x4 + 875x5 + 190x6 + 95x7 + 410x8 + 725x9 + 115x10 + 450x11 + 105x12

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99,

86 ≤ x6 ≤ 104, 76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88,

68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81, xj ∈ integer j = 1, 2, . . . , 12, µi ≥ σi, µi ≥ υi,

µi + σi + υi ≤ 3, ∀µi, σi, υi ∈ [0, 1] , i = 1, 2, 3.
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Subject to set of constraints:
J∑
j=1

sjxj ≤ S,
J∑
j=1

Mijxj ≤ bi, i = 1, 2, . . . , I

J∑
j=1

qljxj ≤ Q∗l , l = 1, 2, . . . ,L,

DMj ≤ xj ≤ DUj, j = 1, 2, . . . , J

B. NUMERICAL EXAMPLE
The objective functions of the multiobjective production
planning model are in the form of interval-valued trapezoidal

neutrosophic numbers. Table 12 summarizes the Production
Cost, InventoryHolding Cost and Profit, which all are defined
in the form of interval-valued trapezoidal neutrosophic
numbers.

The score function is used to convert the trapezoidal
interval-valued neutrosophic number into interval number
then Table 12 will be changed into interval-valued form.
Table 13 summarizes the Production Cost, Inventory Holding
Cost and Profit in the form of interval-valued.

The mathematical formulation of the problem under neu-
trosophic environment (Vagueness) of the Eqn 2 is as follows
Minimize Z1,Minimize Z2, and Minimize Z3, shown at the
bottom of the page 37481.

Model II

Maximize =
3∑

i=1

(µi − σi − υi)

Subject to constraints

µ1 ≥ µ
T
1 (Z1), σ1 ≤ σ

I
1 (Z1), υ1 ≤ υ

F
1 (Z1)

µ2 ≥ µ
T
2 (Z2), σ2 ≤ σ

I
2 (Z2), υ2 ≤ υ

F
1 (Z2)

µ3 ≥ µ
T
3 (Z3), σ3 ≤ σ

I
3 (Z3), υ3 ≤ υ

F
1 (Z3)

Z1 = 540x1 + 1250x2 + 460x3 + 2530x4 + 3480x5 + 830x6 + 475x7 + 1465x8 + 3270x9 + 585x10 + 2315x11 + 435x12

Z2 = 12x1 + 5x2 + 6.5x3 + 19.75x4 + 14.25x5 + 8x6 + 6x7 + 10.5x8 + 13.5x9 + 9.25x10 + 18.5x11 + 8.25x12

Z3 = 75x1 + 215x2 + 85x3 + 535x4 + 875x5 + 190x6 + 95x7 + 410x8 + 725x9 + 115x10 + 450x11 + 105x12

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99,

86 ≤ x6 ≤ 104, 76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88,

68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81, xj ∈ integer j = 1, 2, . . . , 12, µi ≥ σi, µi ≥ υi,

µi + σi + υi ≤ 3, ∀µi, σi, υi ∈ [0, 1] , i = 1, 2, 3.
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TABLE 12. The IVTN form of the production cost, inventory holding cost, profit.

FIGURE 2. Compromise number of units.

TABLE 13. The interval-valued form of the production cost, inventory
holding cost, profit.

The solution thus obtained is the idle solution—the pay-
off matrix constructed by using the idle solutions. Finally,
the constructed payoff matrix helped to define the aspiration
level for each objective functions. The bounds for the three
objective functions are determined as: 1419949 ≤ Z1(x) ≤
1626021, 10559.17 ≤ Z2(x) ≤ 11744.98 and 303770 ≤
Z3(x) ≤ 349245.9. The Truth, Indeterminacy and falsity
membership functions for using neutrosophic programming

are constructed as follows:

µT1 (Z1(x))

=


1 if Z1(x) < 1419949
1626021− Z1(x)

1626021−1419949
if Z1(x) ∈ [1419949, 1626021]

0 if Z1(x) > 1626021

σ I1 (Z1(x))

=


1 if Z1(x) < 1419949
1606021− Z1(x)

1606021−1419949
if Z1(x) ∈ [1419949, 1606021]

0 if Z1(x) > 1606021

υF1 (Z1(x))

=


0 if Z1(x) < 1489949
Z1(x)− 1489949

1626021−1489949
if Z1(x) ∈ [1489949, 1626021]

1 if Z1(x) > 1626021

µT2 (Z2(x))

=



1 if Z2(x) < 10559.17
11744.98− Z2(x)

11744.98− 10559.17
if Z2(x)

∈ [10559.17, 11744.98]

0 if Z2(x) > 11744.98

σ I2 (Z2(x))

=



1 if Z2(x) < 10559.17
11244.98− Z2(x)

11244.98− 10559.17
if Z2(x)

∈ [10559.17,11244.98]

0 if Z2(x) > 11244.98

υF2 (Z2(x))

=


0 if Z2(x) < 10759.17
Z2(x)− 10759.17
11744.98-10759.17

if Z2(x) ∈ [10759.17,11744.98]

1 if Z2(x) > 11744.98
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µT3 (Z3(x))

=



0 if Z3(x) < 303770

Z3(x)− 303770
349245.9− 303770

if Z3(x)

∈ [303770, 349245.9]

1 if Z3(x) > 349245.9

σ I3 (Z3(x))

=


0 if Z3(x) < 313770

Z3(x)− 313770
349245.9− 313770

if Z3(x) ∈ [313770, 349245.9]

1 if Z3(x) > 349245.9

υF3 (Z3(x))

=



1 if Z3(x) < 303770
329245.9− Z3(x)
329245.9− 303770

if Z3(x)

∈ [303770, 329245.9]

0 if Z3(x) > 329245.9

Then, the neutrosophic programming model I is as shown at
the bottom of the next page. The neutrosophic programming
model II is as shown at the bottom of the page 37483.
The compromise solution for the interval-valued trapezoidal
neutrosophic model is calculated using the neutrosophic pro-
gramming approach. The Compromise Solution at distinct α
values is given in tables 14 and 15 for both models I and II.

Minimize Z1 = [530, 548.9] x1 + [1220, 1241.43] x2 + [453.71, 465.33] x3 + [2510, 2533.75] x4 + [3450, 3468.75] x5

+ [817.82, 830.56] x6 + [450, 461.11] x7 + [1440, 1467.5] x8 + [3255, 3271.88] x9 + [550, 575] x10

+ [2280, 2308.33] x11 + [425, 441] x12

Minimize Z2 = [11.9, 13] x1 + [4, 4.79] x2 + [6.28, 6.67] x3 + [18.25, 19.56] x4 + [13.8, 14.26] x5 + [7.25, 7.81] x6

+ [4, 5.89] x7 + [9, 10.75] x8 + [13.13, 14.19] x9 + [8, 9.06] x10 + [17, 17.83] x11 + [7.5, 8.44] x12

Maximize Z3 = [70, 75.56] x1 + [220.05, 220.71] x2 + [75, 94.44] x3 + [510, 537.5] x4 + [825, 862.5] x5

+ [168, 193.89] x6 + [80, 85.56] x7 + [390, 413.25] x8 + [705.62, 720] x9 + [98, 116.25] x10

+ [415, 437.22] x11 + [85, 109.5] x12

Subject to constraints

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99, 86 ≤ x6 ≤ 104,

76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88, 68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81,

xj ∈ integer j = 1, 2, . . . , 12
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It can be observed that from the solutions in
Table 14 and 15, maximizing indeterminacy (Model I)
increases the maximization-type objective function slightly,
at the same time, increases the minimization-type objec-
tive functions slightly. Simultaneously, minimizing the inde-
terminacy (Model II) decreases the minimization-type and
maximization-type objective functions slightly. Therefore,
it can be concluded that minimizing indeterminacy (Model II)

can be slightly better in the interval-valued trapezoidal neu-
trosophic case than maximizing it (Model I).

VIII. MOTIVATION AND CONTRIBUTION OF THE STUDY
This study is motivated by Neutrosophic programming
being a new research area with the potential to capture
the decision-makers truth and Indeterminacy goals. The
following are the contributions of the study:

Model I

Maximize =
3∑

i=1

(µi + σi − υi)

Subject to constraints

µ1 ≥ µ
T
1 (Z1), σ1 ≥ σ

I
1 (Z1), υ1 ≤ υ

F
1 (Z1)

µ2 ≥ µ
T
2 (Z2), σ2 ≥ σ

I
2 (Z2), υ2 ≤ υ

F
1 (Z2)

µ3 ≥ µ
T
3 (Z3), σ3 ≥ σ

I
3 (Z3), υ3 ≤ υ

F
1 (Z3)

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


Z1 = [530, 548.9] x1 + [1220, 1241.43] x2 + [453.71, 465.33] x3 + [2510, 2533.75] x4 + [3450, 3468.75] x5

+ [817.82, 830.56] x6 + [450, 461.11] x7 + [1440, 1467.5] x8 + [3255, 3271.88] x9 + [550, 575] x10

+ [2280, 2308.33] x11 + [425, 441] x12

Z2 = [11.9, 13] x1 + [4, 4.79] x2 + [6.28, 6.67] x3 + [18.25, 19.56] x4 + [13.8, 14.26] x5 + [7.25, 7.81] x6 + [4, 5.89] x7

+ [9, 10.75] x8 + [13.13, 14.19] x9 + [8, 9.06] x10 + [17, 17.83] x11 + [7.5, 8.44] x12

Z3 = [70, 75.56] x1 + [220.05, 220.71] x2 + [75, 94.44] x3 + [510, 537.5] x4 + [825, 862.5] x5 + [168, 193.89] x6

+ [80, 85.56] x7 + [390, 413.25] x8 + [705.62, 720] x9 + [98, 116.25] x10 + [415, 437.22] x11 + [85, 109.5] x12

110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99, 86 ≤ x6 ≤ 104,

76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88, 68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81,

xj ∈ integer j = 1, 2, . . . , 12, µi ≥ σi, µi ≥ υi, µi + σi + υi ≤ 3, ∀µi, σi, υi ∈ [0, 1] , i = 1, 2, 3.
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1. It serves as an additional contribution to the literature
on production planning.

2. A case study is provided in which a solution procedures
for multiobjective multiproduct problem formulation is
reported.

3. In this study, a new approach based on neutrosophic has
been applied.

4. The approach is compared with Intuitionistic fuzzy pro-
gramming, and the result proves to be better.

5. The applicability of Interval-valued Neutrosophic
numbers has also been discussed and
reported.

6. Both certainty and Vagueness are considered. Cer-
tainties are considered in the numerical example 1,
whereas interval-valued trapezoidal neutrosophic num-
ber (Vagueness) for the coefficients of objective
functions are considered in example 2. In this
study, both certainty and Vagueness are considered,

Model II

Maximize =
3∑

i=1

(µi − σi − υi)

Subject to constraints

µ1 ≥ µ
T
1 (Z1), σ1 ≤ σ

I
1 (Z1), υ1 ≤ υ

F
1 (Z1)

µ2 ≥ µ
T
2 (Z2), σ2 ≤ σ

I
2 (Z2), υ2 ≤ υ

F
1 (Z2)

µ3 ≥ µ
T
3 (Z3), σ3 ≤ σ

I
3 (Z3), υ3 ≤ υ

F
1 (Z3)

0.77
1.5

0.28
0.1

0.54
0.3

3.6
0.5

1.8
1.5

0.57
0.1

0.6
1.1

0.64
0.5

1.8
0.0

1.2
0.0

0.72
0.0

0.4
0.0

0.2 0.4 1.2 0.5 0.2 1.1 0.1 1.2 1.3 0.1 0.1 0.1
0.3 1.5 0.4 1.1 0.2 1.5 0.5 0.2 0.1 0.1 0.3 0.1
1.5 0.5 1.2 1.4 0.6 1.0 0.1 1.1 0.1 0.2 1.1 1.1
1.5 1.5 1.3 1.3 0.5 0.6 1.3 1.1 1.2 1.0 1.2 0.8
1.1 0.5 0.2 1.5 0.3 0.4 0.2 0.5 0.2 1.0 0.1 0.3
0.2 0.1 0.2 1.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.2
0.3 1.0 0.3 0.4 0.3 0.5 0.6 1.2 0.4 0.5 0.2 1.0
0.2 0.2 0.3 1.0 0.3 1.5 0.4 0.5 1.0 0.7 1.0 0.1
0.1 0.2 1.0 0.3 1.5 0.7 1.0 0.4 0.5 1.2 0.6 0.3
1.5 1.5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.5 1.2 1.5 1.3 0.3 1.2 0.6 0.5 1.5 0.8 1.1 1.5
0.2 0.6 1.5 0.5 0.7 0.1 0.3 0.4 0.1 1.0 0.2 0.5
0.3 0.4 1.3 0.1 1.0 0.5 0.2 0.1 1.0 1.2 0.1 0.5
1.0 0.6 0.2 0.1 0.5 0.6 0.3 1.1 0.7 0.3 1.0 0.6
1.1 1.1 0.5 0.7 0.4 0.1 0.2 0.2 0.1 1.0 0.2 0.1





x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12



≤



1200
624
624
832
1040
1248
624
416
624
832
832
624
1248
624
624
832
624


Z1 = [530, 548.9] x1 + [1220, 1241.43] x2 + [453.71, 465.33] x3 + [2510, 2533.75] x4 + [3450, 3468.75] x5

+ [817.82, 830.56] x6 + [450, 461.11] x7 + [1440, 1467.5] x8 + [3255, 3271.88] x9 + [550, 575] x10

+ [2280, 2308.33] x11 + [425, 441] x12

Z2 = [11.9, 13] x1 + [4, 4.79] x2 + [6.28, 6.67] x3 + [18.25, 19.56] x4 + [13.8, 14.26] x5 + [7.25, 7.81] x6 + [4, 5.89] x7

+ [9, 10.75] x8 + [13.13, 14.19] x9 + [8, 9.06] x10 + [17, 17.83] x11 + [7.5, 8.44] x12

Z3 = [70, 75.56] x1 + [220.05, 220.71] x2 + [75, 94.44] x3 + [510, 537.5] x4 + [825, 862.5] x5 + [168, 193.89] x6

+ [80, 85.56] x7 + [390, 413.25] x8 + [705.62, 720] x9 + [98, 116.25] x10 + [415, 437.22] x11 + [85, 109.5] x12

110 ≤ x1 ≤ 140, 108 ≤ x2 ≤ 135, 104 ≤ x3 ≤ 128, 96 ≤ x4 ≤ 126, 84 ≤ x5 ≤ 99, 86 ≤ x6 ≤ 104,

76 ≤ x7 ≤ 88, 60 ≤ x8 ≤ 75, 70 ≤ x9 ≤ 79, 67 ≤ x10 ≤ 88, 68 ≤ x11 ≤ 80, 66 ≤ x12 ≤ 81,

xj ∈ integerj = 1, 2, . . . , 12, µi ≥ σi, µi ≥ υi, µi + σi + υi ≤ 3, ∀µi, σi, υi ∈ [0, 1] , i = 1, 2, 3.
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TABLE 14. Compromise solution (Model I).

TABLE 15. Compromise solution (Model II).

unlike other studies where only one is considered,
e.g. see Table 1.

7. The proposed Neutrosophic fuzzy programming con-
siders the independent indeterminacy/neutral degree,
which is the area of incognizance of a proposition’s
value. The proposed technique’s selection is quite ade-
quate, explanatory, and a good representative of real-life
situations.

IX. CONCLUSION
The present study discussed the formulation and solution
procedure of a hardware firm’s multiobjective multiprod-
uct production planning problem. The formulated model
is solved using intuitionistic and neutrosophic program-
ming. The study revealed that the neutrosophic program-
ming approach provided a better solution than intuition-
istic fuzzy programming. Further, the same problem is
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discussed under the interval-valued trapezoidal neutrosophic
fuzzy environment, and finally, it is solved using the neu-
trosophic programming approach. This study helps to under-
stand the application of intuitionistic and neutrosophic pro-
gramming approaches in solving production-related prob-
lems. The more complex and other production-related prob-
lem can be solved using the intuitionistic and neutrosophic
programming approaches. Also, the interval-valued neutro-
sophic fuzzy environment production problems can be solved
using the neutrosophic programming approach. This article
presented a profound study on intuitionistic and neutrosophic
programming approaches to solve multiobjective optimiza-
tion problems under certain and neutrosophic fuzzy envi-
ronments. In future, some more complex production plan-
ning problem will be considered with some new solution
approaches under the different kinds of fuzzy logic, such as
Pythagorean fuzzy interactive Hamacher power aggregation
operators; Pythagorean fuzzy interaction power Bonferroni
means aggregation operators in multiple attribute decision
making and many others.
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