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ABSTRACT This article describes the preparation of a clinical study on a connected medical device
dedicated to facilitate the prevention of lymphedema for patients treated for breast cancer after axillary
lymph node dissection (ALND), and to alert them of any manifestation or resurgence in order to prevent
its aggravation. A simulator of the entire physical process called digital twin has been developed for this
purpose, in a hardware-in-the-loop framework. Statistical calibration of its input parameters, by stochastic
inversion and using sensitivity studies, led to establish one or more measurement protocols allowing to
capture the signal on a mobile device (phone or tablet) and to detect signal breaks that are physically
significant. The measured signal makes it possible to report quickly on the worsening of the patient’s
condition and to warn the therapists within a very reasonable period of time. The general methodology of this
work seems to us to be easily reproducible in the preparation of clinical studies of other types for connected
devices, which aim to develop measurement protocols limiting the often significant cost of such studies. One
of the immediate prospects of this work is the initiation of a clinical study on different patients who have
been treated by surgery for breast cancer, after improving the robustness of the design of the prototype to
take into account the uncertainties affecting the measurements.

INDEX TERMS Breast cancer, lymphedema, connected device, design of experiments, digital twin,
hardware-in-the-loop, measurement protocol, Monte Carlo, sensitivity analysis, simulation, stochastic inver-
sion, uncertainty modeling.

I. INTRODUCTION
The development of wearable, connected health devices is
growing considerably in parallel with the autonomous com-
puting capabilities of mobile information reception and man-
agement tools. Any certification of these objects is based
on a certification of the protocol for their use and on a
scientific proof of its efficiency and safety. Such evaluations
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require clinical studies to be engaged [1]. Because such
studies are often extremely costly, it is of major interest to
pre-determine the conditions of use to be tested in order to
avoid exploring unnecessary situations. Consider as an exam-
ple a non-invasive connected object, such as a bracelet, watch
or headband. The need to carry out physical signal denoising
under possibly non-stationary conditions requires the prior
availability of as many measurements as possible. We can
assume that the bracelet is worn once a day on a regular basis,
several times a day, or continuously during the day, or even
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night and day. Despite being non-invasive, such a device
imposes a certain discomfort on the user and its use can cause
anxiety, especially when the phenomenon it seeks to detect
can occur at any time, is quick, and potentially irreversible if
not detected and treated on time. In practice, a trade-off has
to be made between acceptance and optimisation for medical
needs.

This type of situation characterizes, among other things,
the problem of detecting the occurrence and measuring the
growth of arm lymphedema, a frequent secondary effect
of ALND [2]. It is associated with an important public
health problem, for which no preventive solution exists today,
apart from microsurgical healing, specific exercises and
risk-reducing behaviors such as avoiding taking blood pres-
sure or wearing tight clothing [3], [4]. Indeed, lymphedema
can occur abruptly and very randomly up to two years after
surgery, and significantly impact a patient’s life [5]. Numer-
ous techniques have been proposed to detect the onset of lym-
phedema, or even to quantify its evolution (generally globally,
by measuring the evolution of the volume of upper limb).
Themost common is themethod of anatomical measurements
made with a tape measure (Section II), possibly accompanied
with observations on the tactile aspects of the skin [6]. Some
alternative approaches have been proposed, based on water
displacement [7]–[9] (that suffer from high uncertainties and
can be invasive), optoelectronics [10], infrared laser per-
ometry [11], tissue tonometry [12], or absorptiometry [13],
among others. Independently of their precision, they remain
difficult, if not impossible, to use in the context of outpatient
treatment, as they usually require extensive equipment and
very controlled conditions. In the current context where tech-
nological development allows the production of computer
vision algorithms that can be embedded, this type of approach
seems promising for daily and repeated measurements of arm
variations [14], [15], allowing for the detection of such an
onset. However, at the present time, no truly portable solution
seems to be really available, while the problem of unde-
tected serious lymphedema remains unresolved by medical
advances [16].

This problem motivated the development of a non-invasive
connected device allowing the detection and monitoring of
arm lymphedema. Such an approach imposes to verify the
capacity to use the signal produced by the device, and to
solve the difficulties posed by the selection of one or several
measurement protocols. This article deals precisely with the
latter issue.

Indeed, to our knowledge there is no generic method-
ology to efficiently design measurement protocols for a
clinical study on such connected devices. An empirical
approach would be to perform various measurements on
healthy subjects, in order to design more appropriate pro-
tocols. Even considering an ‘‘agile’’ approach to the design
of such measurement protocols [17], the costs involved
in trial and modification would certainly be very high,
and extrapolation beyond the pre-tested perimeter remains
hazardous.

Outside the medical field, this type of problem is not
new; in the industrial world, computer-aided design (CAD)
is commonly used to generate models to represent a physi-
cal phenomenon. The dynamics underlying this phenomenon
(for example, fluid mechanics) are modelled using theoretical
tools such as partial differential equations. Estimated at the
centroids of a CAD mesh, the resulting numerical model
defines a digital twin of the phenomenon of interest, i.e. a sim-
ulator that can generate, based on physical input parameters,
a wide variety of physically plausible situations [18]. These
simulations are valuable tools for design and guide real-world
testing procedures. In the case of simulating the response of
a human body to certain stresses, numerical biomechanical
models based on Behaviour Centred Design (BCD) princi-
ples [19] and finite elements methods are increasingly used to
design and test protective equipment (such as airbags, protec-
tive suits, etc.) [20], [21] or other medical purposes [22], [23].
However, the development of such numerical models is often
extremely costly, and they are sometimes very demanding
in terms of computational resources [23]. Developing such
models, in a so-called hardware-in-the-loop approach [24],
can be prohibitive, if not impossible.

Above all, such models are based on a mechanistic vision
of the world, which is inherently opposed to the purely
data-based (empirical) vision that governs clinical studies and
certification processes.

In certain situations, however, the behaviour of the con-
nected devices depends on a small number of parameters.
Therefore it is possible to rapidly reproduce the hybrid pro-
cess that mixes the physical phenomenon of interest and the
measurement process. The principle of a connected health
device is to capture and send information to a processing tool
(e.g., a smartphone or tablet), which itself will enable dia-
logue with the patient, his or her physician, and possibly trig-
ger recommendations or alerts. A simulation model should
make it possible to convey the numerous noises linked to the
collection and transfer of the measurement to the processing
centre. These specifications particularly differentiate the case
of connected objects to other simulated systems, and require
the implementation of principles inherited from the VVUQ
approach (Verification, Validation and Uncertainty Quantifi-
cation) which has become standard in the exploration and use
of numerical simulation models [25]. Note that, since such
models are not intended to be a direct diagnostic aid, they do
not have to be extremely precise, although their validation,
based on real data, is indispensable. Indeed, these simulation
tools make it possible to test several virtual measurement
protocols and to prioritize those for which a future clinical
study is expected to be of maximum informational gain.

Through the case study of arm lymphedema, this article
therefore presents a methodology adapted to the design of a
measurement protocol for a connected health device. In the
present case, this object is composed of a connected sleeve
and a related digital processing software operated on a smart-
phone [26], [27]. This article will first describe the case study
that motivated this research work (Section II) as well as
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FIGURE 1. Examples of lymphedema. Images collected at the Strasbourg
University Hospital.

the development of a mathematical model of the ‘‘(biologi-
cal stimulus)-(sensor)-(processor)’’ system, whose computer
implementation defines a digital twin (Section III). The sta-
tistical study of this simulation model requires the recalibra-
tion of certain sources of uncertainty based on patient data,
using a stochastic inversion procedure, which is described
in Section V. A sensitivity study is then carried out, which
makes it possible to rank the sources of uncertainty and
to judge the need to carry out measurements on a certain
time scale (Section VI). Finally, several virtual measurement
protocols are tested in Section VII. A discussion section
closes this article, which proposes several avenues for future
research.

II. MOTIVATING APPLICATION: LYMPHEDEMA
A. CONTEXT
Lymphedema is a swelling of the arm caused by an accu-
mulation of lymphatic fluid between the connective tissues,
which can be congenital or (most often) can be induced by
the surgical or radiosurgical treatment of cancer. This pathol-
ogy currently affects more than one hundred million patients
around the world, according to the Lymphatic Education
and Research Network [28]. The present article focuses on
upper limb lymphedema developed after axillary cleaning
during breast cancer treatment (ALND), following a breast
removal operation (see Fig. 1 and [5]). In the situation we
are considering, it can appear on the breast side a few weeks
after axillary cleaning or after a few months if not years.
With physiotherapy, the swelling may be limited, but the
risk of a resurgence is certain when care stops. The progres-
sion from pitting edema to progressive structural distortion
characterizes the natural history of lymphedema, which often
extends over the course of weeks to months but in some
cases years [29]. More precisely, approximately 90% of the

FIGURE 2. Measurement positions and layout of lymphometer sensors.

lymphedema occur during the first 24 months after treatment,
and the remainder occur years to decades later [30]. For this
reason, it is necessary to remain vigilant over time in order to
report the first symptoms as soon as possible, and to monitor
and treat the patient very regularly if lymphedema is reported.

The detection of lymphedema is commonly practiced using
rudimentary means: measurements are taken at certain posi-
tions of the arm, mainly four, shown in Fig. 2, using a tape
measure. According to the procedure used at the Senology
Unit of the Strasbourg University Hospital (HUS), the arm
likely to be impactedmust show a difference in circumference
of at least 2 cm compared to the so-called contralateral arm.
In the early stages, however, it is almost impossible to detect
lymphedema. It should also be noted that certain actions,
which are still relatively unknown, can promote the onset of
lymphedema (for example, sports activities or typing on a
computer keyboard). Late detection does not clearly link the
onset to a certain type of activity, the restriction of which may
help patients.

These detection and monitoring are all the more important
since the effects of lymphedema can be devastating for the
patient, from a clinical as well as psychological or social
point of view [31]. Women undergoing lymphedema have
a degraded quality of life, with significant physical and
psychological consequences [31]. Clinically, the significant
swelling of the limb due to lymphedema reduces mobility
and dexterity, and can cause pain to the patient. It can be
a serious obstacle to normal professional activity, requiring
professional reclassification or even permanent work stop-
page. In 20 to 40% of lymphedema, infectious complications
(erysipelas type, cellulitis) appear, resulting in fever, general
malaise, severe pain and sometimes inflammation. In the
advanced stages, sclerosis appears, causing skin lesions and
alterations of ligaments and tendons. For women with dyed
skin, lymphedema is a source of psychological and social
difficulties: disruption of body image, disruption of identity
landmarks, loss of self-esteem, anxiety (up to depressive
episodes) [32].
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In addition, lymphedema is underrecognized and under-
documented [6], so the currently accepted rates of incidence
and prevalence are underestimated. Estimates of the risk of
lymphedema after breast cancer treatment vary widely from
14 to 40% [33]. The frequency of lymphedema is 15% to 28%
after ALND and 2.5% to 6.9% after a sentinel lymph node
biopsy (SLNB); the frequency may increase to 44% when
the surgical procedure is combined with radiotherapy [34].
There are different risk factors: the number of lymph nodes
removed, external radiotherapy, obesity, mastectomy, differ-
ent physical practices. Obesity is an aggravating factor with
a high prevalence: 75% of patients with lymphedema have
a BMI greater than 40 kg/m2 [35]. Another problem is the
variability in the objectively defined threshold of volume
excess required for diagnosis of lymphedema [34]. Besides,
large uncertainties remain regarding what tools are the most
efficient for disease detection [6], some of them being too
invasive or costly.

In the face of these difficulties, sentinel-node sam-
pling techniques reduce the estimated risk of breast
cancer–associated lymphedema to 6 to 10% [36]. Besides, a
prospective study has shown that after breast cancer surgery,
surveillance (with aggressive risk-reduction measures taken)
is associated with a lower observed incidence of lymphedema
(36.4% in the control group vs. 4.4% with surveillance) [37].
Although randomized and controlled trials (RCTs) of surveil-
lance are lacking, there is a growing belief that surveillance
leads to earlier diagnosis and to treatment strategies that are
both more efficient and more cost-effective than the pre-
vious situation with no surveillance practices [38]. Setting
up systematic surveillance remains, however, a complicated
task.

Today, the postoperative diagnosis of arm lymphedema
in a breast cancer patient is initially made by the patient’s
personal presumption, as she notices a clear swelling of her
upper limb. Secondly, it is the medical opinion that confirms
or invalidates the presumption of lymphedema of the upper
limb, following a consultation. The diagnosis is therefore not
instantaneous; there may be significant latency between the
onset of lymphedema, suspicion of lymphedema, and final
diagnosis.

At the HUS Senology unit, treatment involves vari-
ous physiotherapeutic interventions: decongestive lymphatic
therapy relies heavily on manual lymphatic drainage, a mas-
sage technique that stimulates lymphatic contractility through
gentle, directed stretching of the skin. In addition, deconges-
tive lymphatic therapy includes skin care, serial application of
multilayer bandaging, exercise (gentle, repetitive contraction
of the musculature beneath the bandages) and mechanical
pressotherapy. Typically, the patient participates in 10 ses-
sions over 2 weeks. Then, the patient can be transitioned to
self-care.

Some authors recommend a surveillance program that
includes a quarterly assessment of arm measurement during
the two years after treatment, when most cases appear. There
should also be prompt use of compression garments and

FIGURE 3. Physical prototype of the lymphometer.

decongestive physiotherapy for symptoms or for worrisome
and significant changes in surveillance measurements.

The described context and the treatment difficulties clearly
motivate the search for practical, non-invasive solutions that
favor the early detection and follow-up of patients suffer-
ing from lymphedema, finally allowing an objective correla-
tion between symptoms and certain activities. The following
section describes the outcome of such research.

B. A CONNECTED SYSTEM TO DETECT ARM VARIATIONS
1) GENERAL PRINCIPLE
In 2018, following a long-term research collaboration
between the HUS andQuantmetry on breast cancer [39], [40],
both entities developed a connected sleeve (Fig. 3) devoted
to help prevent and analyze lymphedema: the lymphome-
ter [26], [27]. The main task of this connected device is to
enable the patient, through a very simple process (less than
five min), to monitor on a daily basis (this routine will be
detailed later on), the size of her arm at a level of accuracy that
is better than a visual inspection by the patient herself. More
precisely, this sleeve was designed to take measurements of
a patient’s arm circumference at the four different locations
described in Fig. 2, mimicking the usual clinical practice at
the HUS, thus generating a time series of dimension four.
As evoked previously, a major stake is to limit the user’s
discomfort. For this reason, the sleeve should be worn, if pos-
sible, only on the arm potentially affected by lymphedema.
Collected data is then sent on a health data hosting certified
cloud server (HDS). Datasets are aggregated and compiled
and then transmitted to the patient and the physician who
follows her personally, as well as to the scientific community
anonymously (if the patient agrees). The stored datasets are
protected and secured, and the anonymity of patients is thus
preserved.

The complete acquisition and treatment system, which
includes the connected sleeve itself, visualisation tools and an
alert subsystem, is represented on Fig. 4 and more thoroughly
described in the following subsection.

2) DESIGN AND WORKING PRINCIPLE
The connected sleeve, which is the data acquisition device,
consists of two main parts: (a) A stretchable fabric; (b) An
electronic device comprising the measurement circuit (sensor
+ conditioner) and a communication module. See Fig. 5 for
a complete view of this measurement chain. The sensor,
a stretchable piece of rope that translates linearly its length
into an electrical resistance, measures a variation in sleeve
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FIGURE 4. Lymphometer acquisition and treatment system.

FIGURE 5. Measuring chain of the connected sleeve.

FIGURE 6. Stretch sensor. Image from the manufacturer’s website
https://www.robotshop.com.

FIGURE 7. Electronic circuit based on an RC conditioner.

stretch due to the variation in arm circumference. Hooks on
both sides enable to connect it to the fabric of the sleeve and
to the electronic PCB (Fig. 6).

Since a microprocessor cannot directly measure an electri-
cal resistance, a conditioner circuitry is designed to convert
the resistance value into an electric voltage. This is done by
measuring the loading time (time to reach a certain level of
electric voltage) of a capacitor through the electrical resis-
tance of the sensor (Fig. 7). The circuit is advantageously

FIGURE 8. Prototype V1 (Wifi): developed electronic board.

simple and the relation between the sensor value and the
measured time is linear. If R is the resistance of the sensor
and C the capacitor (here a constant), the loading time is
proportional to the time constant τ = R∗C . Themeasurement
relative precision can be easily derived from the sensor and
capacitor precision:

1τ

τ
=
1R
R
+
1C
C

Once resistance is found, the sensor’s transfer function is
inverted to find the value of the stretch.

To communicate the sensor value to the server, the first
hardware version used WiFi. The main issue with WiFi is
that the chip warms upwhen transmitting data. Unfortunately,
lymphedema can worsen with heat. Eventually, Bluetooth
5.0 Low Energy (BLE) was chosen, since it consumes very
little energy and does not warm up at all. In addition, this ver-
satile technology provides robust short-range communication
for a large range of devices (see [41] for a recent review of its
features). The main difference between Bluetooth and WiFi
is the following: with WiFi the connected sleeve connects
directly to the setup box to send the data, with Bluetooth
the device connects to the patient’s Smartphone and uses the
Smartphone’s connection to send the data. The two proto-
types of the electronic board are shown in Fig. 8 and Fig. 9.

On the Smartphone’s side, an application was developed
to connect to the sleeve, display measurements and alerts
to the patient, and send data to the practitioner’s dashboard.
Screenshots of patient Smartphone’s mobile application can
be seen on Fig. 10.
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FIGURE 9. Prototype V2 (Bluetooth): integrated final electronic board.

FIGURE 10. Screenshot of the patient’s smartphone application. The final
version of this application modifies the alert text to Possible
lymphedema detected.

III. DIGITAL TWIN MODELING
In this section, we describe the steps leading to the definition
of a numerical model M of the device simulating, at each
instant t and for a position i along the arm, a noisy measure-
ment y(i)∗t that is transmitted to the smartphone via Bluetooth.
We assume that the smartphone is held at a distance of less
than five meters from the sleeve, without obstacles, so that
the noise and delays affecting the signal transmission can be
considered negligible [41]. Other sources of possible inter-
ference in the 2.4 GHz band, such as WiFi [42], are not taken
into account in this modeling. The main notations introduced
in this section are summarized in Table 1 for the reader’s
convenience.

The numerical model M aims to mimic the effects of
the biological stimulus that makes an arm grow at certain
locations. It should allow us to generate a wide range of
plausible trajectories of values of y(i)t at each measured posi-
tion i along the arm. This model was defined as the sum of

TABLE 1. Main notations used in the modeling process.

models M1 and M2 where M1 is a first stochastic process
simulating the real growth of arm circumference y(i)t , and
M2 is a second stochastic process that affects y(i)t with the
measurement noise. These two sub-models are detailed in the
two following subsections The statistical estimation of M1
andM2 is based on a clinical dataset described in Section IV,
which is the subject of Section V.

A. STOCHASTIC MODELING OF ARM GROWTH
A simple growth model for the theoretical arm circumference
at position i and time t , based on the growth function f , can
be defined as follows:

y(i)t =M1

(
t, y(i)0 , f , t0, r

(i), y(i)∞, ε
(i)
t

)
=

{
y(i)0 + ε

(i)
t for t < t0,

f
(
t, y(i)0 , r

(i), y(i)∞
)
+ ε

(i)
t for t ≥ t0

(1)

where y(i)0 is the average arm circumference at position i
before the operation, the position parameter t0 indicates the
time when the growth starts and ε(i)t can be interpreted as the
epistemic error between the real and predicted circumference
at time t and position i. A minimal parameterization for the
growth function f should incorporate a local growth rate
r (i) > 0 and an upper limit value (physically plausible)
y(i)∞ > yi,0 for the circumference [43]. Several growth func-
tions f usually encountered in biological problems are con-
sidered for the study, and described in Appendix A-A.

Obviously, the parameters y(i)0 and y(i)∞ are correlated. Note
that f was always chosen to be an increasing function of t ,
since the therapeutic effects cannot completely reverse the
growth process [6].

While y(i)0 can be assessed by averaging all measures
{z(i)t }t on the contralateral arm, parameters y(i)∞ and r (i) can
be considered as random, with corresponding distributions
π (y(i)∞) and π (r (i)), as they are different for each patient.
The predictable low number of such observations around the
first growing steps, due to the fact that most patients are
measured after a first suspicion of lymphedema, induces to
choose a parametric framework for the assessment of π (y(i)∞)
and π (r (i)).
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FIGURE 11. Histogram of arrival times t ′0 of patients at the hospital in the
early stages of lymphedema. While 17 (on a sample of 20) patient times
were collected, 13 arrival times were extracted (< 6 years) since the four
others were collected in a historical period during which the alert of
lymphedema first stages was less accurate.

This requires to reparameterize the problem. Indeed, in this
framework, most usable results, in terms of statistical theory
and algorithms, are based on the assumption that the random
input parameters are Gaussian and take their values on the
real line [44]–[48]. Denoting X (i)

1,a = log(y(i)∞/y
(i)
0 − 1) ∈ IR

and X (i)
1,b = log(r (i)) ∈ IR, it is crudely assumed that, for

k ∈ {a, b}, the X (i)
1,k are independent Gaussian variables:

X (i)
1,k ∼ N

(
µ
(i)
1,k , σ

(i)2
1,k

)
(2)

where the unknown parameters {µ(i)
1,k , σ

(i)2
1,k }k must be esti-

mated for each location. This practical Gaussian choice
appeared to allow for sampling relevant trajectories of arm
growth.

Parameter t0 can besides be considered as random too,
for the same reason. A rationale for choosing a lognormal
stochastic model, namely defining the new parameterization:

X (i)
1,c = log t (i)0 ∼ N

(
µ
(i)
1,c, σ

(i)2
1,c

)
(3)

where (µ(i)
1,c, σ

(i)2
1,c ) are to be estimated too, is based on the

empirical distribution of arrival times t ′0 of patients in hospital
in the early stages of lymphedema, which are such that t ′0 & t0
(t ′0 can be statistically understood as a left-censoring variable
for t0). The dataset used for estimation is named D1,A further
in the text (§ IV). As shown in Fig. 11, it appears relevant
to choose a lognormal distribution for t ′0. The proximity
between t0 and t ′0 motivates to choose this same distribution
for t0. This choice is discussed in the final section of this
article.

B. STOCHASTIC MODELING OF MEASUREMENT NOISES
Due to its design, the connected sleeve necessarily introduces
measurement noises that are summarized by model M2.

More precisely, the placement of the sleeve on the patient’s
arm introduces a first series of contextual errors. These con-
textual errors propagate in a second step to the electronic
circuit which will in turn introduce errors (uncertainties, sam-
pling, electromagnetic disturbances). Modeling and combin-
ing these noises can be done in controlled laboratory exper-
iments. Under the assumptions made above, two sources of
noise affecting each measurement can be determined:

1) The context-sensitive noise εc, which is induced by the
positioning of the sleeve. Appendix A-B describes how
this noise can be assessed based on geometrical con-
siderations. At a given location i and time t , from (13)
the resulting noise εc is a function of the circumference
y(i)t , two fixed parameters φ and d0 and an unknown
random vector X2 = (1h,Xθ ) that are independent on
i and t . While Xθ lives in IR and is such that E[Xθ ] = 0,
1h has the sense of a small height offset concentrated
around 0. Thus a centered Gaussian distribution appear
as a reasonable hypothesis for the following vector of
random parameters:

X2 ∼ N (0, 62) (4)

with unknown diagonal covariance matrix

62 = diag
(
σ 2
1h, σ

2
θ

)
.

2) The sensor noise εs, affecting the so-called sensor
law, namely the relation between the stretching length,
which is assimilated to the arm circumference y(i)t at
position i, and the capacitor resistance of the sensor.
According to the manufacturer this relation is linear:

y(i)t = αR
(i)
t + γ + ε

(i)
s . (5)

A series of tests on healthy experimenters was con-
ducted to check for the validity of this assumption and
to assess the features of εs. We found that

εs(y
(i)
t ) = (α̃y(i)t + γ̃ )ξ (6)

where ξ ∼ N (0, 1) and (α̃, γ̃ ) is a reparametrization
of (α, γ ). Details about the statistical validity of this
assessment and the values of (α̃, γ̃ ) are provided in
Appendix A-C.

Finally, summing up the separate sources of noise, notice
that the sensor actually measures

ŷ(i)t = y(i)t + εc
(
y(i)t ,X2

)
.

This error propagates with the noise from the electronic
circuit: at each location i on the arm, a statistical model for
the measured value y∗ of the circumference transmitted to a
smartphone can be formalized as

y(i)∗t = y(i)t +M2

(
y(i)t ,X2

)
. (7)

whereM2

(
y(i)t ,X2

)
is given by

εc

(
y(i)t ,X2

)
+ εs

(
y(i)t + εc

(
y(i)t ,X2

))
, (8)
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FIGURE 12. Changes of the gap (cm,in absolute value) between the circumferences of the two arms of patients
belonging to the D1 cohort, for position i = 10 cm. The straight line indicates the limit value for which a lymphedema is
clinically detected. Circles denote the times at which physiotherapy is practiced.

the forms of εs and εc being provided by (6) and (13),
respectively.

C. GLOBAL STOCHASTIC MODEL
From (2-3) and (7), a completewriting of the global stochastic
model follows. At position i on the arm affected by lym-
phedema, at time t ≥ t0, the stochastic model of an obser-
vation of the true circumference is

y(i)∗t =M(i)
(
t, t0,X

(i)
1 ,X2, y

(i)
t0

)
+ ε

(i)
t (9)

where ε(i)t ∼ N
(
0, σ (i)2

)
and M(i) is the sum of two

instances of modelsM1 andM2:

M(i)
1,t = f

(
t, exp(X (i)

1,c), y
(i)
t0 , y

(i)
t0 {exp(X

(i)
1,a)+ 1}, exp(X (i)

1,b)
)

M(i)
2,t = εc

(
M(i)

1,t ,X2
)
+ εs

(
M(i)

1,t + εc

(
M(i)

1,t ,X2
))

with X (i)
1 =

(
X (i)
1,a,X

(i)
1,b,X

(i)
1,c

)
defined by (2) and (3), and X2

defined by (4).

IV. CLINICAL DATA
The available dataset, named D1, is a cohort of 20 patients
operated from breast cancer and experiencing arm growth
due to lymphedema (Fig. 12 and Fig. 13). As a reminder,
we denote t ′0 the delay between the operation and the first
visit at the hospital, where a lymphedema is truly detected.
From t ′0, each patient receives curative treatment based on
compression andmassage techniques at regular appointments
(every 5 days) for an average period of one month. At each
appointment at time t ≥ t ′0, measures {y(i)t , z

(i)
t } of the circum-

ference of both arms are taken with measuring tape at several
positions i every 5 centimeters; z(i)t denotes the measure of the
contralateral arm, which is not affected by the lymphedema.
The noises resulting from the measurements were considered
as negligible since these measurements are repeated several
times for each position and averaged. Note that the weights
were measured too, in order to check that length variations
were only due to the growth of the lymphedema.

A treatment sequence reduces the speed at which the cir-
cumference of the arm grows and sometimes diminishes it,
but it cannot completely eliminate the lymphedema (Fig. 14).
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FIGURE 13. Changes of the gap (cm,in absolute value) between the circumferences of the two arms of patients
belonging to the D1 cohort, for position i = 20 cm. The straight line indicates the limit value for which a lymphedema is
clinically detected. Circles denote the times at which physiotherapy is practiced.

Stopping a treatment sequence usually results in new growth
of the arm until the next treatment sequence. This is due to
the biological mechanism that causes lymphedema, which is
not affected by the treatment [6]. Denoting ti the end of the
ith occurence of a treatment sequence, it is therefore possible
to divide D1 into two subgroups:

D1,A =
{
measures made from t ′0 until t1

}
;

D1,B =
{
measures made from t ′i until ti+1, for i ≥ 1

}
.

Thus, each patient trajectory is divided between one trajec-
tory belonging to D1,A, for which t0 is unknown, and others
belonging to D1,B, for which t0 is known and corresponds to
the last value ti (i ≥ 1): they correspond to a set of ‘‘vir-
tual patients’’ that experiment the same biological dynamics
of arm growth, but do not share similar growth parame-
ters because of the effects of treatments. This assumption,
on the basis of biological knowledge [6], is very similar to
a relaxation of the so-called As Bad As Old (ABAO) concept
characterizing the reliability of complex mechanical systems
submitted to corrective maintenance [49].

V. STATISTICAL MODELING AND STOCHASTIC
INVERSION
A. STATISTICAL FRAMEWORK
To simplify the notations, let t = 0 denote the time of
operation for each patient belonging to the D1 cohort. The
period of observation for a given patient j ∈ {1, . . . , n1} is

1j =

m−1⋃
`=0

[
t ′`,j, t`+1,j

]
.

with:
• t ′0,j being the time of first return to the hospital (after the
lymphedema has begun at unknown time t0,j);

• t`+1,j being the time at which the `+1 sequence of cura-
tive treatment ends for the patient j, and consequently
the time at which the growth of the lymphedema restarts
freely;

• t ′`+1,j > t`+1,j being the time at which the `+2 sequence
of curative treatment begins;

• tm,j is the time of last observation for the patient j.
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FIGURE 14. Evolution of the arm circumference (in cm) for two patients belonging to the D1 cohort. The
x−axis corresponds to a range of positions on the arm.

Within each range [t ′`,j, t`+1,j], the patient’s arms are mea-
sured at several times {t ′`,k,j}k with k ∈ {0, . . . , q − 1},
such that t ′`,0,j = t ′`,j and t

′

`,q,j = t`+1,j. The time period
t ′`,k+1,j − t ′`,k,j is fixed by the protocol and independent on
j (but not always regular).
For a position i ∈ {1, . . . , d} on the arm affected by lym-

phedema, the observed circumference for patient j at known
time t ′`,k,j, for ` ≥ 0, is explained by (using the notation
of (9))

y(i)∗t ′`,k,j,j
=M(i)

(
t ′`,k,j, t`,j,X

(i)
1,j,X2,j, y

(i)
t`,j

)
+ ε

(i)
t ′`,k,j,j

. (10)

Note that t (i)`,j is a missing (random) observation when ` = 0

(subcohort D1,A): in this case t (i)`,j is the time at which the

lymphedema begins. When ` > 0 (for each member of
subcohort D1,B), t

(i)
`,j is made equal to t

′(i)
`,j .

A second observation equation arises from s ∈ {1, . . . , S}
independent, repetitive measures on the contralateral
arm: {

y(i)∗t`,j,s
}
1≤s≤S

∼ N
(
y(i)t`,j, σ

(i)2
t`,j

)
. (11)

With S = 5, since the small natural variation in arm cir-
cumference described by ε in (1) was found to be well
approximated byN (0, 0.1), the classical empirical estimator
ŷ(i)t`,j =

1
S

∑S
s=1 y

(i)∗
t`,j,s

has small variance σ (i)2
t`,j
/S ' 0.02,

which can be considered as negligible.
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B. STOCHASTIC INVERSION
Plugging ŷ(i)

t (i)` ,j
into (10), the complete model for the

n1−sample of output observations Y ∗j = {y
(i)∗
t ′`,k,j
}i,`,,k ∈

(IR+∗ )
d×m×q can be written in a more compact way as

Y ∗j = H
(
Xj, dj

)
+ Uj (12)

where Xj = {X
(i)
1,j,X2,j}i ∈ IR3d+2 is a Gaussian vector of

missing observations, Uj = {ε
(i)
t ′`,k,j,j
}i,`,k ∈ IRd×m×q is a

centered Gaussian noise, assumed to be independent on Xj,

dj =
{
t`,j, ŷ

(i)
t`,j

}
i,`
∈ IRd×m

is a fixed known parameter vector, and H : IR3d×4 ×
IRd×m → (IR+∗ )

d×q×q is a nonlinear computational model.
For the sake of simplicity, in the following we denote Y ∗ and
X the fully observed and missing observations, and summa-
rize the set of unknown Gaussian parameters of X by2.

The statistical assessment of2, linked to observable values
Y ∗j through (12), is similar to the stochastic inversion of
the nonlinear model H ; this framework was described and
well studied by [44]–[46], among others. Following [45],
a Stochastic Expectation Maximization (SEM) algorithm can
be used to solve this problem. In an iterative approach, it max-
imizes the likelihood of the complete data Z = (Y ∗,X ) by
sampling the missing data X according to a current value
of the set of parameters 2, and producing an irreductible
Markov chain 21, . . . ,2M , . . . that converges consistently
towards the maximum likelihood estimator (MLE) of2 [50].
More precisely, the (k+1) iteration of the SEM algorithm has
3 steps:
• E step: Compute the conditional density p(.|Y ∗;2(k)) of

missing data X (k), given Y ∗ and a current estimate2(k).
• S step: Complete the sample Z (k)

= (Y ∗,X (k)) by
sampling X (k) from p(.|Y ∗;2(k)).

• M step: Update2(k+1) as the current MLE using Z (k).
We let the interested reader consult the article [45], which

provides all the implementation details in our Gaussian case,
and describes in particular the use of an MCMC (Hastings-
Metropolis) method to carry out step S [51]. Following theo-
retical and practical recommendations [45], [50], [52], [53],
estimation results are provided as an average value of 2
computed over the last (stationary) iterations of the SEM
algorithm, plus a confidence interval computed either by
estimating the Monte Carlo variance or by non-parametric
bootstrap (with similar results).

However, it was necessary, to ensure the good behavior
of the algorithm, to hybridize it with a specific estimation
approach of the distribution of the location parameter t ′0,
in order to struggle against the lack of data information about
t ′0. Such a problem can frequently appear when dealing with
location parameters [54]. To overcome this problem, profile
maximized likelihoods [55] were computed with SEM by
fixing q regular values t ′0,j over n1 intervals (defined between
0 and t0,j). The values t ′0,j corresponding to the 30 highest

FIGURE 15. Estimated growth curves (without noise, using a logistic
function) for 10 patients belonging to the D1 cohort, for positions on arm
at 10 cm (top), 40 cm (middle) and 50 cm (bottom).

values of the q × n1 profile MLE were selected and used to
estimate the distribution of t ′0.

The relevance of the whole estimation process was checked
by a simulation approach summarized in Appendix A− D.

C. RESULTS
For the logistic growth function, the estimation results of
2 are placed in Tables 2 and 3, accompanied with standard
deviations computed by Monte Carlo.

Estimated growth curves (without noises) are plotted on
Fig. 15, while their noisy equivalent are simulated over
Fig. 16. Such simulations were used to check that growth
models were versatile enough to represent the circumference
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FIGURE 16. Simulated noisy growth curves for a patient belonging to the
D1 cohort, for positions on arm at 10 cm (top), 40 cm (middle) and 50 cm
(bottom).

growth over time for a given patient, for at least four positions
on the arm. While the logistic growth seemed to be nearly
better than the other choices, all these functions have been
kept for the rest of the analysis.

VI. SENSITIVITY STUDY
Once stochastic inversion is conducted, the uncertainty quan-
tification framework requires to check if the uncertainty
affecting Y ∗ is mainly dependent on the uncertainty affecting
themeaningful input parameters and not on the various noises
introduced in the model of Y ∗, following a principle formal-
ized in [56]. Ranking the effects of input uncertainties is the
major task of global sensitivity analysis [57], and conducting

FIGURE 17. Functional first-order Sobol’ indices measuring the influence
of input parameters on output variance for arm positions 10 cm (top),
20 cm, 40 cm and 50 cm (bottom). The parameter ‘‘Xi’’ refers to the sensor
noise ξ ∼N (0,1) and is related to Equation (6), while ‘‘Epsilon’’
corresponds to the small natural variation ε ∼N (0,0.1) in arm
circumference, related to Equation (1).

such an analysis is therefore required after the assessment.
In the current framework, as the estimated Gaussian multi-
variate distribution is assumed to have diagonal covariance,
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TABLE 2. Maximum likelihood estimation of the position-dependent
components of 2 obtained by SEM, for several positions i , using a logistic
growth function. Standard deviations are provided between parentheses.
The values for (the more readable parametrizations) E[t ′0] and

√
Var[t ′0]

are provided in days.

TABLE 3. Maximum likelihood estimation of the position-independent
components of 2 obtained by SEM, using a logistic growth function.
Standard deviations are provided between parentheses.

the use of Sobol’ indices for functional output [58], [59]
appears relevant. The basic principle of these indices, which
determine the part of the variance of the output signal (at each
time step) by input variances, is recalled in Appendix A-E.
They require to sample from the input parameter distributions
estimated in the previous section.

The first-order functional Sobol indices associated with the
random input parameters are shown in Fig. 17. They allow to
compare at a first order the influences of these parameters
on the variance of the output signal, by time steps. Results
displayed in these figures arise from the use of the logistic
growth function, but the results were found to be similar for
the other functions.

As expected, and fortunately, the results show the major
influence of the parameters guiding real growth (X1,a and
X1,b, depending on y∞ and r), which means that uncertain-
ties do not overwhelm information. The influence of the
growth rate r decreases over time, which also seems intuitive.
A key result is that as the model tries to reproduce behavior
away from the shoulder, the importance of the sensor noise
ξ ∼ N (0, 1) from Equation (6) increases significantly. Keep-
ing in mind that the numerical model is a simplified repre-
sentation, this result however leads to additional efforts in
order to ‘‘freeze’’ the sensor positioning and make the sleeve
threading procedure more robust, e.g. by providing position
marks or by taking a photo that validates or invalidates
the threading. Finally, we note that the impact of the other
parameters involved in contextual noise and sensor-related
measurement noise remain very limited. This result allows
us to consider some of these parameters as fixed in a simu-
lation step (next section). It also reinforces our idea that the
proposed design is efficient.

VII. DESIGNING MEASUREMENT PROTOCOLS
Obtaining a calibrated simulation model thus feeds a digital
twin of the experiment. This twin should incorporate, as an
additional set of parameters, a protocol for the use of the
connected device. It also provides a test strategy to assess
the appearance of lymphedema. Indeed the use of statistical
tests to detect ruptures in time series is well documented.
In particular, non-parametric tests which do not assume any
distribution on the data are well-suited for our case. Three
popular tests relying on rank statistics have been chosen:
Mann-Whitney test [60], Mann-Kendall test [61], [62] and
Pettitt test [63]. The first one assesses if two populations
are equally distributed, the second one is a trend test and
the third one searches for a rupture in a time series. These
tests have been used over a sliding window, i.e. only making
use of the last nw measurements. Although nw cannot be
too large as it would induce a big delay in the detection,
it cannot be too small either in order to avoid too many false
positives.

A sample of 1000 Monte Carlo runs was used to explore
the ability of these statistical tests to detect significant mag-
nifications of the arm, using two thresholds of statistical
significance (α = 5% and (α = 1%). They are light in
terms of implementation and computational cost, so that they
can be embedded on a mobile device. Conducted for each of
the four sensor positions and the Monte Carlo distribution,
the tests determined the mean time distributions for detection
of clinically significant magnification for several measure-
ment strategies:
• Per day, one to three measurements are made;
• A measurement can be defined as a succession of repet-
itive acquisitions (via a switch), and the median of
these repetitions is kept, but should remain lower than
5 minutes.

We quickly empirically converged towards the strategies pre-
sented over Fig. 23 and Fig. 24. According to the most
sensitive Mann-Whitney test, three measurements per day,
with several repeated acquisitions, always appear necessary
to provide a 90% chance of detecting a significant change
in arm circumference in a time window of less than a week,
without the ergonomic complication related to the use of the
sleeve on the contralateral arm. Incorrect detections, corre-
sponding to simulations for which growth is wrongly detected
(before actual growth), were estimated on average at 9% for
α = 5% and 12% for α = 1%. Such false positives are
annoying, but less so than false negatives that falsely indicate
a lack of regime change. Such false negatives were estimated
at less than 3%. Note that the significant changes detected
in circumferences were always found to be lower than the
clinical repair of 2 cm evoked thereinbefore. In practice, five
acquisitions are possible in less than five minutes, which
pleads for selecting the strategy summarized on Fig. 24.
Clearly, more than three occurrences of a measurement

from one repetition would allow the average detection time to
fall below one day. But from an ergonomic point of view, such
a strategy seems very cumbersome for a patient. We therefore
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recommend adopting a protocol based on these five acquisi-
tions and the use of the Mann-Whitney and Mann-Kendall
tests using a 5% significance threshold.

VIII. DISCUSSION
This paper describes the main steps of a methodology mixing
numerical modeling and statistical analysis of the effect of
uncertainties that we propose for the preparation of clinical
studies associated with connected devices. These steps are
part of a more general VVUQ methodology, related to the
use of numerical twins in an industrial setting, but to our
knowledge it has not been adapted or implemented so far in
the case of such connected devices. We show its feasibility
and its usefulness to guide the choice of clinical protocols,
which would allow to decrease the usually very important
cost of empirical trials. The first tests carried out on the
Lymphometer device proved satisfactory in terms of technical
feasibility. Moreover, such an approach seems to us funda-
mental in order to iteratively improve the design of these
connected devices. Thus, the impact of noise on the signal
can be evaluated a priori, and the influence of parameters
related to controllable constraints, such as those related to
positioning, can be highlighted and adjusted.

In this article, we made the choice of simplifying assump-
tions about the uncertainties to be taken into account in the
analysis. These hypotheses are reflected in the choice of
a frequentist statistical approach by likelihood maximiza-
tion. A Bayesian approach to inversion, which assumes that
the unknown parameter vector 2 is itself random, would
undoubtedlymake it possible to better apprehend these uncer-
tainties and to propose a more relevant study by simula-
tion [46]. Markov Chains Monte Carlo (MCMC) methods
or RTO (Randomize-Then-Optimize [64]) methods should
ideally be used instead of the SEM approach, while some
techniques are available to elicit priors on2 [48]. The latter
could incorporate constraints on the components of 2 and
increase its dimensionality (as, for instance, the relations
between θ and φ in Appendix A-B). In this sense, the method-
ology presented in this paper can certainly be amplified.

Several assumptions could also be relaxed in direct relation
with the use case, so as to improve the relevance of the overall
model, without changing the essence of the methodology.
We cite three of them here.

First, it is conceivable to allow the input Gaussian random
variables to be correlated, and to adapt the inversion algo-
rithm for this purpose. In doing so, sensitivity analysis can
no longer be conducted using Sobol’ indices (which have a
less clear meaning in this framework [65]), but other tools
such as Hilbert-Schmidt information criteria (HSIC; [66]) or
Shapley indices [65], [67] can be used.

Second, several other features of the model could be
improved. For instance, in the geometrical analysis conducted
in Appendix A-B, it is expected that the horizontal noise is
close to be centered, but this assumption is difficult to check.
This suggests that a bias could be incorporated, which would
play a role in the simulation tasks.

Third, the choice of a lognormal distribution for the time
t ′0 associated with the beginning of a lymphedema can be
criticized on the basis of the literature dedicated to risk
and lifetime analysis. Poisson-distributed arrivals are, for
instance, an usual hypothesis of such analyses, and deserve
to be tested.

Finally, while it is outside the scope of this article, it is
likely that this kind of study should insert additional noise
due to the possible change of wireless networking technology.
Despite its robustness to the range of devices and its good
behavior at weak distances, Bluetooth technology is known
to have some security weaknesses [68]. Its use for collecting
personal health data must be questioned according to legis-
lation. Besides, other sources of noise that were not taken
into account in this study, as the WiFi [42], could certainly
be added to the simulation model to further improve the
validity of this model. Nonetheless, the main features of the
methodology proposed in this article remain unchanged.

IX. CONCLUSION
Several research avenues are opening up before us, now that
we can use simulation to build clinical study protocols for
this connected device. This work is undoubtedly a necessary
prerequisite to further improve the prototype and it use. Note
that the methodological principles apply to other connected
objects (only the data generation model changes). Therefore
it seems possible to test several technologies in this way, more
quickly, and also improve our methodology. For example,
the significant progress made in computer vision in recent
years [14], [15] may suggest that an alternative solution to the
connected sleeve could involve the use of videos taken by cell
phones, taken in such a way as to perform a 3D reconstruction
of the arm. However, such technologies are still consuming
in computational time, so our current ambition is to improve
the design of the prototype, while at the same time pool the
resources for the clinical study.

All the more so since discussions are underway at HUS and
within the Senologic International Society, between many
practitioners around the world, that aim to collect and com-
pare a wide range of lymphedema monitoring data. The
objective of such a collection would be to specify the char-
acteristics of lymphedema growth patterns that take into
account morphotypes and types of surgery. The specialization
of growth models could allow numerical twins, such as the
one proposed in this paper, to better represent the evolution
of lymphedema and improve the quality of use of measuring
devices.

APPENDIX A

A. DETAILS ON GROWTH FUNCTIONS
Frequently encountered in statistical biological growth stud-
ies [43], [69], the growth patterns summarized in Table 4
were used to represent the appearance of a biological stimulus
causing an increase in arm circumference. They have no real
biological value in the present context, but are rather toy

VOLUME 9, 2021 39457



L. Béthencourt et al.: Guiding Measurement Protocols of Connected Medical Devices Using Digital Twins

TABLE 4. Growth functions f
(
t, t0, y0, x, y

)
used for the study (after

reparameterization).

FIGURE 18. Growth model comparison (top) and growth speed
comparison for the logistic model (bottom).

models allowing us to study the robustness of the simulated
device, thanks to the variety of situations they allow to rep-
resent. While the biological mechanism at the origin of arm
enlargement is still completely unsolved [70], the initiation
and dynamics of growth remain extremely poorly known,
as the vast majority of observations are made once significant
growth has occurred.

Using the parameterization in (1), top of Fig. 18 illustrates
the difference between the growths, for y0 = 0.1, y∞ = 1
and r = 1, while the bottom illustrates the effect of varying
the speed of growth for the logistic case.

B. CONTEXTUAL NOISE
The contextual noise (or error) εc is caused by the approx-
imate placement of the sleeve on the arm. A first source of
error is due to a bad axial placement of the sleeve. While one
would want to localize the sensor at arm height h, it is actually

FIGURE 19. Measurements of the stretching as a function of impedance.

FIGURE 20. Evolution of the standard deviation of σ (y ) as a function of
the stretching.

FIGURE 21. Normal QQ-plot of the linear regression of the standard
deviations.

located at height h + 1h. Then a second source of error is
induced by rotating the sensor by an angle θ around the axis
perpendicular to the arm.

In order to estimate εc, in the vicinity of a sensor the arm
is geometrically represented by a cone. The latter is defined
by an apex and a perimeter, which is in this case assimilated
to the circumference of the arm in the vicinity of the sensor.
The apex can be interpreted as a fixed point on which the end
of the arm would come to rest. This type of representation
that ‘‘freezes’’ degrees of freedom is usually used in motion
animation, for example to reproduce sign language [71]).
Fig. 22 gives an overview of this geometric problem, and
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FIGURE 22. Diagram of the circumference error induced by rotation on a cone.

the notations of this figure are used in the remainder of this
subsection.

A bad axial placement of the sleeve can then be formalized
as the difference in circumference induced by the rotation and
the offset evoked hereinbefore. It is recalled that the intersec-
tion of a plane with a cone is an ellipse. Moreover, if the plane
is perpendicular to the axis of revolution, the intersection is a
circle. The cone is entirely determined by the angle φ, which
depends on each patient.

The circumference to bemeasured isP0 = πd0. The height
offset places the sensor at a height where the circumference
of the arm is P1 = πd1. Finally, the rotation of the device
by an angle θ induces a measurement of the circumference
which is equal to the perimeter of the ellipse arising from
the intersection between the cone and the inclined plane of
the angle. We want to determine this circumference P2, and
εc is therefore equal to P2 − P0. One can determine with
elementary geometry (Fig. 22) the width a and height b
parameters of the ellipse. Referring to the figure, we will call
d1 = BC = d0 + 21h tanφ. We will also name a1 = AD
and a2 = AE . Thus the width parameter a = 1

2 (a1 + a2).
To determine a1, we use the three following equations

tanφ =
BF
DF

, tan θ =
DF

d1
2 + BF

, cos θ =
d1
2 + BF

a1
.

Resolving these equations, we obtain

a1 =
d1

2 cos θ
×

1
1− tan θ tanφ

.

In the same way, we can determine a2 with the following
equations

tanφ =
CG
EG

, tan θ =
EG

d1
2 − CG

, cos θ =
d1
2 − CG

a2

hence

a2 =
d1

2 cos θ
×

1
1+ tan θ tanφ

and then

a =
d1

2 cos θ
×

1
1− tan2 θ tan2 φ

.

The point I is the middle of the segment AD so a = EI = DI .
Although it is not quite straightforward, one can realize that
b = HI . In the same way we determined d1, we get

b =
d1
2
+ IJ × tanφ − AJ .

Once again, we use elementary geometry to determine IJ and
AJ :

cos θ =
AJ
AI
, tan θ =

IJ
AJ

with AI = a1−a =
d1

2 cos θ ×
tan θ tanφ

1−tan2 θ tan2 φ
. In the end,

we obtain

b =
d1
2
×

1
1+ tan θ tanφ
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FIGURE 23. Distribution of the delays (in days) between the onset or resurgence of lymphedema, generated by
simulation, and its detection through measurements performed on four positions of the arm, for a strategy of
repeated measurements three times a day. Each measurement is the median of three repeated acquisitions (via
a switch). The tests used are Mann-Withney (MW), Mann-Kendall (MK) and Pettitt’s change-point detection test,
for two significance thresholds (5% and 1%). ‘‘Delta’’ indicates the maximum difference in circumference found
on 1000 simulated samples. The rate of correct detection was between 88% and 93%.

Then we can approximate the circumference of the ellipse
using a formula owed to Euler: P2 = π

√
2(a2 + b2). The

final noise expression is given by

εc(d0,1h, θ, φ) =
π (d0 + 21h tan(φ))

√
2× cos θ (1− tan2 θ tan2 φ)

×

√
1+ cos2 θ (1− tan θ tanφ)2

−πd0 (13)

We point out the fact that it is easy to see on Fig. 22 that
the angle θ must satisfy the constraint: |θ | < π

2 − φ. Hence
tan θ tanφ < 1 and the previous parameters are well defined.
Denote Xθ = tan

(
π/2
π/2−φ θ

)
which belongs toR and the noise

can be considered as a function of (d0,1h,Xθ , φ).
Among these four parameters, d0 can be directly known

from the measurement of the circumference z of the con-
tralateral arm in the stastistical estimation (Section V), using
the formula d0 = z/π , or fixed in Monte Carlo studies
(Sections VI and VII). Furthermore, the unknown angle φ

is theoretically different for each patient, and should be
considered as random. However, note that φ measures the
deviation between a straight (theoretical) arm and a real arm,
each pressing on the same fictitious point. Based on this
observation, preliminary laboratory experiments, conducted
on different real arms, showed that the value of φ � π/2,
is very close to 0 and almost constant (φ ' 0.065), and can be
estimated as follows. Assuming to haveNs repeated measures
yj of the circumference at a given location at various heights,
an estimator of φ is given by

φ̂ =
1

Ns − 1

Ns−1∑
i=0

arctan
(

yi+1 − yi
2π (hi+1 − hi)

)
.

For this reason, this parameter has been considered determin-
istic in this study, without loss of methodological generality.

Finally the considered contextual noise depends only
on the two unknown (considered as random) parame-
ters (1h,Xθ ). Besides, note that since φ � π/2, then
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FIGURE 24. Distribution of the delays (in days) between the onset or resurgence of lymphedema, generated by
simulation, and its detection from measurements performed on four positions of the arm, for a strategy of
repeated measurements three times a day. Each measurement is the median of five repeated acquisitions (via a
switch). The tests used are Mann-Withney (MW), Mann-Kendall (MK) and Pettitt’s change-point detection test,
for two significance thresholds (5% and 1%). ‘‘Delta’’ indicates the maximum difference in circumference found
on 1000 simulated samples. The rate of correct detection was between 89% and 93%.

Xθ ' tan(θ ). Since, geometrically, the intuitive expectation
of θ is 0, this is the same forXθ . The same rationale applies for
the expectation of 1h, although this parameter is physically
bounded by unknown bounds. However, based on the fact
that (again for physical reasons) 1h is highly concentrated
around 0, a Gaussian assumption for this random parameter
appears as a mild hypothesis.

C. SENSOR LAW
Controlled, repeated measurements made with the connected
devices were conducted in laboratory, in order to check the
relevance of the stochastic model placed on the sensor noise
εs and to quantify its parameters (see § III-B). A dataset
of 168 sensor stretch measurements was obtained by healthy
experimenters at Quantmetry in laboratory experiments, fol-
lowing the protocol summarized in Table 5.

Data was collected by measuring the impedance value
when the sensor is stretched from its initial length and repeat-
ing the measure. The measures and linear regression results

TABLE 5. Measurement protocol of sensor stretching (m is for
‘‘measurement(s)’’ and No for ‘‘number of’’).

TABLE 6. Estimated linear regression parameters (with standard
deviation between parentheses).

are plotted in Fig. 19. Pearson’s linear correlation coefficient
was found to be 0.95, which agrees with the statement of the
manufacturer.

Estimates of (α, γ ) in Equation (5) are provided in Table 6.
It was noticed that the standard deviation σ (y(i)t ) of εs
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TABLE 7. Relative mean square errors (in %) of the MLE computed over
500 replicated datasets.

increases linearly with the circumference y(i)t (Fig. 20):

εs(y
(i)
t ) = (α̃y(i)t + γ̃ )ξ

with ξ ∼ N (0, 1) and (α̃, γ̃ ) a reparametrization of (α, γ )
(Table 6). The standard reduced normality of this residual was
finally checked by QQ-plot (Fig. 21).

D. CHECKING FOR ESTIMATION VALIDITY
In this section the validity of the statistical estimation
described in § V is checked. M = 500 datasets similar to
the D1 observations are repetitively sampled based on the
estimates of 2 obtained in § V-C (Tables 2 and 3), for each
growth function considered in Appendix A-A. The corre-
sponding MLE were computed. The results of these estima-
tions are summarized in Table 7 for two positions i, that shows
the relative Mean Square Error (MSE) associated to each
parameter. For such models, the maximum likelihood estima-
tion proposed in §Vglobally performs correctly (although the
estimation for the Von Bertanlanffy model appears slightly
less good), which makes us confident in the results presented
hereinbefore.

E. SOBOL’ INDICES
Sensitivity analysis is used to study how the uncertainty in
the output of a model can be related to the input uncertain-
ties [57]. Specifically, it allows the modeler to identify the
input variables that have a major influence on the output and
to prioritize them. The approach proposed by Sobol [72],
which can be extended into the functional framework [59],
is the most common. We provide here some basic expla-
nations and the general idea, for a better readability. Sup-
pose that f is an integrable square function defined on a
d−dimensional space. Hoeffding’s decomposition [73] states
that it is possible to decompose f as a sum of elementary
functions

f (X) = f0 +
d∑
i=1

fi(Xi)+
d∑
i<j

fij(Xi,Xj)+ · · · + f12...d (X),

which is unique if
∫ 1
0 fi1...is (xi1 , . . . , xis )dxik = 0, 1 ≤ k ≤ s,

{i1, . . . , is} ⊆ {1, . . . , d}, f0 being constant [72]. Assuming
that the input variables X are independent, the variance of

f (X) can be written as

Var(Y ) =
d∑
i=1

Di(Y )+
d∑
i<j

Dij(Y )+ · · · + D12...d (Y )

where Di(Y ) = Var(E(Y |Xi)), Dij(Y ) = Var(E(Y |Xi,Xj)) −
Di(Y )− Dj(Y ), etc. First-order Sobol’ indices are defined as

Si =
Di(Y )
Var(Y )

, Sij =
Dij(Y )
Var(Y )

, Sijk =
Dijk (Y )
Var(Y )

. . .

These indices are between 0 and 1, and their interpretation is
straightforward: they express at the first order the percentage
of variance explained by the interaction under considera-
tion. As the number of indices grows exponentially with the
dimension, the analysis is most often restricted to indices of
orders 1 or 2. Statistical methods to estimate these indices are,
among others, reviewed in [74].
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