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ABSTRACT Shear Horizontal (SH) guided waves have been extensively used to estimate and detect
defects in structures like plates and pipes. Depending on the frequency and plate thickness, more than
one guided-wave mode propagates, which renders signal interpretation complicated due to mode mixing
and complex behavior of each individual mode interacting with defects. This paper investigates the use of
machine learning models to analyse the two lowest order SH guided modes, for quantitative size estimation
and detection of corrosion-like defects in aluminium plates. The main contribution of the present work is
to show that mode separation through machine learning improves the effectiveness of predictive models.
Numerical simulations have been performed to generate time series for creating the estimators, while
experimental data have been used to validate them. We show that a full mode separation scheme decreased
the error rate of the final model by 30% and 67% in defect size estimation and detection respectively.

INDEX TERMS Corrosion-like defect, mode conversion, neural networks, SH guided waves, structural
health monitoring.

I. INTRODUCTION
Damage detection based on ultrasonic guided waves tech-
niques has shown great potential for non-destructive test-
ing (NDT) [1]–[9] and structural health monitoring (SHM)
[10]–[17] applications. Among the different types of guided
waves, shear horizontal (SH) guided waves are used widely,
due to their characteristics such as simple dispersion rela-
tions and the displacement profiles of the modes. They are
also unaffected by a non-viscous liquid in contact with the
waveguide’s surfaces, making them especially attractive for
inspection of pipes [1], [5]. SH guided waves can be gen-
erated by Electromagnetic Acoustic Transducers (EMATs)
[18], and can be used to detect defects from the scattered
field produced when a guided wave mode is incident upon
the defect [19]–[23].
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Depending on the product of the SH mode’s frequency and
thickness of the plate or pipe, several SH guided wave modes
can propagate. In such situations, when a single guided wave
mode impinges upon a defect, the scattered field can be com-
posed of several propagating modes, due to mode-conversion
[20], [24]–[31]. The intensity of each mode that is present
in the scattered field depends on the defect geometry. For
corrosion-like defects, where thickness has been reduced to
the extent that only the first two SH guided waves modes
are able to propagate, it has been shown that the reflected
and transmitted fields behave non-monotonically with defect
geometry parameters, such as depth and the angle of the
edge of the defect [20]. For higher-order modes, the non-
monotonicity is even more accentuated [31]. This phe-
nomenon complicates the interpretation of the received signal
for defect sizing when operating at a frequency that supports
several propagating modes. In addition to the non-trivial
behavior of mode conversion, several modes may arrive at the
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receiving transducer fairly close in time, producing a complex
signal due to interference [32]. Although it is possible to
detect the presence of the defect, which is useful for NDT
screening systems [1], mode conversion and mode mixing
make any accurate quantitative prediction of the defect size
impractical without resorting to advanced signal extraction
and interpretation techniques [20].

In this context, machine learning (ML) offers an advanced
signal processingmethod that can be applied to provide defect
size estimation, based on measurements related to guided
waves phenomena [33]. As raw physical measurements can
be hard to interpret [20], supervised learning paradigms can
be effectively applied when enough labeled data is available.
Predictive models based onML [34] are able to provide better
decision making, by decreasing false alarms and increasing
computational performance [35].

Many papers deal with the problem of defect estimation
using guided waves in different ways with ML, as described
in a recent review [14]. Dib et al. addressed a problem
of SHM using a network of piezoelectric sensors with
ensemble learning by consensus, where individual learners
with support vector machines use different sections of the
time-series measurements. The features are based in Fourier
transform coefficients, and experiments were carried out for
estimating impact defect types under varying environmen-
tal conditions [36]. Simulated and experimental data have
been used to train and test ML models respectively by
García-Gomez et al. [37]. The authors used time and fre-
quency domain feature engineering, feature selection with
evolutionary algorithms, and artificial neural network mod-
els for detecting defects in pipes. This structure was also
exploredwith a baseline extraction jointly with support vector
machines [38].

Only recently, deep learning (DL) [39] was applied to
SHM using guided waves. Its potential is great for this spe-
cific application, as it can automate the feature extraction
process, and can also deal with high dimensional datasets.
Melville et al. [40] employed convolutional neural networks
to estimate the damage level of a thin metal plate, emu-
lated by a steel washer, using full wavefield measured data.
DL is also explored with Lamb waves, in which, wavelet
coefficients are extracted and used as inputs of the mod-
els [41]. Moreover, Hesser et al. [42] have proposed an active
source localization to predict the impact position of a steel
ball in an aluminium plate, using numerical simulations to
train and experimental data to validate ML models. Finally,
Sun et al. [43] very recently proposed a damage classification
in plates, using DL architectures jointly with SH guided
waves. Three types of defects, namely, pinhole, crack, and
flat-bottomed corrosion–like thinning, were examined in six
different depths. In order to overcome the overlapping modes
in the received signals, they adopted a variational mode
decomposition to identify the signal components related to
the modes, which facilitates time-of-flight determination and
consequently, the position of the defect and plate thick-
ness. However, the results were not very precise from a

regression perspective; they explored simple architectures
such as shallow or dense neural networks, which did not
provide very good results, and also DL architectures, where
the results were better.

A. CONTRIBUTIONS
In relation to recently published research into ML applied to
damage evaluation with guided waves, the main contributions
of this work are as follows:

1) Improvement of ML model results is obtained when
applying a mode separation method to the guided
waves signals, providing richer information on the
defect. The procedure yields better estimation capabil-
ity when applied to measured data. It is worth noting
that a variational mode decomposition that is able to
discriminate the signal component related to eachmode
has been used before [43], but that technique did not
provide a precise extraction of the individual modes
waveform, unlike the one adopted in this paper, and
how the adopted mode decomposition acts as a facil-
itator in the ML pipeline was not assessed in previous
work.

2) A damage estimation baseline-free data-driven model.
The present method is baseline-free, in the sense that
it does not depend upon pre-processing of all available
data based on a comparison or subtraction of a nomi-
nal signal, which is a common procedure used in the
literature [44]–[46].

3) Precise target variables for corrosion-like defect esti-
mation. Specifically, we opted to generate continuous
classification damage indices. In general, finer-grained
damage indices such as the ones devised here are pre-
ferred, as they provide a greater amount of information
for the decision-maker.

4) Adopting simulated signals in the construction of ML
models and experimental signals for validation. This
strategy is important since it avoids expensivemeasure-
ment campaigns, and provides an effective means for
creating datasets [37], [42].

In summary, this work is comprised of a method to detect and
estimate corrosion-like defects in aluminium plates, based
on using SH guided waves. The process is further improved
by adopting a guided wave mode separation scheme, either
in transmission or reception. The ML model was trained
with simulated signals, obtained with a Finite Element Model
(FEM), and then tested with experimental signals. The full
mode separation scheme decreased the error rate of the final
model. The overall data-driven modeling workflow is sum-
marized in Fig. 1.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
reviews the basic concepts of SH guided waves, while
in Section III the test bench is described, as well as
the experimental procedure and measured data. The defect
estimation method herein proposed and the results are given,
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FIGURE 1. Overview of the modeling workflow solution adopted. Note that the simulated data is used in order to create the model, while the
experiments are used to validate it. This workflow is general and may be replicated in other cases, where high fidelity computational models are
available and a number of cases can be computed in a feasible time.

respectively, in Sections IV and V. The conclusions and
suggested future work are highlighted in Section VI.

II. SH GUIDED WAVES IN PLATES
Shear horizontal guided waves in plates have in-plane polar-
ized vibration, parallel to the surface of the plate, and per-
pendicular to the direction of propagation [47]. Adopting the
coordinate system shown in Fig. 2, for an isotropic homoge-
neous plate, SH guidedwaves propagate along the x-direction
and the displacement field is polarized in the z-direction.

FIGURE 2. Plate and defect geometry. Generation is imposed at the origin
and reception is either before and after the defect, in position (1) and (2)
respectively. The corrosion severity is evaluated based on the relative
area of the defect, which is dependent on d and α.

There are, potentially, infinite SH guided waves modes.
Each mode has a different phase and group speed and mode
displacement profile through the thickness of the sample,
which is how the mode’s displacement field varies along the
y-coordinate within the plate, i.e−h/2 ≤ y ≤ h/2, where h is
the thickness of the plate. The displacement profile is given
by:

Un(y) =
{

cos(nπy/h), n = {0, 2, 4, . . .} (1a)

sin(nπy/h), n = {1, 3, 5, . . .} (1b)

where n is the mode order. Note that in (1), even-order modes
have a symmetric profile across the plate thickness, whereas
odd-order modes are antisymmetric. On flat plates, the fun-
damental zero-order SH0 mode has a constant displacement
along y and a phase and group speed equal to the medium’s
bulk shear (or transverse) wave speed, cT for all frequencies,
i.e. it is non-dispersive. All higher-order modes can propagate
only for a frequency-thickness product above their respective
cut-off values, given by

(fh)cut-off = n cT
/
2 , (2)

and their phase speed, c, depends on the frequency. The phase
speed dispersion curves for the first three SH modes in an
8 mm thick aluminium plate are shown in Fig. 3.
If the operating frequency-thickness product is below

the cut-off of the first-order mode, SH1, one operates
in the low frequency-thickness regime, where only the
SH0 mode can propagate. Otherwise, one operates in the
high frequency-thickness regime [29], [30]. In the low
frequency-thickness regime, when the SH0 mode impinges
upon a corrosion-like defect, such as the thinning region
shown in Fig. 2, part of it is reflected back and part of
it is transmitted through the thinner region. On the other
hand, in the high frequency-thickness regime, when anymode
interacts with such a defect, there is mode conversion in either
reflection or transmission [31]. This means that the received
signal may be complex, due to the interference of several
modes [32]. Additionally, in the high frequency-thickness
regime, the transmission and reflection coefficients do
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not behave monotonically [31], [48], as opposed to the
low frequency-thickness regime [2]–[4], therefore rendering
defect sizing difficult.

SH waves can be generated and received by periodic per-
manent magnet (PPM) electromagnetic acoustic transducers
(EMAT) [49]–[51]. PPM EMATs impose a nominal wave-
length, λ, on the generated SH waves. The frequency of
the wave is imposed by the time-varying characteristics of
the electric current pulse. Therefore, one can, in principle,
select which mode is generated by matching its wavelength,
or phase speed, at a specific frequency [50], since these
parameters are related by c = λf . Fig. 3 shows the line
of 10 mm constant wavelength superposed on the SH disper-
sion curves. The frequency at which the dispersion curve of
a mode of interest intersects the wavelength line, defines the
optimum frequency to generate this specificmode. In the case
illustrated in the Fig. 3, on this particular plate, the optimum
operating frequency to generate the SH0 and SH1 modes are
311 kHz and 367 kHz, respectively.

FIGURE 3. Phase speed dispersion curves for SH guided waves in an
8 mm thick aluminium plate. The dotted line corresponds to a 10 mm
nominal wavelength. The continuous closed lines represent the -6 dB
border of the operating region of 3 a cycle PPM EMAT, driven by an
8 cycle tone-burst at 311 kHz (black line) and 367 kHz (gray line).

However, due to the finite size of the PPM EMAT, there
is a bandwidth of excitable wavelengths, instead of a sin-
gle wavelength. The same holds for the frequency, since,
usually, a tone-burst current is injected into the coil, which
has a finite frequency bandwidth. This means that, even if
the target frequency and wavelength to generate a specific
mode are selected, other SH modes can be generated, if their
dispersion curves cross the transducer operating region. The
operating region is the locus defined by the intersection of
both bandwidths [1], [20]. Fig. 3 shows the -6 dB border of
the operating regions of a 3 cycle PPM EMAT, driven by
an 8 cycle tone-burst at 311 kHz and 367 kHz. As can be
seen, in this case, when attempting to generate the SH0mode,
the SH1 mode is also generated with non-negligible intensity,
since it lies within the operating region of the SH0 mode.
The same holds true for generating the SH1 mode. Mode
selectivity can be enhanced by using some kind of mode
separation [52]–[55].

III. CASE STUDY
In this paper, signals due to the interaction of SH guided
waves in an aluminium plate with wall thinning defects were

used to extract features for a ML model, used to estimate the
corrosion-like defect severity. The setup follows [20], [48].
The geometry of the plate can be observed in Fig. 2. The plate
is 8 mm thick with a 150 mm long thinning region starting at
182 mm from the origin, where transmission occurs. Either
its depth (d) and edge angle (α) were varied. Reception is
performed either before the defect or after it, at positions (1)
or (2) in Fig. 2, respectively.

Numerical data were obtained by means of a commercial,
time-domain, Finite Element Method (FEM) solver, OnScale
SolveTM (former PZFlex c©), which allows simulation of SH
waves in a two-dimensional model. SH waves in the FEM
model were excited, mimicking the spatial force distribution
produced by a PPM EMAT. This was performed by imposing
a spatial force distribution with a 10 mm period and the
same number of cycles as the EMAT to the surface of the
model in the direction of the polarization of the SH waves,
i.e., perpendicular to the propagation direction parallel to
the plates’ surface. Forces are then modulated by the same
time history as the exciting current applied to the EMATs
in experiments. This approach allows the generation of SH
guided waves, without the need for including the EMAT in
the model, as validated previously [1], [20], [31], [32], [51],
where the high-representability of the simulated and exper-
imental signals were verified. The excitation forces were
applied either in the top or bottom surfaces, in order to pro-
vide enough signals for the mode separation procedure. The
material density was set to 2698 kg/m3, and the transverse
wave speed equal to 3111m/s. A mesh with 50 elements per
wavelength was used. Due to the variation of α and d (see
Fig. 2), the dataset created has approximately 1230 defect
cases, which were generated in an almost automatic fashion,
while in the experiment any new sample requires complicated
machining for specimen thinning.

Experimental data were acquired using a RITEC 
RPR-
4000 Pulser/Receiver, connected to PPMEMATswith 10mm
nominal wavelength from Sonemat Ltd, used as transmitter
and receiver. The signal from the receiver EMAT is amplified
and then acquired with an oscilloscope linked to a computer.
The test samples were 800 mm long and 250 mm wide
plates. The experiment was carried with 34 samples, one
instance is the nominal condition (without defect) and the
other 33 samples with variations of α (10◦, 45◦, and 90◦) and
d (1 mm, 2 mm, 3 mm,. . . , 7 mm), with α = 55◦ varying d
(2 mm, 3mm,. . . , 7 mm), plus six additional samples, namely,
d = 6 mm at α = 25◦, 30◦ and 35◦ and d = 7 mm at α =
25◦, 30◦ and 65◦. These sample geometries were also used in
previous work for comparison [20], [48]. The excitation pulse
was set to an 8 cycle tone burst at either 311 kHz or 367 kHz,
in order to predominantly generate the SH0 or SH1 modes,
at a 10 mm nominal wavelength, respectively. Both modes
can be generated and received in this case. Thus, in this paper,
we assess whether mode separation further improves the ML
model accuracy.

In order to separate the SH0 and SH1 modes,
we adopted dual transduction in either transmission or
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reflection [56], [57]. Dual excitation consists of positioning
transmitter transducers on both the upper and lower surfaces
of the plate at the same longitudinal position. If the forces
imposed by both transducers are in-phase, resp. out-of-phase,
then only symmetric, resp. anti-symmetric modes are gener-
ated. As explained in [56], both arrangements of these forces
can be obtained by connecting two EMATs in series, in direct
or reverse polarity. Alternatively, one can add or subtract the
response signal as follows:

uS = (uT + uB)
/
2 , (3a)

uA = (uT − uB)
/
2 , (3b)

where u is the signal of interest, the subscripts S and A are
for the symmetric and antisymmetric parts respectively, and
the subscripts T and B stand for generation taking place at
the top or bottom surfaces, respectively. Equation (3) also
holds for reception: by properly combining the signals from
receivers in both surfaces, symmetric or antisymmetricmodes
are separated in the received time-domain.

This procedure can be applied to the transmission step
alone, here called mode-separation in transmission, where a
pure mode, whether SH0 or SH1, is generated at its respec-
tive optimum frequency. It can also be applied in both the
transmission and reception of the signals, namely fully mode-
separation. Therefore a pure mode is generated, and mode
mixing originated in reflection or transmission through the
defect is extinguished. Additionally, no mode separation was
also adopted as a reference. This case consists of the most
common situation, where there are just one transmitter and
one receiver, positioned on one of the surfaces of the plate.
It is referred to here as the raw signals or non-separated case.
The mode-separation technique described here requires

access both surfaces of the plate, with the correct alignment
between the position of the upper and lower transducers.
A detailed assessment of the technique is presented in [56].
Other strategies for mode separation and selectivity do exist
such as [43], [52]–[55] that may impose less restrictive mea-
surement conditions, but, on the other hand, may require
additional processing or a more complicated excitation pro-
cedure. The main goal here is to assess whether being able
to distinguish the signals, and the corresponding features,
associated with the possible propagating modes in the high-
frequency-thickness regime, leads to improved performance
of the defect sizing estimation procedure.

The fully mode-separated signals for a purely generated
SH1mode are shown in Fig. 4, for numerically simulated sig-
nals. The thicker black line indicates the non-defective plate,
and the different grey-scale lines indicate signals obtained for
different defect severities, where a lighter color corresponds
to a more severe defect (greater relative area), and a darker
color corresponds to a less severe defect; the color-severity
relation is described by the color bar. Fig. 4(a) shows the
SH1 reception before the defect, position (1), at around 50µs
one can see the direct pulse is the same for all cases, since this
first pulse does not interact with the defect. At around 90µs,

FIGURE 4. Simulated fully mode-separation signals for purely
SH1 generated at 367 kHz. Reception of the separated SH1 mode (a) and
(b) and separated SH0 mode (c) and (d). Reception before the defect,
at position (1), (a) and (c) and after the defect, position (2), (b) and (d).
The severity of the defects is given by the color bar.

the reflected SH1 is observable, which is different for the
several defect cases, due to the interaction of different defect
geometries. The amplitude of the reflected signals varies con-
siderably, depending on the defect geometry; in some cases
reaching amplitudes almost as high as the incident signal, due
to the phenomenon of total reflection [20], [27], [28], for very
low edge angle thinning, even for defects that are not very
deep, and thus presenting moderate severity. Fig. 4(b) shows
the SH1 after the defect, position (2), showing differences for
several geometries used. Fig. 4(c) and (d) show the separated
SH0 in reception due to the pure SH1 transmission, for posi-
tions (1) and (2), respectively. As can be seen, there is no
direct pulse around 50µs in position (1), since the SH0 mode
is not generated. Similarly, reflected and transmitted signals
differ for each defect geometry.

Similar signals were obtained for the experimental setup.
These are shown in Fig. 5. One can see that, in this case,
the direct pulse, around 50µs in Fig. 5(a), has slight phase
differences, due to the experimental positioning error among
experiments. There is some non-zero signal at this time inter-
val for the SH0 separated in reception, shown in Fig. 5(c).
The latter also shows features due to positioning errors, which
more severely affects selecting the mode with opposite polar-
ization, as explained in [56]. One can also observe that for

FIGURE 5. Experimental fully mode-separation signals for purely
SH1 generated at 367 kHz. Reception of the separated SH1 mode (a) and
(b) and separated SH0 mode (c) and (d). Reception before the defect,
at position (1), (a) and (c) and after the defect, position (2), (b) and (d).
The severity of the defects is given by the color bar.
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early times, the direct pulse is affected by interference from
the high-power excitation signal applied to the EMAT, which
is not present in the numerical simulation.
Mode-separation in transmission signals are shown

in Fig. 6 and 7 for simulation and experiments, respectively.
In this case, a high purity SH1 mode is still generated, but
the reflected and transmitted signals have both SH0 and
SH1 modes which interfere. Finally, when no mode sepa-
ration procedure is adopted, non-separated modes signals
are obtained, as depicted in Fig. 8 and 9 for simulation and
experiments, respectively. As can be seen, the shape of the
direct pulse differs from previous cases, since the SH1 mode
is not the only mode generated.

FIGURE 6. Simulated mode-separation in transmission signals generated
at 367 kHz. Reception before the defect, at position (1), (a) and after the
defect, position (2), (b). The severity of the defects is given by the color
bar. Note that the mode-separation in transmission signals result in a
single received signal at each position.

FIGURE 7. Experimental mode-separation in transmission signals
generated at 367 kHz. The color bar represents the severity of each
defect. Reception before the defect, at position (1), (a) and after the
defect, position (2), (b).

FIGURE 8. Simulated non-separated modes signals generated at 367 kHz.
Reception before the defect, at position (1), (a) and after the defect,
position (2), (b). The color bar represents the severity of the defects.

FIGURE 9. Experimental non-separated modes signals generated at
367 kHz. Reception before the defect, at position (1), (a) and after the
defect, position (2), (b). The severity of the defects is represented by the
color bar.

It is worth noting that either non-separated modes ormode-
separation in transmission produce a single received signal
at each position, related to the response signal at one surface
of the plate, unlike fully mode-separation, where two signals
are obtained for each generation source. Those relate to a
non-mode converted signal and a mode-converted signal,
which are only obtained when separation in reception is per-
formed through the sum of responses on the upper and lower
surfaces of the plate, see (3). A similar set of signals can be
plotted for the generation of the SH0mode, but are not shown
here for the sake of brevity. In order to avoid interference from
reflections at the plate’s end, a time gate for the reflected and
transmitted waves, shown in Fig. 4 to 9 by the red vertical
lines, is defined; the blue vertical lines define the incident
wave. These gates are defined by the expected arrival time
of the reflected and transmitted modes, according to their
group speed. Only signals arriving within these gates are
used further in the feature extraction procedure, and they will
be referred to as patches hereinafter. It is worth mentioning
that only the simulated signals that have an experimental
counterpart were displayed in Fig. 4, 6, and 8, to facilitate
visualization and comparison. All the 1230 cases previously
mentioned were used during the construction of the dataset,
and consequently in the training of the ML models.

IV. CORROSION-LIKE DEFECTS ESTIMATION METHODS
In the present section, we state the methods used in the
overall data-driven modeling construction activity. Fig. 10
summarizes all the steps generally performed for the creation
of predictive models. Below we describe each of these steps,
together with a description of what was defined in the present
work with justifications.

FIGURE 10. Predictive modeling general procedure. The model can be
reiterated according to model validation metrics, going back to any of the
previous steps. Note that the step-by-step approach gives this recurrence,
as the data-driven modeling is inherently iterative.

A. DATA COLLECTION
Data from experiments and simulations are used in the present
paper. The former is used to validate the model, while the
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latter is used to create it. In the present paper, we show that it
is possible to create a data-drivenmodel using simulated data,
that can be validated with experiments when the high-fidelity
model operates inside the envelope defined by the measure-
ments. The confirmation of such a modeling approach is
important, as in many cases data is expensive to measure,
making data-intensive predictive modeling for damage esti-
mation non-viable in such scenarios. It is worth highlighting
that the computation time for each simulated sample is in the
order of few minutes, whereas the whole experimental data
acquisition for each sample, including specimen machining
and experimentation, can take over one day of work. Details
of the FEM model used to generate the training data are
provided in Section III, together with the experimental data.

B. PRE-PROCESSING
The raw data that we use for testing the model should be
pre-processed, in order to produce valid results when the
supervised mathematical model is employed. In this paper,
we use data normalization, and we look for the correct time
window of interest. We detail each of these pre-processing
tasks below.

• Normalization: Considering linearity, we multiplied the
measurements by the inverse of the maximum abso-
lute amplitude of each incident wave. In this way, all
amplitudes of the transmission and reflection are stan-
dardized with no loss of information. The amplitude of
experimental and simulated signals differ, mainly due to
attenuation, which was not introduced in the numerical
simulation. Therefore, the amplitude of the experimental
signals was also corrected, based on the same case of the
simulated wave signal within the proper time windows.

• Time window: We define the time window that contains
relevant information about the transmission and reflec-
tion measurements. The goal is to use the time history
that is most relevant to the phenomenon at hand.

• Mode separation: three different datasets for data-driven
modeling are described in the present work. We con-
structed different models in order to check whether
the mode separation procedure helps to improve the
results for defect size estimation in the ML models. The
mode separation strategies are defined as (i) full mode
separation, (ii) mode separation in transmission, and
(iii) non-separated.

C. FEATURE EXTRACTION
A feature extraction process is necessary to reduce the
high-dimensionality of the time series in such a way, that the
model construction process is possible. The goal is to obtain
features that are sensitive to the defect parameters and can
be representative of the physical characteristics of received
signals in a reduced dimension, when compared to the full
amount of samples of the time series, that are subsequently
used as inputs for the model [58]. In the present work,
we focus on simple feature extraction for signals in the time

TABLE 1. Description of the features used in the scope of the present
paper. For all (i)-(iii) strategies of mode separation in the pre-processing,
we obtain each of the features described below. They consist of time
domain features, as well as simple statistics. By using simple feature
engineering, we are able to provide fast yet informative solutions for
supervised learning.

domain, as it is simpler and less computationally intensive.
Table 1 summarizes the features tested in the present work.
They have been used elsewhere, mainly in health monitoring
applications such as [58], [59], and carry basic time history
and statistical information.

The number of total features depends on each of the
cases (i)-(iii) for mode separation. In case (i), the L2-energy
norm, the curve length, the Kurtosis, and the self-explanatory
amplitude related features (7 features) are extracted from
the 8 patches of signals, resulting in 80 features. Besides
those features, the transmission and reflection coefficients
culminate in 8 new features. All of those features added to the
two Pearson correlation coefficients, yields a total of 90 fea-
tures. All the features that are previously extracted from the
8 patches in case (i), are obtained for only 4 patches in case (ii)
and case (iii), resulting in 40 features in these cases. Recall
that case (i) results in two signals for each generation source
in each position, as explained in the previous section, whereas
cases (ii) and (iii), result in just one signal at each position,
thus presenting a different number of patches. Reflection and
transmission coefficients add 4 more features, that together
with the two Pearson correlation coefficients, sums up to
46 features.

It should be noted that this step is important for ensuring
the benefits of the mode separation scheme. It can improve
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the ML model construction for defect detection for two main
reasons; (i) the presence of multi-modes in the received sig-
nals makes the feature extraction stepmore complicated since
more complex signals are generated due to the interference
of multi-modes, and (ii) since approximately twice as many
signals are available when full mode separation is adopted,
additional features are available, and thus richer information
is provided to the ML models, so that their overall results are
improved.

D. TARGET VARIABLE DEFINITION
We set the target of the model as the damage indices to be
predicted on the basis of the guidedwave characteristics given
in Subsection IV-C. As the definition of whether there is a
defect or not can be inferred by only visualization of the SH
ultrasonic guided-waves response field, the same cannot be
stated in such a specific manner to the severity of the defect.
The severity of the defect is measured by the relative area
of the thinned defect. Namely, in Fig. 2, the severity of the
defect will be given by the area of the trapezoid that varies
as a function of α and d normalized per the maximum defect
area in the plate.

We perform two types of ML models in the present work,
based on the area of the defect:

• Regression: the area of the defects are normalized
between [0, 1], which correspond to the minimum and
maximum areas, or the nominal condition and largest
area of the defect-like corrosion respectively. The nor-
malized values are then used as the target variable.

• Classification: the classification model categorizes
the area of the defects into three regions, namely
low ([0, 0.3[), medium ([0.3, 0.6[) and high severity
([0.6, 1]).

E. SUPERVISED LEARNING
The extracted features and respective labels representing
damage indices (for regression and classification) can be
viewed as input-output pairs, which can be employed by any
supervised learning, in order to solve the defect estimation
problem. In the present work, we solved the regression and
classification ML problems with multilayer perceptron artifi-
cial neural networks (MLP) and linear models (LM).

The linear model was first adopted in order to check if
a simple linear solution could successfully solve the prob-
lem, and so assess the difficulty of the damage estimation.
We adopted a simple linear regression and linear discriminant
analysis for regression and classification problems respec-
tively. Since its performance was not satisfactory, non-linear
models with greater prediction capability, such as artificial
neural networks were adopted, and turned out to dramatically
improve the results. We tested different architectures for the
MLPs, a strategy to tune hyperparameters of the model, vary-
ing the number of hidden layers and the number of neurons
in each of these layers. The number of hidden layers is set
from 1 ({X}) to 3 ({X X X}) and the number of neurons in

each of these layers as 10 (X = 10), 50 (X = 50), or 100
(X = 100). We adopted a classical multilayer perceptron
setup with an MSE loss function, hyperbolic tangent as the
activation function in the hidden layers, the output layer for
the classification model as a softmax function [59], while
for the regression a linear function was used. The scaled
conjugate gradient (SCG) backpropagation is adopted as the
learning algorithm [60]. The training data were generated by
FEM simulations, and in every model construction, 85% of
the data were used to train while 15% were used to validate
the model, and a stopping criterion was used in order to
avoid overfitting. In order to statistically evaluate the results,
all the supervised learning models were executed 33 times
with different random seeds. Therefore, different optimum
weights are found for the many executions and architectures
performed. In order to compare different mode separation
strategies for feature extraction, we use performance met-
rics, tailored to evaluate classification and regression prob-
lems, namely, accuracy, Kappa coefficient, Confusion Matrix
(CM), the Receiver Operating Characteristic (ROC) curve,
the area under the ROC curve (AUC), coefficient of deter-
mination (R2), and area under the accuracy curve (AUAC).
For details regarding the aforementioned metrics please refer
to [59].

V. RESULTS
In the present section, we present the results when applying
classification and regression-based supervised learning with
linear models and artificial neural networks, to the problem
of defect estimation using SH guided waves and mode sepa-
ration. The presentation of the results is divided in classifica-
tion and the regression-based solutions, which are explored
respectively in Subsections V-A and V-B.

A. CLASSIFICATION RESULTS
‘The classification with linear and MLP models was divided
according to the mode separation considered as the signal
pre-processing methods, namely, (i) full mode separation,
(ii) mode separation in transmission, and (iii) non-separated
signals. Table 2 reports the results. In case (iii), results
achieved by the MLPs are satisfactory, with mean accuracy
ranging from 0.73 to 0.81 and best accuracy reaching 0.9118.
Results of the case (ii) are also shown. The mean accuracy
dropped to a range between 0.69 and 0.80, and the best accu-
racy remained 0.9118. The latter was not able to improve the
results of MLP models, compared to case (iii). Interestingly,
the outcomes when SH modes are separated in reception
produced the best results, that is after interaction with a
defect, case (i). In this case, the best accuracy was actually
0.9706. The range of mean accuracy also improves, varying
from 0.79 to 0.85.

Additional metrics were investigated for the best-trained
models from each mode separation. When looking at Fig. 11,
one can notice the CMs for each case. Case (i) made only
one single misclassification, classifying one high severity
sample as medium severity. The best-trained models from
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TABLE 2. Results in terms of accuracy and Kappa metric for all the classification models tested using the data pre-processing cases (i)-(iii). The
improvement concerning the error rate of the nonlinear models compared to the linear ones are 90%, 63%, and 67% for (i) full mode separation,
(ii) mode separation in transmission, and (iii), respectively. When we compare the best models for each mode separation cases (i)-(iii), we have for the
error rate 67% improvement in case (i). We can see by the results that the nonlinear models with full mode separation strategy perform better.

TABLE 3. Performance metrics for the best cases of each mode
separation. Rates such as the TPR and FPR are depicted for each class
and considering a macro and micro average. Case (i) obtains the best
rates in every class and in both types of average considered.

cases (ii) and (iii) missed two additional samples, stemming
from the low severity class and the high severity one. It is
important to compare the CMs rates in order to average
values from all the classes. Table 3 depicts the True Positive
Rate (TPR) and False Positive Rate (FPR) from all the classes
and, also, displays two types of average. The macro average
considers a simple average of the results from all classes,
while the micro average takes into account the true positives,
false positives, true negatives, and false negatives of each
individual class. The latter is more adequate to unbalanced
datasets which is the current situation. As we can see, case

(i) has the greatest TPR in every class and every type of
average as well as the lowest FPR. Cases (ii) and (iii) have
similar results as expected, since both models missed samples
from the same classes. Finally, one can also observe the
ROC curves and AUC for the best cases in Fig. 12. ROC
curves for each class and micro and macro averages are
shown in Fig. 12(a) to 12(c) representing cases (i) to (iii),
respectively. It is important to mention that the closer the
AUC is to 1, the better. The lower its value is, the closer the
curve is to a random classifier (AUC ≈ 0.5, represented by
the dotted black diagonal line). Case (i) is shown to have
the best AUC in all classes, with the exception of the high
severity. Case (ii) obtained considerablyworse results overall.
Looking at Fig. 12(d), we can observe themicro averageAUC
from every case overlapped. When considering the AUC and
ROC metrics, case (i) still yields the best performance. This
indicates that the mode conversion phenomenon, and the con-
sequent mode-mixing of converted modes, indeed produce
received signals that are more complex to analyse. When the
modes are fully separated, the analysis is simplified and better
results may be achieved as we have shown.

Concerning the tuning of the architecture of the models,
no specific number of neurons or number of layers generally
obtains the best results. However, according to the best mode
separation, case (i), a single layer with 10 neurons, and an
MLP with three hidden layers with 50 or 100 neurons are the
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FIGURE 11. CMs for the best cases in all mode separations. (a) case (i),
(b) case (ii), and (c) case (iii). Notice that cases (ii) and (iii) present similar
CMs.

best architectures to adopt, obtaining the best mean accuracy
and the best single accuracy respectively. The train results
are mostly greater than the test results in all cases. This is
expected since the data used is in fact the same utilized to
train the model, that is, the simulated signals.

Lastly, regarding the Kappa coefficient, all the models
showed at least, reasonable results. All results were greater
than 0.5, which validates the fairness of the models. Look-
ing at the linear model accuracy, one can conclude that the
results are not satisfactory when compared to the nonlinear
models based on MLPs, regardless of the pre-processing
cases (i)-(iii). We kept the results of the linear model, to com-
pare the MLP to a baseline and illustrate some of the difficul-
ties with the present case study. In the following, we check
the results of the regression models for defect estimation.

B. REGRESSION RESULTS
Concerning the results achieved by the regression models,
the outcome is reported in Table 4. Case (iii) presents the best
R2 and AUAC, respectively, as 0.9089 and 0.9356, while the
mean AUAC falls in a range from 0.84 to 0.90. The archi-
tecture has a major role in the mean R2, as different MLPs
imply a higher standard deviation for this metric. Case (ii)
reports results slightly different from case (iii). The best R2

is 0.8953 and the best AUAC corresponds to 0.9285. In case
(i) signals, results are far superior to the ones attained by (ii)
and (iii), especially whenwe address themean results of AUC
and R2. Results show, once again, that the mode separation
only in transmission is not sufficient to improve ML results.
Mode-mixing originated from signals’ interactions with the
defects still occurs, regardless of if a single guided-wave
mode is excited. Therefore, full mode separation is the only

FIGURE 12. ROC curves for the best models from all mode separation
cases. Boxes (a), (b), and (c) present the ROC curves and AUC for all
classes jointly with their micro and macro averages for the cases (i), (ii),
and (iii), respectively. Box (d) presents the micro average ROC curves and
AUC of all the mode separation cases. The micro average is the most
adequate in this case since the testing dataset is unbalanced.

separation procedure that actually facilitates the supervised
learning action. The mean R2 achieved 0.8196, while the
mean AUC reached 0.9222. The best AUAC of the signals
is equivalent to 0.9486 and the best R2 is equal to 0.9211.
The linear regression gave poor results when compared to
the ones that originated from the MLPs, regardless of the
mode separation. When we look at the architecture hyper-
parameters, it is observed that different specific numbers of
neurons and hidden layers are the most adequate for each
case. However, the best results are obtained with case (i),
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TABLE 4. Results in terms of R2 and AUAC for all the regression models tested using the data cases (i)-(iii). Looking at the best R2 and AUAC, case
(i) obtained the greatest result, 0.9211 and 0.9486 respectively. Once again, another indication that the nonlinear models with full mode separation
achieve the greatest performance.

FIGURE 13. Best test results for true versus predicted response. Note that
results of case (i), achieved by the MLP { 10 10 10 }, are closer to the
dashed line, which represents ideal prediction (R2 = 1).

an MLP with 100 neurons jointly with 3 hidden layers. The
train results are greater than the test oneswhich is as expected,
remembering that the same occurred in the aforementioned
classification results.

TheR2 metric and its performance is highlighted in Fig. 13.
The correlation between prediction and true response is
observed, and the best cases of all the datasets are presented.
It is notable how case (i) results, obtained in the {10 10 10}
MLP architecture, are closer to the ideal prediction, R2 = 1,
which is shown by the dashed black line. The closer the data
is to the line, the higher the R2. The AUAC of the best cases

FIGURE 14. Best test results for the AUAC of the best cases from all
(i)-(iii) mode separations. One can infer that the curve achieved by case
(i) is the one closer to unity.

of the three datasets are also presented in Fig. 14. Notice
how the AUAC of (i) encompasses most of the graph, while
(ii) and (iii) cover a smaller area.

Finally, the classification results can be compared to the
regression results. When comparing the error rate between
the classification accuracy and the regression AUAC, it is
seen that the case (i) dataset achieves a 67% error rate
improvement, while the error rate of the regression AUAC
drops by 30% with the mode separation treatment. In the
classification, the data is classified as three different outputs
(low, medium, and high severity), whilst regression treats the
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data as a continuous output. The choice on which approach is
used depends on whether fine monitoring must be employed
or categorical output is sufficient. In the former, a regression
would be recommended, whereas, in the latter, a classification
strategy suffices. The regression strategy did yield reasonable
results,R2 = 0.9211. Results have shown that a 97.06% accu-
racy is found using classification with full mode separation.

VI. CONCLUSION
In this paper, ultrasonic signals due to the interaction of
SH ultrasonic guided waves with corrosion-like defects in
plates were applied to supervised ML algorithms for defect
estimation. In the frequency-thickness product range con-
sidered for this work, only either the SH0 or SH1 modes
can propagate. They are thus mixed in the time and fre-
quency domain. Additionally, the individual behaviour of
each mode is complex when interacting with the defect,
which includes mode-conversion. These characteristics moti-
vated the application of ML techniques. Moreover, we have
investigated whether the estimation of the defect is facili-
tated and improved if one can remove the effect of mode-
mixing. A baseline-free data-driven model was proposed and
different damage indices for the defect, such as continuous
and discrete, were studied. Both numerical and experimental
signals were used, such that the former served to train the
model and the latter to test it. We have shown that the full
mode separation strategy jointly with the SHM methodology
proposed, has indeed significantly improved the performance
of the data-driven models, since mode-mixing, mainly of
converted modes, produced complicated signals. When full
mode separation is applied, the error rate decreases by 30%
and 67% in the regression-based and classification-based
models, respectively. It is also worth noting that based on the
obtained results, the adopted strategy of restricting simulated
data to train the model and the use of experimental data to
validate it was an effective approach, and that the fidelity
of the simulated signals, shown in Fig. 4 to 9, was high
enough not to impose significant feature loss when compared
to experimental signals.

The results achieved demonstrate the potential this new
technique of analysing SH wave modes interacting with
defects to determine defect size. Future work suggestions
would include comparing the mode separation performance
with more parameters, such as varying the position and length
of the defect, which is already discussed in the literature
with pipes and plates [37], [61]. Another area for future
work is the feature engineering process. Additional feature
extraction methodologies such as principal component anal-
ysis (PCA) [62], linear and non-linear auto-regressive models
[63], and frequency-based features [59] can be explored.
In addition, the importance and ranking of the features can
also be explored [64], [65]. By using decision tree methods
or random cross-validation with different features combi-
nations, one could rank the most important features, and
use these to inform the approach taken, saving time and
providing simpler solutions. From the ML viewpoint, a data

augmentation approach [41], [66] can be addressed for both
the simulated and experimental datasets of this work. Another
approach would be addressing each of the mode separation
datasets with automatic feature extraction - in other words
DL techniques [39] that could use for example convolutional
neural networks [40], [41].

REFERENCES
[1] M. Clough, M. Fleming, and S. Dixon, ‘‘Circumferential guided wave

EMAT system for pipeline screening using shear horizontal ultrasound,’’
NDT E Int., vol. 86, pp. 20–27, Mar. 2017.

[2] A. Demma, P. Cawley, M. Lowe, A. G. Roosenbrand, and B. Pavlakovic,
‘‘The reflection of guided waves from notches in pipes: A guide for
interpreting corrosion measurements,’’ NDT E Int., vol. 37, no. 3,
pp. 167–180, Apr. 2004.

[3] S.Wang, S. Huang,W. Zhao, and Z.Wei, ‘‘3Dmodeling of circumferential
SH guided waves in pipeline for axial cracking detection in ILI tools,’’
Ultrasonics, vol. 56, pp. 325–331, Feb. 2015.

[4] A. Demma, P. Cawley, and M. Lowe, ‘‘Scattering of the fundamental shear
horizontal mode from steps and notches in plates,’’ J. Acoust. Soc. Amer.,
vol. 113, no. 4, pp. 1880–1891, Apr. 2003.

[5] M. Hirao and H. Ogi, ‘‘An SH-wave EMAT technique for gas pipeline
inspection,’’ NDT E Int., vol. 32, no. 3, pp. 127–132, Apr. 1999.

[6] H. Zhang, Y. Du, J. Tang, G. Kang, and H. Miao, ‘‘Circumferential SH
wave piezoelectric transducer system for monitoring corrosion-like defect
in large-diameter pipes,’’ Sensors, vol. 20, no. 2, p. 460, Jan. 2020.

[7] W. Zhang, H. Hao, J. Wu, J. Li, H. Ma, and C. Li, ‘‘Detection of minor
damage in structures with guided wave signals and nonlinear oscillator,’’
Measurement, vol. 122, pp. 532–544, Jul. 2018.

[8] D. J. Thomson, N. Durham, K. Abdel-Hadi, C. A. McKenzie, and
J. Zhao, ‘‘Acoustic guided wave techniques for detecting corrosion dam-
age of electrical grounding rods,’’ Measurement, vol. 147, Dec. 2019,
Art. no. 106858.

[9] Y. Wang and X. Li, ‘‘Propagation characteristics and defect sensitivity
analysis of guided wave from single excitation source in elbows,’’ IEEE
Access, vol. 7, pp. 75542–75549, 2019.

[10] W. J. Staszewski, Structural Health Monitoring Using Guided Ultrasonic
Waves. Heidelberg, Germany: Springer, 2004, ch. 6, pp. 117–162.

[11] L. Mallet, B. C. Lee, W. J. Staszewski, and F. Scarpa, ‘‘Structural health
monitoring using scanning laser vibrometry: II. Lamb waves for damage
detection,’’ Smart Mater. Struct., vol. 13, no. 2, pp. 261–269, Feb. 2004.

[12] S. Pavlopoulou, W. J. Staszewski, and C. Soutis, ‘‘Evaluation of instan-
taneous characteristics of guided ultrasonic waves for structural quality
and health monitoring,’’ Struct. Control Health Monitor., vol. 20, no. 6,
pp. 937–955, Jun. 2013.

[13] K. Dziedziech, L. Pieczonka, P. Kijanka, andW. J. Staszewski, ‘‘Enhanced
nonlinear crack-wave interactions for structural damage detection based on
guided ultrasonic waves,’’ Struct. Control Health Monitor., vol. 23, no. 8,
pp. 1108–1120, Aug. 2016.

[14] M. Mitra and S. Gopalakrishnan, ‘‘Guided wave based structural health
monitoring: A review,’’ Smart Mater. Struct., vol. 25, no. 5, May 2016,
Art. no. 053001.

[15] R. Radecki, Z. Su, L. Cheng, P. Packo, and W. J. Staszewski, ‘‘Mod-
elling nonlinearity of guided ultrasonic waves in fatigued materials using
a nonlinear local interaction simulation approach and a spring model,’’
Ultrasonics, vol. 84, pp. 272–289, Mar. 2018.

[16] B. S. Ben, B. A. Ben, K. A. Vikram, and S. H. Yang, ‘‘Damage identifica-
tion in composite materials using ultrasonic based Lamb wave method,’’
Measurement, vol. 46, no. 2, pp. 904–912, Feb. 2013.

[17] X. Qin, S. Zhang, C. Xu, J. Xie, G. Chen, and G. Song, ‘‘Detection of
surface breaking cracks filled with solid impurities using a baseline-free
NEWS-TR method,’’ IEEE Access, vol. 8, pp. 56908–56920, 2020.

[18] M. Hirao and H. Ogi, EMATs for Science and Industry: Noncontacting
Ultrasonic Measurements. Amsterdam, The Netherlands: Springer, 2003.

[19] R. Carandente, J. Ma, and P. Cawley, ‘‘The scattering of the fundamental
torsional mode from axi-symmetric defects with varying depth profile in
pipes,’’ J. Acoust. Soc. Amer., vol. 127, no. 6, pp. 3440–3448, Jun. 2010.

[20] A. C. Kubrusly, M. A. Freitas, J. P. von der Weid, and S. Dixon, ‘‘Inter-
action of SH guided waves with wall thinning,’’ NDT E Int., vol. 101,
pp. 94–103, Jan. 2019.

VOLUME 9, 2021 40847



M. G. DE CASTRO Ribeiro et al.: ML-Based Corrosion-Like Defect Estimation

[21] A. Dhutti, S. A. Tumin, W. Balachandran, J. Kanfoud, and T.-H. Gan,
‘‘Development of ultrasonic guidedwave transducer for monitoring of high
temperature pipelines,’’ Sensors, vol. 19, no. 24, p. 5443, Dec. 2019.

[22] B. Vogelaar, G. Priems, K. Bourgonje, and M. Golombok, ‘‘Time-lapse
acoustic monitoring of deteriorating pipes,’’ Struct. Health Monitor.,
vol. 18, nos. 5–6, pp. 1995–2003, Nov. 2019.

[23] S. Mariani, S. Heinlein, and P. Cawley, ‘‘Compensation for temperature-
dependent phase and velocity of guided wave signals in baseline subtrac-
tion for structural health monitoring,’’ Struct. Health Monitor., vol. 19,
no. 1, pp. 26–47, Jan. 2020.

[24] G. Shkerdin and C. Glorieux, ‘‘Lamb mode conversion in a plate with
a delamination,’’ J. Acoust. Soc. Amer., vol. 116, no. 4, pp. 2089–2100,
Oct. 2004.

[25] L. Moreau, M. Castaings, B. Hosten, and M. V. Predoi, ‘‘An orthogonality
relation-based technique for post-processing finite element predictions of
waves scattering in solid waveguides,’’ J. Acoust. Soc. Amer., vol. 120,
no. 2, pp. 611–620, Aug. 2006.

[26] Nurmalia, N. Nakamura, H. Ogi, and M. Hirao, ‘‘Detection of shear hori-
zontal guided waves propagating in aluminum plate with thinning region,’’
Jpn. J. Appl. Phys., vol. 50, no. 7, 2011, Art. no. 07HC17.

[27] Nurmalia, N. Nakamura, H. Ogi, M. Hirao, and K. Nakahata, ‘‘Mode
conversion behavior of SH guided wave in a tapered plate,’’ NDT E Int.,
vol. 45, no. 1, pp. 156–161, Jan. 2012.

[28] Nurmalia, N. Nakamura, H. Ogi, and M. Hirao, ‘‘Mode conversion and
total reflection of torsional waves for pipe inspection,’’ Jpn. J. Appl. Phys.,
vol. 52, no. 7, 2013, Art. no. 07HC14.

[29] A. Pau, D. V. Achillopoulou, and F. Vestroni, ‘‘Scattering of guided shear
waves in plates with discontinuities,’’ NDT E Int., vol. 84, pp. 67–75,
Dec. 2016.

[30] A. Pau and D. V. Achillopoulou, ‘‘Interaction of shear and Rayleigh–Lamb
waves with notches and voids in plate waveguides,’’ Materials, vol. 10,
no. 7, p. 841, 2017.

[31] A. C. Kubrusly, J. P. von der Weid, and S. Dixon, ‘‘Experimental and
numerical investigation of the interaction of the first four SH guided wave
modes with symmetric and non-symmetric discontinuities in plates,’’ NDT
E Int., vol. 108, Dec. 2019, Art. no. 102175.

[32] P. A. Petcher and S. Dixon, ‘‘Mode mixing in shear horizontal ultrasonic
guided waves,’’Nondestruct. Test. Eval., vol. 32, no. 2, pp. 113–132, 2017.

[33] C.-T. Ng, ‘‘On the selection of advanced signal processing techniques
for guided wave damage identification using a statistical approach,’’ Eng.
Struct., vol. 67, pp. 50–60, May 2014.

[34] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY,
USA: Springer, 2013.

[35] H. Salehi and R. Burgueño, ‘‘Emerging artificial intelligence methods in
structural engineering,’’ Eng. Struct., vol. 171, pp. 170–189, Sep. 2018.

[36] G. Dib, O. Karpenko, E. Koricho, A. Khomenko, M. Haq, and L. Udpa,
‘‘Ensembles of novelty detection classifiers for structural health monitor-
ing using guided waves,’’ Smart Mater. Struct., vol. 27, no. 1, Nov. 2017,
Art. no. 015003.

[37] J. García-Gómez, R. Gil-Pita, M. Rosa-Zurera, A. Romero-Camacho,
J. Jiménez-Garrido, and V. García-Benavides, ‘‘Smart sound processing
for defect sizing in pipelines using EMAT actuator based multi-frequency
Lamb waves,’’ Sensors, vol. 18, no. 3, p. 802, Mar. 2018.

[38] S. Yaacoubi, M. E. Mountassir, M. Ferrari, and F. Dahmene, ‘‘Measure-
ment investigations in tubular structures health monitoring via ultrasonic
guided waves: A case of study,’’ Measurement, vol. 147, Dec. 2019,
Art. no. 106800.

[39] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[40] J. Melville, K. S. Alguri, C. Deemer, and J. B. Harley, ‘‘Structural damage
detection using deep learning of ultrasonic guided waves,’’ in Proc. AIP
Conf., 2018, vol. 1949, no. 1, Art. no. 230004.

[41] V. Ewald, R. M. Groves, and R. Benedictus, ‘‘DeepSHM: A deep learning
approach for structural health monitoring based on guided Lamb wave
technique,’’ in Proc. Sensors Smart Struct. Technol. Civil, Mech., Aerosp.
Syst., vol. 10970, Mar. 2019, Art. no. 109700.

[42] D. F. Hesser, G. K. Kocur, and B. Markert, ‘‘Active source localization in
wave guides based onmachine learning,’’Ultrasonics, vol. 106, Aug. 2020,
Art. no. 106144.

[43] H. Sun, L. Peng, S. Wang, S. Huang, and K. Qu, ‘‘Development of
frequency-mixed point-focusing shear horizontal guided-wave EMAT for
defect inspection using deep neural network,’’ IEEE Trans. Instrum.Meas.,
vol. 70, pp. 1–14, 2021.

[44] A. J. Dawson, J. E. Michaels, and T. E. Michaels, ‘‘Isolation of ultrasonic
scattering by wavefield baseline subtraction,’’Mech. Syst. Signal Process.,
vols. 70–71, pp. 891–903, Mar. 2016.

[45] A. J. Croxford, G. Konstantinidis, B. W. Drinkwater, and P. D. Wilcox,
‘‘Strategies for guided-wave structural health monitoring,’’ Proc. Roy.
Soc. A, Math. Phys. Eng. Sci., vol. 463, no. 2087, pp. 2961–2981,
Nov. 2007.

[46] Y. Lu and J. E. Michaels, ‘‘A methodology for structural health monitoring
with diffuse ultrasonic waves in the presence of temperature variations,’’
Ultrasonics, vol. 43, no. 9, pp. 717–731, Oct. 2005.

[47] J. L. Rose, Ultrasonic Guided Waves in Solid Media. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[48] A. C. Kubrusly, M. A. Freitas, J. P. von der Weid, and S. Dixon, ‘‘Dataset
on reflection and transmission coefficients of ultrasonic shear horizon-
tal guided waves in plates with wall thinning,’’ Data Brief, vol. 21,
pp. 2179–2191, Dec. 2018.

[49] S. Hill and S. Dixon, ‘‘Frequency dependent directivity of periodic perma-
nent magnet electromagnetic acoustic transducers,’’ NDT E Int., vol. 62,
pp. 137–143, Mar. 2014.

[50] S. Dixon, P. A. Petcher, Y. Fan, D. Maisey, and P. Nickolds, ‘‘Ultrasonic
metal sheet thickness measurement without prior wave speed calibration,’’
J. Phys. D, Appl. Phys., vol. 46, no. 44, Nov. 2013, Art. no. 445502.

[51] P. A. Petcher, S. E. Burrows, and S. Dixon, ‘‘Shear horizontal (SH) ultra-
sound wave propagation around smooth corners,’’ Ultrasonics, vol. 54,
no. 4, pp. 997–1004, Apr. 2014.

[52] D. Alleyne and P. Cawley, ‘‘A two-dimensional Fourier transform method
for the measurement of propagating multimode signals,’’ J. Acoust. Soc.
Amer., vol. 89, no. 3, pp. 1159–1168, Mar. 1991.

[53] S.Wang, S. Huang, Q.Wang, Y. Zhang, andW. Zhao, ‘‘Mode identification
of broadband Lamb wave signal with squeezed wavelet transform,’’ Appl.
Acoust., vol. 125, pp. 91–101, Oct. 2017.

[54] G.-F. Zhai and Y.-Q. Li, ‘‘Single SH guided wave mode generation
method for PPM EMATs,’’ Chin. Phys. B, vol. 29, no. 5, May 2020,
Art. no. 054303.

[55] P. Khalili and F. Cegla, ‘‘Excitation of single-mode shear-horizontal
guided waves and evaluation of their sensitivity to very shallow crack-like
defects,’’ IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 68, no. 3,
pp. 818–828, Mar. 2021.

[56] A. C. Kubrusly, M. A. Freitas, J. P. von der Weid, and S. Dixon, ‘‘Mode
selectivity of SH guided waves by dual excitation and reception applied
to mode conversion analysis,’’ IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 65, no. 7, pp. 1239–1249, Jul. 2018.

[57] G. Qiu, X. Song, X. Zhang, J. Tu, and T. Chen, ‘‘Pure SH1 guided-
wave generation method with dual periodic-permanent-magnet electro-
magnetic acoustic transducers for plates inspection,’’ Sensors, vol. 19,
no. 13, p. 3019, Jul. 2019.

[58] C. Farrar and K.Worden, Structural HealthMonitoring: AMachine Learn-
ing Perspective. Hoboken, NJ, USA: Wiley, 2013.

[59] Y. Ying, J. H. Garrett, I. J. Oppenheim, L. Soibelman, J. B. Harley, J. Shi,
and Y. Jin, ‘‘Toward data-driven structural health monitoring: Application
of machine learning and signal processing to damage detection,’’ J. Com-
put. Civil Eng., vol. 27, no. 6, pp. 667–680, Nov. 2013.

[60] M. F. Møller, ‘‘A scaled conjugate gradient algorithm for fast supervised
learning,’’ Neural Netw., vol. 6, no. 4, pp. 525–533, Jan. 1993.

[61] S. Liu, C. Du, J. Mou, L. Martua, J. Zhang, and F. L. Lewis, ‘‘Diagnosis
of structural cracks using wavelet transform and neural networks,’’ NDT E
Int., vol. 54, pp. 9–18, Mar. 2013.

[62] D. Sen, A. Aghazadeh, A. Mousavi, S. Nagarajaiah, R. Baraniuk, and
A. Dabak, ‘‘Data-driven semi-supervised and supervised learning algo-
rithms for health monitoring of pipes,’’ Mech. Syst. Signal Process.,
vol. 131, pp. 524–537, Sep. 2019.

[63] M. G. de Castro Ribeiro, A. C. Kubrusly, and H. V. H. Ayala, ‘‘Damage
detection in composite plates with ultrasonic guided-waves and nonlinear
system identification,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Dec. 2020, pp. 2039–2046.

[64] L. Hussain, W. Aziz, I. R. Khan, M. H. Alkinani, and J. S. Alowibdi,
‘‘Machine learning based congestive heart failure detection using feature
importance ranking of multimodal features,’’ Math. Biosci. Eng., vol. 18,
no. 1, pp. 69–91, 2021.

[65] M. V. García and J. L. Aznarte, ‘‘Shapley additive explanations for NO2
forecasting,’’ Ecol. Informat., vol. 56, Mar. 2020, Art. no. 101039.

[66] T. Hu, T. Tang, andM. Chen, ‘‘Data simulation by resampling—Apractical
data augmentation algorithm for periodical signal analysis-based fault
diagnosis,’’ IEEE Access, vol. 7, pp. 125133–125145, 2019.

40848 VOLUME 9, 2021



M. G. DE CASTRO Ribeiro et al.: ML-Based Corrosion-Like Defect Estimation

MATEUS GHEORGHE DE CASTRO RIBEIRO
was born in 1994. He received the B.S. degree in
mechanical engineering from the Federal Univer-
sity of Juiz de Fora, Juiz de Fora, Brazil, in 2018,
and the M.S. degree in mechanical engineering
from the Pontifical Catholic University of Rio de
Janeiro (PUC-Rio), Rio de Janeiro, Brazil, in 2020.
He is currently working as an Research and Devel-
opment Engineer with the Laboratorio de Sensores
a Fibras Opticas (LSFO), Department of Mechan-

ical Engineering, PUC-Rio, where his main work is focused on solutions for
structural health monitoring based on ultrasonic guided waves jointly with
signal processing and machine learning techniques. His research interests
include machine learning, ultrasonic waves, signal processing, and structural
health monitoring.

ALAN CONCI KUBRUSLY received the degree in
electronics and telecommunications engineering,
the M.S. degree in electrical engineering, and the
Ph.D. degree in mechanical engineering from the
Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), in 2009, 2012, and 2016, respectively.
He has been a Faculty Member with the Centre
for Telecommunication Studies, PUC-Rio, since
2016. His current research interests include appli-
cations of ultrasound in nondestructive evaluation,

guided waves, signal processing, and instrumentation.

HELON VICENTE HULTMANN AYALA was born
in 1986. He received the B.S. degree in control
and automation engineering from the Pontifical
Catholic University of Paraná (PUCPR), in 2009,
the dualM.S. degree in advanced robotics from the
Warsaw University of Technology and the Univer-
sity of Genoa, in 2012, and the Ph.D. degree in
industrial and system engineering from PUCPR,
in 2016. He worked as an Undergraduate Intern
with ZF Friedrichshafen AG, Germany, a Product

Development Engineer with Embraer SA (Brazilian aircraft manufacturer),
and a Research Staff Member with the IBM Research Brazil Laboratory.
In 2018, he joined the Department of Mechanical Engineering, Pontifical
Catholic University of Rio de Janeiro, where he is currently serving as
a Professor Adjunto. His research interests include system identification,
advanced control, and machine learning.

STEVE DIXON is currently the Director of the
Centre for Industrial Ultrasonics (CIU), Univer-
sity of Warwick, Coventry, U.K. He worked in
the area of ultrasonics for 30 years and has pub-
lished over 130 peer-reviewed journal articles. His
research interests include ultrasonicmeasurements
of material properties, non-contact ultrasound,
non-destructive evaluation and testing, ultrasonic
transduction, ultrasonic measurement of metallur-
gical microstructure, eddy current and electromag-

netic inspection, and thermographicNDT.He held four research Fellowships,
and is also a Co-Founding Member of the U.K. Research Centre for NDE
(RCNDE).

VOLUME 9, 2021 40849


