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ABSTRACT Collision imminent steering is an automotive active safety feature designed to perform an
evasive lane change maneuver when a forward collision cannot be avoided by braking alone. Previous work
developed a nonlinear one-level model predictive controller to perform such amaneuver in a straight highway
environment and at high speeds. In this article, a new formulation is presented that extends this capability
to curved roads. The formulation includes a drivable tube concept, within which the maneuver is allowed to
push the vehicle to its limits of handling, but only if the controller deems it necessary. Numerical simulation
results showcase aggressive lane change maneuvers on curved roads at high speeds, allowing for both inside
and outside lane changes, as well as single and double lane change maneuvers in a shorter distance than
braking.

INDEX TERMS Advanced driver assistance systems, intelligent vehicles, autonomous vehicles, collision
avoidance, nonlinear control systems.

I. INTRODUCTION
Collision imminent steering (CIS) is an automotive active
safety feature designed to perform an evasive lane change
maneuver in the event that the host vehicle detects a forward
collision cannot be avoided by braking alone. Performing
a CIS maneuver can be a challenging task for a controller
especially at high speeds, because such a maneuver may
require pushing the vehicle to its limits of handling, often a
nonlinear vehicle dynamics regime [1].

Model predictive control (MPC) provides a formalism
to take such limits into account explicitly while simulta-
neously optimizing the trajectory and control commands
for CIS [1]–[6]. Such simultaneous treatment of trajectory
planning and tracking is referred to as a one-level archi-
tecture [7]. This architecture is in contrast to the two-level
architecture, where the trajectory planning and tracking prob-
lems are solved separately [8], [9]. Although various meth-
ods exist to establish a reference trajectory for a two-level
architecture to handle curved roads, such as using the cen-
ter line [10], variable lateral deviation limits defined by
splines [11], the drivable tube [8] or safe corridor [9]
concepts, and others [12]–[15], such pre-defined trajectories
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do not guarantee safety and drivability at the limits of han-
dling in a CIS maneuver. Therefore, a one-level architecture
is preferred in this work due to its established advantages of
not requiring a reference trajectory, and providing a control
command consistent with the planned trajectory, both critical
in the CIS context for safety and drivability.

One-level MPC formulations are available in the literature
for lane change maneuvers. For example, in [4], a one-level
linearMPC controller enforces a lane change in straight roads
by restricting the allowable lateral position in the road at
different longitudinal positions. The resulting controller then
finds an optimal state trajectory and corresponding control
trajectory that minimizes a threat assessment. By using a
different optimality condition compared to path following,
the controller is not reliant on a state trajectory provided a pri-
ori, and can incorporate online sensor information to generate
a safer trajectory. However, this lane change formulation
is dependent on a low speed application using a linearized
dynamics model, exploiting the fact that for straight roads the
lane change criteria are natively known a priori.

In the context of a CIS maneuver, various nonlinear
one-levelMPC controllers are designed to change lanes while
operating at the limits of handling. In [2], the controller
is designed to minimize the longitudinal distance traveled
when departing the host lane in a straight road scenario. This
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distance represents a threshold, beyond which no safe lane
change can occur. In [1], a similar controller is developed
based on the same lane change constraints, but seeks to
minimize the peak tire slip for a fixed obstacle distance.
While both controllers can incorporate the nonlinear system
response, the controller formulation again exploits character-
istics of a straight road, and thus cannot be natively extended
to curved roads.

For curved road environments, the work in [16] designs
a nonlinear one-level MPC controller to mimic human input
while maintaining lateral deviation limits in curved roads.
This controller is able to relax a path following optimal-
ity condition in favor of mirroring human input as best as
safely possible. However, the lateral deviation information is
separate from obstacle information, requiring multiple con-
straints for each obstacle encountered, growing the optimiza-
tion problem. Additionally, the controller is designed for a
vehicle kinematics model, which does not ensure drivability.

Thus, a gap is identified in the state of the art that this
article aims to fill. The intended CIS application must obey
both obstacle avoidance and lane boundary limits on curved
roads. The drivable tube concept efficiently contains this
information, but existing controllers that employ this concept
are two-level and thus require a reference trajectory, which
is not preferred for CIS at high speeds due to aforementioned
reasons. Instead, it is desirable to employ a one-level architec-
ture for CIS at high speeds, and there does not currently exist a
formulation to natively incorporate the drivable tube to handle
curved roads. With regards to the state of the art discussed,
the salient contributions of this article are as follows.

1) Development of a nonlinear one-level MPC formula-
tion for CIS at high speeds on curved roads that directly
incorporates the online environmental and obstacle
information without the need of an intermediate ref-
erence trajectory. Resulting CIS trajectory solutions
ensure optimality and drivability.

2) Demonstration of the robustness of the controller for-
mulation to plant-prediction model mismatch due to
lower model fidelity in MPC.

3) Demonstration of the flexibility of the controller for-
mulation to different types of CIS maneuvers, specifi-
cally, inside and outside lane changes, and single and
double lane changes.

A preliminary version of this controller was presented in a
conference [17], which did not consider the plant-prediction
model mismatch, and only evaluated a single outside lane
change. This article extends these preliminary results to close
the loop with a full order plant model for evaluating robust-
ness to model mismatch, analyzes two additional scenarios
beyond the single outside lane change, and compares the con-
troller to a two-level path following approach. A curved road
study is presented in [18] focusing on adaptation to address
uncertainty in the coefficient of friction, but the details of
the problem formulation are not given. The present paper
presents and discusses the underlying optimization problem
structure in detail.

The remaining sections of the article proceed as follows.
Sec. II describes a simulated highway environment, a drivable
tube concept for collision avoidance, and the plant model
used in numerical simulation. Sec. III describes the prediction
model used in the MPC formulation, as well as generates the
objective function and constraints used in the underlying opti-
mization problem. Sec. IV catalogs numerical simulations for
an outside single lane change, inside single lane change, out-
side double lane change, and comparison to a two-level path
following controller. Sec. V highlights key design aspects
of the controller, simulated performance metrics, as well as
limitations.

II. HIGHWAY ENVIRONMENT AND HOST VEHICLE
MODEL
ACISmaneuver is intended to take place if the vehicle detects
it cannot avoid collision by braking alone. As such, a CIS
maneuver is most likely to take place at high speed when the
braking distance is long. The maximum highway speed in the
USA reaches 85 MPH in Texas, though most states peak at
70 MPH. Hence, the simulated environment considers a host
vehicle traveling at 35 m/s, representing about 78 MPH or
126 KPH.

As an expansion on existing CIS algorithms for straight
road cases, a curved highway section is considered. At 35
m/s, the tightest radius turn allowed byU.S. highway building
codes is 1, 500 m [19]; however, a rturn = 500 m curve is
considered to emphasize the effects of road curvature and to
generate a more extreme maneuver for consideration.

The simulated highway is a three lane highway sectionwith
the center lane following a right hand curve of constant 500 m
curvature. Per highway construction code, the lanes are set at
the minimum allowable lane width of wlane = 3.7 m [20],
again to generate a challenging scenario for the host vehicle.
The host vehicle starts in the center lane with a state trajectory
that follows the steady state road curvature.

To motivate a CIS maneuver, there is a stopped vehicle
blocking the center lane at some fixed distance ahead. Iden-
tifying how far ahead the obstacle resides is left to other sys-
tems, but for simulation purposes the obstacle is 47 m ahead,
as Sec. IV shows this is too short for braking, but within the
window of opportunity for CIS. To avoid collision, the host
vehicle must leave the starting center lane and change into the
left or right lane for an outside or inside lane change, respec-
tively. A CIS maneuver is considered safe if it completely
leaves the starting lane before passing the stopped obstacle
and remains inside the new lane’s boundaries thereafter.

This high level description of a safe CIS maneuver is
captured through a drivable tube concept for the MPC con-
troller. The drivable tube represents the topographical area
the host vehicle can reside within without causing a colli-
sion [21]. For the described scenario, as long as the perime-
ter of the host vehicle remains inside the lane boundaries,
the maneuver is considered collision-free and safe. However,
the MPC controller discussed later uses a reduced 3 degrees-
of-freedom (3 DoF) bicycle model and only considers the
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vehicle’s center of gravity (CG). Thus, a constricted drivable
tube is generated with considerations to the vehicle’s CG.

The optimality of a safety critical maneuver is not necessar-
ily measured by path following accuracy, but can depend on
some other metric. To allow the controller themost flexibility,
the drivable space is allowed to expand as large as safely
possible, leaving it up to the controller to find the best path.
Consider first an outside single lane change in a right turning
curve (Fig. 1). The drivable space is the starting center lane
and the left lane prior to passing the obstacle, then constricted
exclusively to the left lane beyond the obstacle.

FIGURE 1. The host vehicle, red, encounters the stationary vehicle, blue.
For a CIS to the outside lane, the safe area for the plant model is shown
in teal, and drivable tube for the 3 DoF prediction model is shown in the
blue parallelograms. The vehicle is allowed to use the entire center and
left lane prior to passing the obstacle, then is restricted to left lane after
passing.

In practice, the drivable tube would be generated online
from sensor fusion, potentially leveraging vision based cam-
eras, LiDAR, radar, ultrasonic sensors, and/or high definition
maps. For the simulated highway environment, the drivable
tube is generated geometrically.

The drivable tube is a slight constriction from the lane
boundaries. It is constricted by the vehicle half width wv

2 and
safety buffer σ . The safety buffer represents an additional
conservative constriction, because the vehicle rotation is not
considered when evaluating the lane boundary limits. In prac-
tice, a safety buffer of σ = 0.5m avoids corner clipping when
passing the obstacle [2]. However, alternative formulations to
address corner clipping exist, such as co-linear circles along
the longitudinal length [16], or explicitly monitoring each
corner [15].

For an outside lane change, the right tube boundary follows
a radius of rturn−

wlane
2 +

wv
2 +σ prior to crossing the obstacle,

then rturn +
wlane
2 +

wv
2 + σ thereafter. The left tube boundary

follows rturn +
3 wlane

2 −
wv
2 − σ throughout.

In contrast, for an inside lane change, the left tube bound-
ary follows a radius of rturn +

wlane
2 −

wv
2 − σ before passing

the obstacle, and rturn −
wlane
2 −

wv
2 − σ thereafter. The right

tube boundary follows a constant rturn −
3 wlane

2 +
wv
2 + σ

throughout.
The drivable tube is stored as a sequence of matched pairs,

where each pair consists of a left and right x–y position
of the tube edge. Consecutive pairs in the sequence march
along the road to form the drivable tube. The four points
contained in a matched pair and the consecutive matched pair
in the sequence form a parallelogram. The fore edge of one
parallelogram is the same as the aft edge of the next sequential
parallelogram. The MPC controller expects the drivable tube
to be stored as this sequence of connected parallelograms and
will solve the optimization problem to keep the prediction

model’s CG inside the parallelogram’s left and right edges.
A key benefit of leveraging the drivable tube in this formu-
lation is the flexibility on concavity; the drivable tube makes
no assumption on strictly concave or convex representation,
only that it is not self-intersecting.

The lengths of the parallelograms are flexible depending on
the external system used to establish them. Parallelograms’
lengths do not need to be consistent, but parallelograms of
zero length should be avoided. Shorter parallelogram lengths
allow for a more accurate road description, but have a higher
memory requirement for MPC solving. The scenario herein
uses matched pairs spaced approximately 5 m down the
road. Immediately before the obstacle, the parallelogram is
smoothed by blending the consecutive parallelograms, pre-
venting a zero length parallelogram that can lead to numerical
difficulty. An example drivable tube constructed from the
parallelogram, as well as the safe drivable space for the host
vehicle, can be seen in Fig. 1.

The host vehicle is modeled as a luxury sedan, as this
class of vehicles is more likely to feature latest technologies.
Besides CIS, one such feature is active rear-wheel steering,
which allows the rear wheels to be steered by an on-board
computer independent of driver input and front wheel manip-
ulation. Hence, the MPC controller is designed to leverage
active rear wheel steering, if available, as leveraging rear
wheel steering has been shown to improve vehicle perfor-
mance [1].

The host vehicle model is a 14 DoF dynamics model that
is validated against CarSim’s F-class sedan, a high fidelity
driving simulator [22]. The underlying equations are omitted
for brevity, but parameters used in the 14 DoF model are
detailed in Table 1. While some parameters are published by
the vehicle manufacturer, others are estimated by normalized
trends [23].

TABLE 1. 14 DoF Plant Parameters.

The plant model uses the nonlinear Pacejka tire force
model in (1), with parameters and variables defined
in Table 2. Eq. (1) uses the lateral tire slip ratio s, which
must be calculated at each of the tire contact points. These
tire parameters are calculated to provide a peak tire force of
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TABLE 2. Tire Properties.

0.8g at approximately 12◦ slip and 10% force relaxation at
high slip angles, where g is the gravitational acceleration.

Fy = µFzσy
σy = − sin (C arctan (B s))

s =
Vy
Vx

(1)

With the drivable tube defined and host vehicle model
established, the CIS controller is developed in the next
section.

III. PREDICTION MODEL AND OPTIMAL CONTROL
PROBLEM FORMULATION
MPC controllers leverage a model of the plant system to
predict the future system response for a candidate control
trajectory. To that end, the 3 DoF bicycle model has been
shown to be sufficiently accurate in high speed obstacle
avoidance applications, provided the obstacle is not exces-
sively wide [24]. Thus, a 3 DoF bicycle model is used in this
work, as well.

The 3 DoF prediction model states, control inputs, and
equations of motion are given as follows.

x =



global x position [m]
global y position [m]
vehicle yaw [rad]

longitudinal velocity [m/s]
lateral velocity [m/s]

yaw rate [rad/s]
front steering angle [rad]
rear steering angle [rad]


=



x
y
ψ

u
v
ω

δf
δr


(2)

u =
[
front steering rate [rad/s]
rear steering rate [rad/s]

]
=

[
δ̇f
δ̇r

]
(3)

dx
dt
=



u cos(ψ)− v sin(ψ)
u sin(ψ)+ v cos(ψ)

ω

0
−u ω + Fy,f cos(δf )+Fy,r cos(δr )

m
Fy,f cos(δf )lf−Fy,r cos(δr )lr

Izz
δ̇f
δ̇r


(4)

In (4), the time derivative of longitudinal velocity is
set to zero. This is because both the prediction and plant
models lock the longitudinal velocity. Per US highway testing
standards, the double lane change maneuver, also known as
‘‘moose avoidance maneuver,’’ does not allow acceleration or
braking [25]. In simulations, longitudinal acceleration due to
yawing under non-zero lateral velocity has been negligible.

The prediction model uses the same Pacejka tire force
model as the plant and with the same coefficients. However,
the prediction model is a single track bicycle model, thus
the tire slip is only evaluated at the front and rear axle
locations. The parameters used in the prediction model are
listed in Table 3.

TABLE 3. 3 DoF Model Parameters.

The system starts at an initial state x0 and is numerically
simulated forward using Runge-Kutta fourth order (RK4)
integration with a zero-order control hold. The zero-order
control hold represents a constant control rate as input for
a set block of time and is chosen to simulate loop timing
control architectures typically found on distributed automo-
tive systems. For this problem, an MPC time horizon of 3.2 s
has been sufficiently long for the vehicle to steadily change
lanes without excessive computational complexity. The time
horizon is broken into constant control intervals of 50 ms,
corresponding to the optimization problem of solving 64 con-
secutive front and rear control rates to obey safety criteria.
At each closed-loop iteration, two sequential constant con-
trol rates are applied to the plant. The prediction model is
integrated at 10 ms time steps, as smaller time steps show
negligible accuracy in the state prediction.

For a candidate control trajectory of 64 control inputs
of 50 ms duration integrated at 10 ms time steps, there are
n = 320 discrete integration states in the prediction trajec-
tory. Each of the states are evaluated against the following
safety criteria, which form the constraints of the optimization
problem.

For the numerical simulations herein, the initial state x0
is the steady state solution in the starting lane. This can be
calculated by evaluating the steady state conditions in (4) for a
given u0 and curvature. Solving (4) for front and rear steering
architectures is achieved by setting the rear steering angle to
δr = 0, as this avoids a continuum of steady state conditions
and scales to the front-only architectures directly.

In practice, the initial state is taken from on-board sensor
information.

A. BOUNDARY CONSTRAINTS
In Sec. II, a drivable tube is generated, which represents
the left and right edges between which the CG of the
3 DoF prediction model can safely reside. Using vector alge-
bra, the relevant parallelogram is identified efficiently, and

VOLUME 9, 2021 39295



J. Wurts et al.: CIS at High Speeds on Curved Roads Using One-Level Nonlinear MPC

corresponding left and right boundary constraints are eval-
uated. Consider Fig. 2 showing an integration state located
inside a parallelogram.

FIGURE 2. An integration state xi is shown as residing inside a
parallelogram. Using various vector cross products, the algorithm
identifies when an integration state has left one parallelogram and
traversed into the next. Once the active parallelogram is identified,
the right and left boundary constraints are evaluated again with vector
logic.

As the MPC controller integrates the state forward in
time, the algorithmmust identify which parallelograms in the
drivable tube are applicable to that state. To find the active
parallelogram, the vector cross product of the vehicle position
with the fore parallelogram boundary is calculated.

Consider thematched pair (rk , lk ), representing the (k+1)th

matched pair in the drivable tube sequence and the fore
parallelogram boundary of the k th parallelogram. For the
ith integration state in the prediction horizon, the vehicle’s
position vector relative to the right boundary in the matched
pair is given by −→rkxi. To find the active k th parallelogram,
k is increased until the direction of the cross product of
the relative position vector with the fore boundary vector
changes to negative, which is tested numerically by checking
if (−−−→rk−1xi ×

−−−−−→
rk−1lk−1)(

−→rkxi ×
−→
rk lk ) < 0 is satisfied. This fast

vector algebra allows efficient scaling to the GPU hardware
used to simulate the vehicle and evaluate the fitness and
feasibility criteria.

With the active parallelogram k identified, the left and
right lane boundaries are evaluated. The left lane boundary
constraint is evaluated by the cross product of the relative
position vector with left edge vector,

−→
lkxi ×

−−−→
lk lk−1. This

constraint is formed such that if the cross product is less than
zero, the vehicle integration state is to the right of the left
lane boundary, which is valid. It is also important to note the
validity of the constraint is based on the sign. This allows
the valid limits of the constraint, being in reference to 0, to be
established at the start of theMPC problem and avoids having
to first seed a trajectory.

Likewise, the right lane boundary is generated by the cross
product of the right edge vector with the relative position
vector, −−−→rkrk−1 ×

−→rkxi. Here, the order is swapped to maintain
a cross product of less than or equal to zero to be valid in
convention with constraint formulation. Together, the left and
right lane boundary constraints form (5) and (6).

dl =
−→
lkxi ×

−−−→
lk lk−1 ≤ 0 (5)

dr =
−−−→rkrk−1 ×

−→rkxi ≤ 0 (6)

Note, the constraint is formed as at least C2 smooth within
the active parallelogram. This helps with solving the numeri-
cal optimization problem using gradient based optimization,
improving convergence time [26].
Further, the left and right boundary constraints are eval-

uated based on the instantaneous integration state in the
environment at each iteration during the nonlinear optimiza-
tion solve, in contrast to other methods that use an initial
seeding or reference seeding for lateral displacement limits.
This ensures the left and right constraints are relevant at the
converged optimal trajectory, as well as all the intermedi-
ate trajectories, and not just the first candidate trajectory.
Although the active parallelogram can change during the opti-
mization, resulting in a discontinuity as the relevant left and
right boundary limits change, this has not led to convergence
difficulty or instability in testing.
Next, the vehicle stability criteria are developed.

B. VEHICLE STABILITY: TIRE SLIP
The Pacejka tire formula captures the nonlinear tire relaxation
at high slip. This is a dangerous regime to operate in, because
the tire force has low response to steering input, which can
result in quickly losing control of the vehicle [27]. Addition-
ally, this relaxation can be difficult for gradient based opti-
mization, as the tire force response has a gradient inversion
above the peak slip, causing local minima.
To ensure vehicle stability, the optimization problem

restricts the peak allowable tire response. The stable tire
region can be categorized by differentiating (1) with respect
to the slip ratio, giving dFy

ds > 0. However, evaluating this
constraint, and appropriate sensitivities, is computationally
expensive in practice. Instead, analysis has shown the vehicle
stability can be maintained by directly restricting the slip
angle to some αpeak, which depends on the tire properties,
which might vary between front and rear [1]. For the tire
properties used in this example, offline analysis of expected
vehicle states shows setting αpeak to within 8◦ ensures stabil-
ity while retaining approximately 98% of the available tire
force.

This constraint is formulated on the front and rear wheels
as follows and is enforced at every integration state in the
prediction trajectory.

αf =

∣∣∣∣δf − arctan
(
v+ ωlf

u

)∣∣∣∣ ≤ αpeak (7)

αr =

∣∣∣∣δr − arctan
(
v− ωlr

u

)∣∣∣∣ ≤ αpeak (8)

The tire slip only forms half of the vehicle stability consider-
ation. Next, the terminal stability is developed.

C. VEHICLE STABILITY: TERMINAL STATE
The MPC controller is structured with terminal state con-
straints that leave the vehicle settled in the next lane at the end
of the maneuver. These terminal state constraints are struc-
tured to avoid initiating a maneuver that the MPC controller
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initially sees as viable, but becomes infeasible later as the
prediction horizon recedes.

If the final state in the prediction trajectory is settled in
the intended lane, then that candidate trajectory performs a
complete CIS maneuver, and the controller is safe to begin
taking action. This ensures recursive feasibility under ideal
assumptions, because the terminal state at the end of the
first closed-loop iteration ensures drivability thereafter. The
terminal state, xstable, is derived from road information.
For the sample case, the terminal state would be a right

hand turn following a radius of rlane = rturn + wlane for the
outside lane change, and rlane = rturn − wlane for the inside
lane change. Similar to the initial state, the terminal stable
state for the new radius is calculated by evaluating the steady
state conditions from (4).

In practice, this approach would require some form of
estimate for road curvature at the end of the maneuver, which
supports a look-up table or alternative estimate for the stable
states.

One challenging element of terminal state constraint is
establishing a priori the location of final state in the predic-
tion horizon. While it is easy to describe the desired position
as centered in the next lane, it is difficult to state how far down
the lane the final state is, and correspondingly, how much the
vehicle needs to be rotated relative to its starting position. For
this implementation, the terminal (xt , yt ) position is set based
on the radius from the curve center (xc, yc), not explicitly road
position. The terminal vehicle rotation angle is set based on
(xt , yt ) position, and calculated such that the vehicle velocity
is tangent to the road center.

In practice, an online estimator can generate a localized
curve to implement the radius and tangential constraints.
Alternatively, the drivable space boundaries can be artificially
contracted to mandate the vehicle is in the center of the lane
far in the prediction horizon.

It is not essential that the terminal position constraints are
as accurate as possible. The terminal position constraints are
enforced far in the prediction horizon where the vehicle has
themost control authority and ability to correct in closed-loop
implementation.

Based on this discussion, the terminal position (xt , yt ) and
rotation ψt are structured as follows.

(xt − xc)2 + (yt − yc)2 = r2lane (9)

ψt = arctan
(
yt − yc
xt − xc

)
− arctan

(
vt
u0

)
(10)

There are three unknowns in (9) and (10); this allows the
solver to numerically satisfy the unknown distance traveled
internally. The complete terminal state is structured as fol-
lows.

xstable =
[
xt yt ψt u0 vt ωt δf ,0 0

]T (11)

D. VEHICLE PHYSICAL LIMITS
The last set of constraints on the MPC problem is to capture
the physical limits of the vehicle. Specifically, the front and
rear wheels are both steering angle and steering rate limited.

For this vehicle, the front wheels have a simulated max-
imum steering angle limit of ±35◦ and a maximum rate
limit of ±70 deg/s. For rear wheel steering capable vehicles,
the rear wheels typically do not have as strong control author-
ity, and their steering angle range and rate are comparatively
reduced. For this vehicle, a simulated limitation on the rear
wheel angle is set at ±10◦ and rate limited to ±35 deg/s.
To model a front-only steering vehicle, the rear wheels’ angle
limit is set at 0◦.
Like the other constraints, the steering rate limits are

enforced at every integration point in the prediction horizon.
Because the optimization problem is structured such that
the design variables are the steering rates, the physical rate
limitations are enforced as bounds on the design variables.

Additionally, the steering angle is a linear function of
the design variables, and for certain numerical optimizers,
it might be handled differently. While it does not change the
structure of the numerical optimization problem presented
here, this subtle difference should be considered for optimiza-
tion convergence timing purposes.

Hitherto, all the constraints for the optimization problem
are built. Any candidate trajectory that obeys all these con-
straints is considered feasible. Next, the objective function is
formulated to determine the optimal trajectory.

E. OBJECTIVE FUNCTION: MINIMUM SLIP
Recall in Sec. I, many of the obstacle avoidance algorithms
are designed as path following formulations. In the context
of CIS, following a predefined reference path does not nec-
essarily correlate to the safest trajectory. Instead, a different
metric is referenced.

In [3], the safety metric is to perform the maneuver in the
shortest amount of time. In [2], the safety metric is designed
to leave the starting lane in the shortest distance. In [4]
and [16], the safety metric is to minimize a threat metric and
deviation from human input, respectively.

While leaving the starting lane in the shortest distance
can provide an informative metric for how late to intervene,
it might not be the best in practice. If the vehicle decides it
will intervene, it can be beneficial to intervene immediately
instead of delaying.

If the vehicle detects it cannot brake in time and must
perform a lane change, one option is to still perform the
minimum distance lane change, thus maximizing the avail-
able gap between where the vehicle is leaving the lane and
the obstacle. However, this would be an overly aggressive
maneuver, as the minimum distance lane change will always
load the vehicle tires to the maximum allowable force [2].

Alternatively, the minimum slip formulation is used to
avoid pushing the vehicle to its limits of handling unnec-
essarily, while still being capable of it if need be [1]. The
minimum slip formulation is intended to minimize the peak
tire slip experienced in themaneuver, and hencemaximize the
additional tire force available. This allows themost additional
control authority for mid-maneuver corrections in closed
loop, and results in a minimally aggressive lane change.
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Minimizing a maximum function can be difficult in gradi-
ent based optimization. Thus, the Kreisselmeier-Steinhauser
(KS) constraint aggregation function is used to minimize the
tire slip in a gradient smooth fashion. Details on the properties
of theKS function and important considerations are discussed
in [1].

Using the instantaneous tire slip at every integration point
similar to (7) and (8), the KS aggregation is generated as
follows.

KS(α, ρslip) =
1
ρ
ln

(
n∑
i=1

eρslipαi
)

(12)

Here, n is the number of integration points, and α is a vector
containing the front and rear instantaneous tire slip angles at
every integration state in the prediction horizon. In testing,
a constraint aggregation parameter of ρslip = 264 has been
shown to be stable [1].

With the objective and constraints defined, the numerical
optimization problem can be formulated.

F. NUMERICAL OPTIMIZATION PROBLEM
Combining the objective functions and constraints described
above, the numerical optimization problem is formulated as
follows.

min
u

KS(α, ρ)

subject to dl,i ≤ 0 ∀ i ∈ [1, n]

dr,i ≤ 0 ∀ i ∈ [1, n]

αf ,i ≤ 0 ∀ i ∈ [1, n]

αr,i ≤ 0 ∀ i ∈ [1, n]

(xt )i − (xstable)i = 0 ∀ i ∈ [4, 8]

(xt − xc)2 + (yt − yc)2 = r2lane

arctan
(
yt − yc
xt − xc

)
=
π

2
− arctan

(
vt
u0

)
|δ•(ti)| ≤ δ•,max ∀ ti
|δ̇•(ti)| ≤ δ̇•,max ∀ ti (13)

where • in the subscripts in the last two inequalities is a place-
holder for f for front and r for rear tires. Note, the system
dynamics are not explicitly stated, as they are incorporated
through the RK4 integration.

Solving the resulting numerical optimization problem
gives a control trajectory over a fixed horizon that is predicted
to perform the CIS maneuver. Any feasible trajectory is con-
sidered safe, and the optimal trajectory is considered safest.

Next, various highway scenarios are constructed to evalu-
ate the performance of the CIS controller.

IV. NUMERICAL SIMULATIONS AND RESULTS
The optimal control problem (13) is solved using IPOPT [28]
on a 2017 HP Omen desktop with an Intel i7-7700k CPU
and NVidia GTX 1080 discrete GPU. Solutions converge
in approximately 55 ms using a custom GPU-accelerated
multiple shooting implementation. Eq. (13) is presented as a

single shooting trajectory simulation, but variations between
single shooting, multiple shooting, and collocation based
implementations have not resulted in variations in the con-
verged solution, rather differences in solution time. While the
examples chosen herein are compatible with real-time imple-
mentation, it is not possible to guarantee the full nonlinear
formulation will converge in real-time for all cases.

The plant vehicle and environment simulation is modeled
in Python, and relevant CIS controller information is passed
into IPOPT. When parsing the plant vehicle and environ-
ment, the simulation passes the exact vehicle states to the
controller, bypassing sensor noise and data acquisition, but
still retaining plant deviation from the prediction model due
to model fidelity mismatch. The model mismatch is sufficient
for the plant model to violate constraints if control commands
are optimized once at the beginning and provided in open-
loop. However, the 100 ms closed loop timing shows to be
sufficiently robust.

The first two simulations begin with an obstacle fixed 47 m
down the road and the vehicle traveling at 35 m/s. As a base-
line, the approximate braking distance is estimated by calcu-
lating the required lateral acceleration to remain in the center
lane, then calculating the peak deceleration available so as
to not exceed the 0.8g coefficient of friction limit. For this
scenario, the simulated vehicle requires approximately 79 m
for limit braking. In practice, vehicles are capable of deceler-
ating faster due to aerodynamic drag; however, humans prefer
to decelerate less aggressively at around 0.4g [19], requiring
169 m to brake.

A. OUTSIDE LANE CHANGE
Consider first an outside lane change, representing a change
into the left lane for a right hand turn. Fig. 3 shows four
concurrent plots highlighting different aspects of the maneu-
ver. The first plot shows the x − y trajectory through the lane
corridor, second plot shows the front and rear wheel angles,
third plot shows the front and rear slip angles, and fourth plot
shows the front and rear steering rate commands.

This is a comparatively easymaneuver, because the vehicle
begins by relaxing the tires and opening up the radius to the
turn. Although the vehicle does turn to the left initially, this is
a brief maneuver immediately followed by a long sweeping
right turn. The vehicle holds the turn, just leaving the starting
lane when passing the obstacle, and then just coming to the
edge of the outer lane limit before stabilizing for the end of
the maneuver.

This single lane change to the outside reaches a peak tire
slip of approximately 4.6◦, representing about 86% of the
available tire force. Because the objective is structured to
minimize the peak tire slip, there is no penalty for holding the
vehicle at that peak slip for prolonged periods of time. As a
result, the optimal solution turns left to maximum tire slip
of +4.5◦, then begins the sweeping turn to the right, during
which the vehicle is loaded to a tire slip of −4.6◦.
There is some deviation from the peak slip later in the

trajectory for two reasons. First, the controller acts in the
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FIGURE 3. A CIS maneuver to the outside lane. The vehicle identifies an
obstacle 47 m away, and begins a quick left turn followed by a long
sweeping right turn into the next lane.

receding horizon, and minimizes the peak slip from that
point forward. Even though the vehicle reaches a higher peak
slip earlier in the maneuver, the closed-loop solution will
only push to the peak slip if necessary. Second, the discrep-
ancy between the 3 DoF prediction model and the 14 DoF
plant model becomes apparent, causing small perturbations
throughout the maneuver. The 14 DoF plant includes higher
order dynamics, such as suspension response, which the
controller cannot account for, but does correct for in the
closed-loop through feedback.

Additionally, the importance of the computational speed
becomes apparent from this maneuver. When the host vehi-
cle identifies the obstacle at some distance into the future,
it does not know if a safe CIS maneuver exists, thus does not
immediately take action. Instead, the CIS controller begins
solving for the maneuver, seeding the trajectory as where it
thinks the host vehicle will be 100 ms into the future. As a
result, there is no control intervention over the first 100 ms,
effectively bringing the obstacle 3.5 m closer.

B. INSIDE LANE CHANGE
Next, consider an inside lane change, where the vehicle
changes into the right lane for a right hand turn. Fig. 4 shows
the same four concurrent plots as the previous example.

This is a comparatively difficult maneuver, because the
vehicle must make a more aggressive turn-in than the starting
trajectory. The inside CIS maneuver begins with a stronger
turn to the right to begin the lane change, holds that tighter
turn for a stretch, then makes a left turn to countersteer.
Similar to the outside lane change, the vehicle just changes
lanes when passing the obstacle to the inside, and travels to
the edge limit of the inside lane. The maneuver finishes with
the vehicle settled in the inside lane at the new steady state
terminal trajectory.

FIGURE 4. For a CIS maneuver to the inside lane, the vehicle must quickly
further load the tires to a tighter turn, which is comparatively more
aggressive. Additionally, just prior to passing the obstacle, the host
begins an equally aggressive countersteer to avoid turning too far into
the inside lane.

One difference with the inside lane change is the counter-
steering takes place just before crossing the obstacle. This
is because the MPC controller can see that the right lane
boundary constraint will be active, andmust avoid turning too
far to the right. This can be difficult for a non-professional
human driver, as identifying the perfect moment to initiate
the countersteer is not trivial. However, the MPC accounts
for the future states, and makes the appropriate corrections in
a timely manner.

Additionally, the nature of the necessary countersteer
emphasizes the need for a one-level MPC architecture.
It would be difficult to identify an optimal drivable x − y
reference trajectory a priori requiring such a countersteer,
and would be challenging to develop a controller to safely
follow said reference trajectory as it drives at the edges of the
drivable tube and requires operating at the limits of handling.

This inside lane change requires a peak tire slip of approx-
imately 7.2◦, corresponding to approximately 95% of the
available tire force. While the CIS controller is able to find a
maneuver to perform the inside lane change for the obstacle
at 47 m away, this is approaching the minimum distance for
which an inside CIS maneuver can be feasible.

While the outside lane change is less aggressive than the
inside lane change, potential obstacle occlusion is not consid-
ered in this work, which might prevent ensuring the outside
lane is safe for a lane change. Hence, a double lane change
maneuver may be necessary, which is investigated next.

C. OUTSIDE DOUBLE LANE CHANGE
In the previous simulations, the vehicle performs a single lane
change, where the terminal position is in either the outer or
inner lane. Alternatively, a double lane change maneuver can
be conceived, where the vehicle must return to the starting
lane after passing the obstacle. In this scenario, the center lane
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is blocked between 57 m and 67 m, and the outside lane is
blocked at 97m. Thus, the host vehicle must leave the starting
lane within 57 m, return to the center lane before 97 m but
after 67 m, and must settle in the original lane at the end of
the trajectory. The resulting four concurrent plots can be seen
in Fig. 5.

FIGURE 5. An outside double lane change CIS maneuver. The vehicle
identifies an obstacle 57 m away, but must find a trajectory that returns
to the initial lane on completion.

Similar to the outside single lane change, the outside dou-
ble lane change begins with a quick turn to the left and
then a sweeping turn to the right. However, based on the
obstacle distance and outer lane restriction at 97 m, the vehi-
cle countersteers comparatively sooner. In contrast to the
single lane change, the double lane change does not reach
the outer lane boundary, but rather must begin re-entering the
starting lane as soon as it passes the obstacle.

The nonlinear MPC is able to properly account for the
outer lane restriction, and identifies that the least aggressive
maneuver requires an earlier countersteer to allow the vehicle
to settle in the starting lane in time. Further, it is difficult to
generate an optimal reference trajectory a priori that mini-
mizes peak tire excitation, highlighting the importance of a
one-level architecture.

For this example, the outer lane is artificially restricted
at 97 m, mandating a double lane change. If this restriction
were not in place, and either the outer lane or starting lane
are equally acceptable terminal lanes, then a higher level
controller would have to evaluate the target terminal lane.
This can be challenging for the controller, because based
on the obstacle distance and prediction horizon, it cannot be
guaranteed there is sufficient travel distance after the obstacle
for the host to return into the starting lane. This can be
problematic, as the MPC cannot identify sufficient space to
return, and can only conclude it is an infeasible problem.
Thus, the decision coming from a higher level controller to
perform a single lane change versus double lane change must
be conscious of this corner case. In general, for maneuvers

that require the vehicle to operate up to the limits of handling,
the CIS controller provides an alternative option to collision.
If the controller fails to converge on a feasible safe trajectory,
the maneuver is not initiated, as the controller cannot guaran-
tee that its actions would avoid the imminent collision safely.

Based on these evaluations, it is concluded that the CIS
controller developed with regards to a drivable tube can adapt
to various types of CIS maneuvers. Thus, this controller can
expand to variations in the vehicle models, road curvatures,
speeds, and highway settings.

D. COMPARISON TO TWO-LEVEL PATH FOLLOWING
The controller developed in Sec. III incorporates specific
considerations for curved highways within a one-level archi-
tecture. Due to these specific considerations, it is difficult
to make a direct comparison to state-of-the-art controllers,
as differences in factors such as intended speed, application
environment, and obstacle distance prevent a fair comparison.
Instead, to capture a common approach in the literature,
the developed one-level controller is modified to create a
two-level path following CIS maneuver as a benchmark.

First, an input reference path is generated from the drivable
tube. The drivable tube is constructed in a topographical x–y
space, thus the reference trajectory and controller fitness are
based on x–y information. As the drivable tube is assumed to
be readily available, the reference trajectory is obtained as a
sequence of line segments connecting the middle of the tube
by averaging the vertices [rk , lk ], resulting in rlk = pk . For
the example, in Sec. IV-A, the reference trajectory splits the
middle and outside lanes prior to passing the obstacle, then
transitions to the middle of the outside lane thereafter.

To generate the path following controller, the fitness met-
ric in (13) is modified to minimize the squared lateral dis-
placement along the reference. Similar to how the lateral
displacement constraints are generated in (5), (6), this fitness
formulation avoids having to index the reference position to
each discrete integration point in the prediction horizon. The
path following objective function is calculated as follows,
leveraging the active quadrangle k and associated nomencla-
ture same as (5), (6).

J (x) =
n∑
i=1

(
(−→pkxi)y(

−−−−→pkpk−1)x−(
−→pkxi)x(

−−−−→pkpk−1)y
|
−−−−→pkpk−1|

)2

(14)

This leverages the scalar vector rejection of the discrete inte-
gration position on the reference trajectory, where (·)x and
(·)y represent the x and y components of a given vector (·),
respectively.

This objective function strictly tries to reduce the squared
orthogonal displacement of the state trajectory on the ref-
erence trajectory without consideration of the relative ψ
orientation or other vehicle states. This updated objective
function is substituted into (13), and the resulting controller
is applied to the outside single lane change. Fig. 6 shows a
path following CIS maneuver for an obstacle at 55 m away.
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FIGURE 6. Two-level path following CIS maneuver results. In this
simulation, the vehicle is allowed to use both front steering and
independent active rear steering. The reference trajectory splits the
drivable tube in the middle, as seen by the black line in the first subplot.
The controller is able to perform the lane change maneuver, but performs
a double left steer-right steer maneuver prior to passing the obstacle to
better track the transition quadrangle.

While the controller still obeys the strict lateral lane bound-
ary constraints, the controller is allowed to and actively oper-
ates at the dynamic handling limits of the vehicle. This can be
seen in the third subplot, where the front and rear slip angles
approach the maximum allowable limit multiple times. How-
ever, the shape of the tire slip plot is critically different from
the slip minimization controller, as seen in the slip sequence
prior to passing the obstacle. In the path following controller,
the minimum deviation solution requires the turning to the
left then the right, and again to the left and to the right as
passing the obstacle. This is to best track the middle of the
drivable tube throughout the entire maneuver, still subject to
the drivable tube constraints. In the first left-right sequence,
the vehicle is pushed to the middle of the drivable space, then
the second left-right sequence sets the vehicle up to track the
transition quadrangle as well as complete the lane change
maneuver when passing the obstacle.

This is a critical distinction compared to the minimum slip
controller. With the path following objective, the controller
will always push the prediction model to operate at the limits
of handling, as this condition will better track the reference
trajectory. While the predicted maneuver is considered safe
by the same CIS hard constraints, this is an undesirable oper-
ating condition for closed-loop control due to the discrepan-
cies between the prediction model and the plant. While both
the minimum slip controller and path following controller
are subject to the same model discrepancies, because the
latter controller pushes the vehicle to its limits of handling,
it has no buffer to avoid accidentally pushing the plant beyond
the peak allowable tire slip. Indeed, this has occasionally
occurred in simulation, where in mid-maneuver iterations the
prediction model is initialized at the measured x0 with a tire

slip exceeding the tire slip constraint, thus resulting in an
infeasible trajectory and optimization convergence failure.

Overall, the path following controller formulation encour-
ages the vehicle to operate at the peak limits of handling,
which is an undesirable operating condition that should only
be entered if absolutely necessary for safety. While there are
many options to modifying the path following controller such
as additional states in the reference trajectory, modifications
to generating the reference trajectory, and controller action
penalty, these are all tuning parameters and cannot universally
address all CIS maneuver conditions. Thus, it is advisable to
avoid the path following controller formulation in favor of the
minimum slip formulation.

V. CONCLUSION
In this work, a new one-level nonlinear MPC controller is
developed and shown to solve the CIS maneuver planning
and control problem on curved roads. The controller is pro-
vided a drivable tube, within which the prediction model is
considered safe. The MPC controller then attempts to find
a steering sequence that keeps the vehicle entirely within the
drivable tube as a hard safety constraint while obeying vehicle
dynamics and stability constraints.

A curved highway section is constructed to evaluate dif-
ferent CIS options. By adjusting the drivable tube as input
to the controller, the controller is capable of performing both
inside and outside lane changes, with double and single lane
change options. Numeric simulations show both inside and
outside CIS scenarios can change lanes in less distance than
emergency braking. Based on the expandability of the driv-
able tube formulation, it is reasonable to expect that scenarios
with different highway speeds, road curvature, and lane sizing
from the example case shown herein can be directly incor-
porated into the existing framework. Further, various driving
scenarios such as straight-curve-straight sections, variable
curvature, and inflecting curvature can be captured by the
drivable tube concept and natively used in the CIS controller.

One simplification made for simulation purposes is
between the interaction of the prediction model with the
plant model and environment. The simulated plant model and
environment are known exactly and the relevant information
directly transcribed into the form the prediction model is
expecting. As a result, difficult-to-measure parameters such
as coefficient of friction, lateral velocity, and lane boundaries
are known exactly and passed into the prediction model and
controller.

To address this simplification, future directions should
evaluate the performance of the CIS controller under sensor
noise and parameter uncertainty. The results herein, which
show aCISmaneuver can safely avoid collisionwhen braking
alone is not an option, are based on accurate knowledge
of the plant vehicle and environment. For physical vehicle
implementation, it is important to validate the closed-loop
iterations of the CIS controller retain the safety metrics, and,
if need be, make adjustments to the formulation to account
for uncertainty.
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