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ABSTRACT Bell nonlocality of quantum states is an important resource in quantum information and then
has various applications. It is usually detected by the violation of some Bell’s inequalities and the all-
versus-nothing test. In the present paper, we aim to establish some mathematical methods for proving Bell
nonlocality without inequalities, inspired by the work [Phys. Rev. Lett., 89, 080402 (2002)] regarding the
GHZ paradox. For self-containedness, we recall the mathematical definition of Bell nonlocality proposed
in [Sci. China-Phys. Mech. Astron. 62, 030311 (2019)] and then give some basic properties on it. Then we
derive some necessary conditions for amultipartite state to be Bell local and obtain some sufficient conditions
for a state to be Bell nonlocal in terms of ‘‘expectations’’ of local observables without invoking Bell
inequalities. Unlike the standard approach to nonlocality detection based on violation of Bell inequalities,
the obtained criteria are formulated in terms of certain relations for expectation values of local observables
that are constructed from the well-known GHZ paradoxes.

INDEX TERMS Bell nonlocality, LHV model, GHZ argument, GHZ paradox, POVM measurement.

I. INTRODUCTION
Quantum nonlocality was first discovered by Einstein, Podol-
sky and Rosen (EPR) in 1935, including quantum entan-
glement, quantum steering and Bell nonlocality [1]. They
formulated an apparent paradox of quantum theory (EPR
paradox) and given a ‘‘thought’’ experiment that argues
the wave function description in quantum mechanics is
incomplete. According to the EPR paradox on local real-
ism, quantum theory allows a curious phenomenon: the
so-called ‘‘spooky action at a distance’’. In the next year 1936,
Schrödinger [2] firstly introduced the terminology ‘‘entan-
glement’’ and ‘‘steering’’ to describe such quantum ‘‘spooky
action’’. Debates on whether quantum theory is complete
and how to understand quantum entanglement lasted for the
following 20 years and were finally concluded by Bohm [3]
and Bell [4], [5].

Quantum entanglement, originated from the EPR para-
dox, is the essence of quantum formalism and holistic
property of compound quantum systems involves nonclas-
sical correlations between subsystems and then has many
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applications for many quantum processes, including quan-
tum cryptography, quantum teleportation, dense coding
and so on.

Bell nonlocality originated from the Bell’s 1964 paper.
Bell in his paper showed that when some entangled state is
suitably measured, the probabilities for the outcomes vio-
late an inequality, named the Bell inequality. This property
of quantum states found by Bell is the so-called Bell non-
locality and was reviewed by Brunner et al. [6]. It is an
important resource in quantum information and then has
been widely discussed by Home and Selleri [7], Khalfin
and Tsirelson [8], Tsirelson [9], Werner and Wolf [10],
Genovese [11], and [12]–[19]. Recently, Eliëns et al. [20]
proposed to analyse a Bell scenario as a tensor network
and obtained a perspective permitting to test and quantify
Bell nonlocality resorting to very efficient algorithms orig-
inating from compressed sensing. Furthermore, Férot and
Roscilde [21] proposed and validated an efficient variational
scheme, based on the solution of inverse Ising problems.
Ming et al. [22] investigated the measure of quantumness in
experimentally observed neutrino oscillations via the nonlo-
cal advantage of quantum coherence, quantum steering, and
Bell nonlocality.
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Quantum steering, also called EPR steering, is an inter-
mediary property between Bell nonlocality and entanglement
andwas first observed by Schrödinger [2] in the context of the
EPR paradox ( [23], [24]). It is also an important resource in
quantum information and then has been recently discussed
in [25]–[33]. Especially, mathematical definitions of Bell
nonlocality and EPR steerability of bipartite states were for-
mulated and their characterizations were given in [18] by Cao
and Guo.

Usually, Bell nonlocality for quantum states is detected
by violation of some Bell’s inequalities, such as Clause-
Horne-Shimony-Holt inequality for two qubits. A proof of
nonlocality without inequalities for two particles had been
given earlier by Heywood and Redhead [34] which was
much simplified by Brown and Svetlichny [35]. Greenberger,
Horne, and Zeilinger (GHZ) [36] gave a proof of nonlocality
but without using inequalities, in which a minimum of three
particles was required in their proof. Mermin [37] provided
a simple unified form for the major no-hidden-variables the-
orems by two examples. Hardy in [38] and [39]) proposed
the two-particle 2-dimensional 2-setting Hardy paradox and
gave the maximum probability of Bell’s nonlocality, which is
about 0.09. In 1997, Boschi et al. [40] discovered two-particle
2-dimensional k-setting Hardy paradox. Aravind [41] estab-
lished a Bell’s theorem without inequalities and only two
distant observers. Dong et al. obtained in [19] some methods
for detecting Bell nonlocality based on the Hardy Paradox.
Chen et al. [42] proved that Bell nonlocal states can be
constructed from some steerable states. They also established
in [43] a mapping criteria between nonlocality and steerabil-
ity in qudit-qubit systems and between steerability and entan-
glement in qubit-qudit systems. Jiang et al. [44] proposed
a generalized Hardy’s paradox, Yang et al. [45] proposed
stronger Hardy-type paradox based on the Bell inequality and
its experimental test.

One of the most important insights into multipartite
(actually tripartite) entanglement is provided by the
Greenberger-Horne-Zeilinger (GHZ) argument (also called
GHZ paradox in the literature) [36]. In its formulation given
by Mermin [37], the GHZ argument is both an intrinsic
contradiction arising when dealing with noncontextual vari-
ables (a Kochen-Specker (KS) theorem) and a Bell-EPR
theorem that rules out local hidden-variable models [46].
The GHZ paradox reveals a stronger quantum nonlocality,
known as GHZ nonlocality, and provides an ‘‘all or nothing
argument’’ on quantum nonlocality [47]–[50]. Earlier of GHZ
paradoxes have been generalized to the case of multipartite
and multilevel systems [51]–[55]. Especially, Cerf et al. [46]
constructed GHZ contradictions for three or more parties
sharing an entangled state when the dimension of each
subsystem is an even integer d . They examined the criteria
that a GHZ paradox must satisfy in order to be genuinely M
partite and d dimensional. In the summary part, the authors
pointed out that an interesting extension of their work would
be to construct Mermin-like inequalities for qudits from
the constructed paradoxes, which would lay the grounds

for an experimental testing of multipartite multidimensional
nonlocality. The statistical strength of nonlocality proofs
was first defined and discussed by van Dam et al. in [51]
in terms of the amount of evidence against local realism
provided by the corresponding experiments. The measure
proposed in [51] tells us how many trials of the experiment
we should perform in order to observe a substantial violation
of local realism. Cabello and Moreno [52] proved a nec-
essary and sufficient condition for the existence of proofs
of Bell’s theorem using only single-qubit measurements.
Ryu et al. [53] constructed a generalized GHZ contradiction
for multipartite and high-dimensional systems and proved
that D-dimensional GHZ theorem for an N -partite system
holds as long as N is not divisible by all nonunit divisors
of D, smaller than N .
Historically, the GHZ paradox provided by Mermin [37] is

based on the predictions of quantum mechanics (PQM) and
the following ‘‘assignment assumption’’(AA):
If some functional relation f (A,B,C, . . . ,D) = 0

holds as an operator identity among the observables of
a mutually commuting set, then since the results of the
simultaneous measurements of A,B,C, . . . ,D will be one
of the sets a, b, c, . . . , d of simultaneous eigenvalues of
A,B,C, . . . ,D, the results of those measurements must also
satisfy f (a, b, c, . . . , d) = 0, whatever the state of the system
prior to the measurement.

For example, AmBnC` = I H⇒ ambnc` = 1, according to
the AA.

Followed Mermin’s work, various discussions about the
GHZparadoxes (or GHZ contradictions) are essentially based
on the AA above and the PQM to construct a contradiction (a
paradox), showing that the AA is not valid, instead of estab-
lishing a generalmethod for provingBell nonlocality with the
inexistence of the local hidden variable models (LHVMs).

Different from the existing discussions about the GHZ
paradox, we aim to establish some theoretical methods for
mathematically proving Bell nonlocality with the inexistence
of the local hidden variable models (LHVMs), which is moti-
vated by the work [46] . For self-containedness, we recall the
mathematical definition of Bell nonlocality concluded in [18]
and give some basic properties on it in Section 2. In Section 3,
we first derive logically some necessary conditions for a mul-
tipartite state to be Bell local and then obtain some sufficient
conditions for a state to be Bell nonlocal.

II. CONCEPT AND BASIS PROPERTIES
Given n quantum systems S1, S2, . . . , Sn described by Hilbert
spaces H1,H2, . . . ,Hn, we consider the composite system
S1S2 · · · Sn described by the Hilbert spaceH(n)

:= H1⊗H2⊗

· · · ⊗ Hn where dim(Hk ) = dk < +∞. We use D(H(n)) or
D(S1S2 · · · Sn) to denote the set of all quantum states of the
systemH(n), Ik to denote the identity operator onHk and use
[d] to denote the set {1, 2, . . . , d}. For a linear operator T on
a finite dimensional Hilbert space, we use tr(T ) and σ (T ) to
the trace and the spectrum of T , respectively.
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Recall that a positive operator-valued measure (POVM) of
a quantum system X is a set M = {M1,M2, . . . ,Md } ≡

{Mk}
d
k=1 of positive operators acting on the Hilbert space

HX such that
∑d

k=1Mk = IX . For each index j ∈ [n], let
M xj = {Maj|xj}

oj
aj=1

(xj ∈ [mj]) be mj POVMs of system Sj,
where oj denotes the number of measurement operators of
M xj , aj’s denote the labels of the outcomes, and Maj|xj is
the aith-measurement operator of the POVM M xj . Then we
obtain m1m2 · · ·mn POVMs of S1S2 · · · Sn:

M x1,...,xn =
{
Ma1|x1 ⊗ · · · ⊗Man|xn : ai ∈ [oi]

}
, (1)

where x = (x1, . . . , xn) ∈ [m1]× · · · × [mn], which lead to a
set of POVMs:

{M x1,...,xn : xi ∈ [mi]} ≡ {M x1,...,xn}x1,...,xn , (2)

called a measurement assemblage (MA) of H(n) and denoted
by

M =M1 ⊗ · · · ⊗Mn, (3)

where

Mj =
{
M xj : xj ∈ [mj]

}
forms an MA of Hj for each j ∈ [n].
According the hypothesises of quantum mechanics, when

the system S1S2 · · · Sn laying in a state ρ is measured with
a POVM M x1,...,xn labeled by x = (x1, . . . , xn) and given
by Eq. (1), the conditional probability of obtaining the result
a = (a1, . . . , an) reads

Pρ{a|x} = tr[(Ma1|x1 ⊗ · · · ⊗Man|xn )ρ]. (4)

See Figure 1 below for an explanation of this experiment
setting.

FIGURE 1. Sketch of an experiment for Bell nonlocality, in which ρ
denotes the shared state of systems S1,S2, . . . ,Sn, x1, x2, . . . , xn denote
the labels of POVM measurements acting on S1,S2, . . . ,Sn, respectively,
and a1,a2, . . . ,an denote the corresponding outcomes.

Generalizing the mathematical definition of Bell locality
of bipartite states given by Cao and Guo in [18], we fix the
following definition of Bell locality of n-partite states.
Definition 1: A state ρ ∈ D(H(n)) is said to be Bell local

for a givenMAM =M1⊗M2⊗· · ·⊗Mn ofH(n) given by
Eqs. (1) and (2), there exists a probability distribution (PD)
π = {πλ}

d
λ=1 such that

Pρ{a|x} =
d∑
λ=1

πλP1(a1|x1, λ) · · ·Pn(an|xn, λ) (5)

for all x = (x1, . . . , xn) ∈ [m1] × · · · × [mn] and all a =
(a1, . . . , an) ∈ [o1] × · · · × [on], where Pi(ai|xi, λ) ≥ 0,∑oi

ai=1
Pi(ai|xi, λ) = 1(∀i ∈ [n],∀λ ∈ [d]).

A state ρ is said to be Bell local if it is Bell local for every
MA M given by Eqs. (1) and (2). If ρ is not Bell local, then
we say that it is Bell nonlocal.
Furthermore, a pure state |ψ〉 ofH(n) is said to be Bell local

(resp. Bell nonlocal) means that the corresponding density
operator ρ = |ψ〉〈ψ | is Bell local (resp. Bell nonlocal).

Moreover, Eq. (5) is called a local hidden variable (LHV)
model of ρ forM.
By Definition 1, we have the following conclusions.
(1) A state ρ is Bell local for an MAM ofH(n) if and only

if there exists an LHV model of ρ forM.
(2) A state ρ is Bell local if and only if for every MA M

of H(n), there exists an LHV model of ρ forM.
(3) A state ρ is Bell nonlocal if and only if there exists an

MAM such that an LHV model of ρ forM does not exist.
Denote by BL(H(n),M), BL(H(n)), BNL(H(n),M), and

BNL(H(n)) the sets of all Bell local states for M, Bell local
states, Bell nonlocal states forM, and Bell nonlocal states of
the system H(n), respectively. Then

BL(H(n)) =
⋂
M

BL(H(n),M), (6)

BNL(H(n)) =
⋃
M

BNL(H(n),M) (7)

where M runs over all of the MAs of H(n). Sometimes,
we write BL(H(n)) and BNL(H(n)) as BL(S1S2 · · · Sn) and
BNL(S1S2 · · · Sn), respectively.
Remark 2: By Definition 2, one can check that when

ρ ∈ BL(H(n)), tr1(ρ) ∈ BL(⊗i∈[n]\1Hi) for any nonempty
proper subset 1 of [n], where tr1 =

∏
i∈1 trSi and

⊗i∈[n]\1Hi denotes the tensor product ofHi for all i ∈ [n]\1.
Conversely, if tr1(ρ) ∈ BNL(⊗i∈[n]\1Hi) for some 1 ⊂
[n], then ρ ∈ BNL(H(n)). Roughly speaking, total Bell
locality H⇒ partial Bell locality; partial Bell nonlocality
H⇒ total Bell nonlocality. For example, ρABC ⊗ ρXY ∈

BL(ABCXY ) H⇒ ρABC ∈ BL(ABC) and ρXY ∈ BL(XY );
and ρABC ∈ BNL(ABC), or ρXY ∈ BNL(XY ) H⇒ ρABC ⊗

ρXY ∈ BNL(ABCXY ).
Remark 3: Every fully separable state

ρ =

r∑
λ=1

πλρ
S1
λ ⊗ ρ

S2
λ ⊗ · · · ⊗ ρ

Sn
λ

of H(n) has always an LHV model (5) for every MA M
denoted by Eq. (2), wherePj(aj|xj, λ) = tr(Maj|xjρ

Sj
λ ) and then

it is Bell local.
To give an illustration of Bell locality with expectations

of local observables, we let A = {Ai}`i=1, B = {Bj}
m
j=1 and

C = {Ck}nk=1 be families of observables of HA,HB and HC ,
respectively. Assume that operators Ai (resp., Bj andCk ) have
just eA (resp., eB and eC ) different eigenvalues. Thus, we have
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the following spectral decompositions:

Ai =
eA∑
r=1

a(i)r Mr|i, Bj =
eB∑
s=1

b(j)s Ns|j, Ck =
eC∑
t=1

c(k)t Lt|k ,

leading to MAs:

MA = {M1,M2, . . . ,M`
},

NB = {N 1,N 2, . . . ,Nm
},

LC = {L1,L2, . . . ,Ln},

consisting of projective measurements, where

M i
= {Mr|i}

dA
r=1,N

j
= {Ns|j}

dB
s=1,L

k
= {Lt|k}

dC
t=1.

Let ρ ∈ BL(HA⊗HB⊗HC ). Then by definition, there is a
PD {πλ}dλ=1 s.t.

tr[(Mr|i⊗Ls|j⊗Nt|k )ρ]

=

d∑
λ=1

πλPA(r|i, λ)PB(s|j, λ)PC (t|k, λ) (8)

for all possible i, j, k, r, s and t , where {PA(r|i, λ)}
oA
r=1,

{PB(s|j, λ)}
oB
s=1 and {PC (t|k, λ)}

oC
t=1 are PDs. Thus, the expec-

tation of Ai ⊗ Bj⊗Ck w.r.t. ρ reads

〈Ai ⊗ Bj⊗Ck 〉ρ

=

eA∑
r=1

eB∑
s=1

eC∑
t=1

a(i)r b
(j)
s c

(k)
t 〈Mr|i ⊗ Ns|j⊗Lt|k 〉ρ

=

eA∑
r=1

eB∑
s=1

eC∑
t=1

a(i)r b
(j)
s c

(k)
t tr[(Mr|i ⊗ Ns|j⊗Lt|k )ρ]

=

d∑
λ=1

πλ

( eA∑
r=1

a(i)r PA(r|i, λ)

)( eB∑
s=1

b(j)s PB(s|j, λ)

)
( eC∑
t=1

c(k)t PC (t|k, λ)

)

=

d∑
λ=1

πλ〈a(i)〉λ · 〈b(j)〉λ · 〈c(k)〉λ,

where

〈a(i)〉λ =
eA∑
r=1

a(i)r PA(r|i, λ),

〈b(j)〉λ =
eB∑
s=1

b(j)s PB(s|j, λ),

〈c(k)〉λ =
eC∑
t=1

c(k)s PC (t|k, λ),

which are the expectations of random variables

a(i) ∼ σ (Ai) = {a
(i)
1 , a

(i)
2 , . . . , a

(i)
eA}

with PD {PA(1|i, λ),PA(2|i, λ), . . . ,PA(eA|i, λ)};

b(j) ∼ σ (Bj) = {b
(j)
1 , b

(j)
2 , . . . , b

(j)
eB}

with PD {PB(1|j, λ),PB(2|j, λ), . . . ,PB(eB|j, λ)};

c(k) ∼ σ (Ck ) = {c
(k)
1 , c

(k)
2 , . . . , c

(k)
eC }

with PD {PC (1|k, λ),PC (2|k, λ), . . . ,PC (eC |k, λ)}.
Clearly, for all λ = 1, 2, . . . , d , it holds that

min σ (Ai) ≤ 〈a(i)〉λ ≤ max σ (Ai),

min σ (Bj) ≤ 〈b(j)〉λ ≤ max σ (Bj),

min σ (Ck ) ≤ 〈c(k)〉λ ≤ max σ (Ck )

for all possible i, j, k.
This leads to the following proposition, which reveals an

important property of Bell local states and serves the proofs
of our results.
Proposition 4: Let ρ be a Bell local state of HABC :=

HA⊗HB⊗HC . Then expectations of local observables
{Ai⊗Bj⊗Ck}ijk w.r.t. ρ can be represented as convex com-
binations of expectations of local random variables with
different distributions: ∀i, j, k,

〈Ai ⊗ Bj⊗Ck 〉ρ =
d∑
λ=1

πλ〈a(i)〉λ · 〈b(j)〉λ · 〈c(k)〉λ. (9)

A similar conclusion is also valid for n-partite systemH(n).

III. MAIN RESULTS
The main aim of this paper is to derive some necessary
conditions for a multipartite state to be Bell local in terms
of ‘‘measurement expectations’’ of local observables without
invoking Bell inequalities and then obtain some sufficient
conditions for a state to be Bell nonlocal. Our conclusions
will be given according to different cases of n (the number of
subsystems).
Theorem 5: Let ρ ∈ BL(HABC ). Then for all families

A = {A1,A2}, B = {B1,B2} and C = {C1,C2} of ±1-valued
observables of A,B and C, respectively, it holds that
〈A1⊗B2⊗C2〉ρ = 〈A2⊗B1⊗C2〉ρ = 〈A2⊗B2⊗C1〉ρ = −1

implies that

〈A1⊗B1⊗C1〉ρ = −1. (10)

Proof: For any families A = {A1,A2}, B = {B1,B2}
and C = {C1,C2} of ±1-valued observables of A,B and C ,
respectively, we obtain the following projective MAs:

MA = {M1,M2
},NB = {N 1,N 2

}, LC = {L1,L2}

where

M i
= {M i

+|i,M
i
−|i},M

i
+|i −M

i
−|i = Ai,

N j
= {N j

+|j,N
j
−|j},N

j
+|j − N

j
−|j = Bj,

Lk = {Lk
+|k ,L

k
−|k},L

k
+|k − L

k
−|k = Ck .

Since ρ ∈ BL(HABC ), by Definition 1, there is a PD {πλ}dλ=1
s.t.

tr[(Mr|i⊗Ls|j⊗Nt|k )ρ]

=

d∑
λ=1

πλPA(r|i, λ)PB(s|j, λ)PC (t|k, λ) (11)
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for all i, j, k = 1, 2; r, s, t ∈ {+,−}, where

{PA(r|i, λ)}
oA
r=1, {PB(s|j, λ)}

oB
s=1 and {PC (t|k, λ)}

oC
t=1

are PDs. Clearly, we may assume that πλ > 0 for all
λ = 1, 2, . . . , d . Thus, ∀i, j, k = 1, 2,

〈Ai ⊗ Bj⊗Ck 〉ρ =
d∑
λ=1

πλ〈a(i)〉λ · 〈b(j)〉λ · 〈c(k)〉λ, (12)

where
〈a(i)〉λ = PA(+|i, λ)− PA(−|i, λ),

〈b(j)〉λ = PB(+|j, λ)− PB(−|j, λ),

〈c(k)〉λ = PC (+|k, λ)− PC (−|k, λ).

Let
〈A1B2C2〉ρ = 〈A2B1C2〉ρ = 〈A2B2C1〉ρ = −1.

Then
d∑
λ=1

πλ〈a(1)〉λ · 〈b(2)〉λ · 〈c(2)〉λ,

d∑
λ=1

πλ〈a(2)〉λ · 〈b(1)〉λ · 〈c(2)〉λ,

d∑
λ=1

πλ〈a(2)〉λ · 〈b(2)〉λ · 〈c(1)〉λ

are all equal to −1. Hence, for all λ = 1, 2, . . . , d , we have
〈a(1)〉λ · 〈b(2)〉λ · 〈c(2)〉λ = 〈a(2)〉λ · 〈b(1)〉λ · 〈c(2)〉λ

= 〈a(2)〉λ · 〈b(2)〉λ · 〈c(1)〉λ
= −1.

Finding product of the three quantities above yields that

〈a(1)〉λ〈b(1)〉λ〈c(1)〉λ
[
〈a(2)〉λ · 〈b(2)〉λ · 〈c(2)〉λ

]2
= −1

and so 〈a(1)〉λ〈b(1)〉λ〈c(1)〉λ = −1 for all λ = 1, 2, . . . , d .
It follows from Eq. (12) that

〈A1⊗B1⊗C1〉ρ =

d∑
λ=1

πλ〈a(1)〉λ · 〈b(1)〉λ · 〈c(1)〉λ = −1.

The implication (10) is proved. The proof is completed.
Corollary 6: Let ρ ∈ BL(HABC ). Then for all families

A = {A1,A2}, B = {B1,B2} and C = {C1,C2} of ±1-valued
observables of A,B and C, respectively, it holds that

〈A1⊗B2⊗C2〉ρ = 〈A2⊗B1⊗C2〉ρ = 〈A2⊗B2⊗C1〉ρ = 1

implies

〈A1⊗B1⊗C1〉ρ = 1. (13)

Proof. When 〈A1⊗B2⊗C2〉ρ = 〈A2⊗B1⊗C2〉ρ =

〈A2⊗B2⊗C1〉ρ = 1, we have

〈(−A1)⊗B2⊗C2〉ρ = −1,

〈A2⊗(−B1)⊗C2〉ρ = −1,

〈A2⊗B2⊗(−C1)〉ρ = −1

and Theorem 5 yields that

〈(−A1)⊗(−B1)⊗(−C1)〉ρ = −1

and so 〈A1⊗B1⊗C1〉ρ = 1. The proof is completed.
Using Theorem 5 yields the following conclusion, which

gives a method for detecting Bell nonlocality without invok-
ing Bell inequalities.
Corollary 7: Let ρ ∈ D(HABC ). If there are families

A = {A1,A2}, B = {B1,B2} and C = {C1,C2} of ±1-valued
observables of A,B and C, respectively, such that

〈A1⊗B2⊗C2〉ρ = −1;
〈A2⊗B1⊗C2〉ρ = −1;
〈A2⊗B2⊗C1〉ρ = −1;
〈A1⊗B1⊗C1〉ρ = 1,

(14)

then ρ ∈ BNL(HABC ).
Theoretically, this corollary gives a method for proving

a state to be Bell nonlocal in the sense of Definition 1.
Practically, if an experiment shows that 〈A1⊗B2⊗C2〉ρ,

〈A2⊗B1⊗C2〉ρ and 〈A2⊗B2⊗C1〉ρ are close to −1 while
〈A1⊗B1⊗C1〉ρ is close to 1, then we may conclude that ρ
is Bell nonlocal according to Definition 1.
Moreover, if we call the state ρ satisfying the condi-

tion (14) for some A,B and C ‘‘GHZ nonlocal’’, then Corol-
lary 7 can be rewritten as ‘‘If a state ρ of a system ABC is
GHZ nonlocal, then it must be Bell nonlocal.’’ Thus, the QHZ
nonlocality is stronger than the Bell nonlocality.
Example 8: For the three-qubit GHZ state
|G2×3〉 =

1
√
2
(|000〉 + |111〉), put

ρ = |G2×3〉〈G2×3|,A = B = C = {σ x , σ y},

that is, A1 = B1 = C1 = σ
x and A2 = B2 = C2 = σ

y. Then
〈A1⊗B1⊗C1〉ρ = 1 and

〈A1⊗B2⊗C2〉ρ = 〈A2⊗B1⊗C2〉ρ = 〈A2⊗B2⊗C1〉ρ = −1.

It follows from Corollary 7 that ρ = |G2×3〉〈G2×3| is Bell
nonlocal and so is |G2×3〉.
For the state |ψ〉 = 1

√
2
(|000〉+eiθ |111〉)(θ ∈ R), choosing

a unitary operator U such that U |0〉 = |0〉 and U |1〉 =
e−iθ/3|1〉 yields that (U⊗U⊗U )|ψ〉 = |G2×3〉. Thus, |ψ〉
is Bell nonlocal. Generally, for a three-qubit state |ϕ〉 =
1
√
2
(|abc〉 + eiθ |a′b′c′〉)(θ ∈ R), where {|a〉, |a′〉}, {|b〉, |b′〉}

and {|c〉, |c′〉} are orthonormal bases for C2. By choosing
three unitary operators U ,V ,W such that U |a〉 = V |b〉 =
W |c〉 = |0〉 and U |a′〉 = V |b′〉 = W |c′〉 = e−iθ/3|1〉, we get
(U⊗V⊗W )|ϕ〉 = |G2×3〉 and so |ϕ〉 is also Bell nonlocal.
For example, the states

|ψ1〉 =
1
√
2
(|010〉 + eiθ |101〉)(θ ∈ R),

|ψ2〉 =
1
√
2
(|110〉 + eiθ |001〉)(θ ∈ R)

are both Bell nonlocal.
Similar to the proof of Theorem 5, one can prove the

following theorem.
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Theorem 9: Let ρ ∈ BL(H(5)). Then for all families Ak =

{Xk ,Yk} of ±1-valued observables of Hk (k = 1, 2 . . . , 5)
with

〈X1⊗X2⊗X3⊗Y4⊗Y5〉ρ = −1, (15)

〈Y1⊗X2⊗X3⊗X4⊗Y5〉ρ = −1, (16)

〈Y1⊗Y2⊗X3⊗X4⊗X5〉ρ = −1, (17)

〈X1⊗Y2⊗Y3⊗X4⊗X5〉ρ = −1, (18)

〈X1⊗X2⊗Y3⊗Y4⊗X5〉ρ = −1, (19)

it holds that 〈X1⊗X2⊗X3⊗X4⊗X5〉ρ = −1.
When H(5)

= (C2)⊗5, by using Theorem 9 for {Xk ,Yk} =
{σ x , σ y} and ρ = |G2×5〉〈G2×5|, we see that the GHZ state

|G2×5〉 =
1
√
2
(|00000〉 + |11111〉)

is Bell nonlocal since conditions (15)-(19) hold but
〈X1⊗X2⊗X3⊗X4⊗X5〉ρ = 1.
Theorem 10: Let dk = dim(Hk ) ≥ 4(k = 1, 2, . . . , 5)

and ρ ∈ BL(H(5)). Then for all families {Ak ,Bk} of unitary
operators onHk with spectrums:

σ (Ak ) = σ (Bk ) = {1,−1, i,−i} (k = 1, 2, . . . , 5)

and satisfying

〈A31⊗B2⊗B3⊗B4⊗B5〉ρ = −1, (20)

〈B1⊗A32⊗B3⊗B4⊗B5〉ρ = −1, (21)

〈B1⊗B2⊗A33⊗B4⊗B5〉ρ = −1, (22)

〈B1⊗B2⊗B3⊗A34⊗B5〉ρ = −1, (23)

〈B1⊗B2⊗B3⊗B4⊗A35〉ρ = −1, (24)

it holds that 〈A1⊗A2⊗A3⊗A4⊗A5〉ρ = −1.
Proof: Let the families {Ak ,Bk}(k = 1, 2, . . . , 5) satisfy

the described conditions. Then Ak ,Bk has the following spec-
tral decompositions:

Ak = M (k)
1|1 + iM

(k)
2|1 −M

(k)
3|1 − iM

(k)
4|1 =

4∑
ak=1

ω
ak−1
4 M (k)

ak |1
,

Bk = M (k)
1|2 + iM

(k)
2|2 −M

(k)
3|2 − iM

(k)
4|2 =

4∑
ak=1

ω
ak−1
4 M (k)

ak |2
,

where ω4 = e2π i/4, and

X k :=
{
M (k)

1|1,M
(k)
2|1,M

(k)
3|1,M

(k)
4|1

}
Y k :=

{
M (k)

1|2,M
(k)
2|2,M

(k)
3|2,M

(k)
4|2

}
form two projective measurements of the kth subsys-
tem Hk . Hence, we obtain a measurement assemblage
Mk = {X k ,Y k} of the kth subsystem Hk . Since ρ is Bell
local, there exists a PD {πλ}dλ=1 such that

tr[(M (1)
a1|x1
⊗ · · ·⊗M (5)

a5|x5
)ρ]

=

d∑
λ=1

πλP1(a1|x1, λ) · · ·P5(a5|x5, λ) (25)

for all xk = 1, 2 and all ak = 1, 2.

Clearly, we may assume that πλ > 0 for all λ ∈ [d]. The
LHV model (25) implies that
〈A31⊗B2⊗B3⊗B4⊗B5〉ρ

=

4∑
a1,a2,...,a5=1

ω
3(a1−1)+a2+a3+a4+a5−4
4 ·

tr[(M (1)
a1|1
⊗M (2)

a2|2
⊗ · · ·⊗M (5)

a5|2
)ρ]

=

d∑
λ=1

πλ

4∑
a1,a2,...,a5=1

ω
3(a1−1)+a2+a3+a4+a5−4
4 ·

P1(a1|1, λ)P2(a2|2, λ) · · ·P5(a5|2, λ)

=

d∑
λ=1

πλ〈A31〉λ〈B2〉λ〈B3〉λ〈B4〉λ〈B5〉λ,

where

〈A31〉λ =
4∑

a1=1

ω
3(a1−1)
4 P1(a1|1, λ),

〈Bk 〉λ =
4∑

ak=1

ω
ak−1
4 Pk (ak |2, λ)(k = 2, 3, 4, 5).

This shows that
〈A31⊗A2⊗A3⊗A4⊗A5〉ρ

=

d∑
λ=1

πλ〈A31〉λ〈A2〉λ〈A3〉λ〈A4〉λ〈A5〉λ. (26)

Similarly,
〈A1⊗A2⊗A3⊗A4⊗A5〉ρ

=

d∑
λ=1

πλ〈A1〉λ〈A2〉λ〈A3〉λ〈A4〉λ〈A5〉λ, (27)

where

〈Ak 〉λ =
4∑

ak=1

ω
ak−1
4 Pk (ak |1, λ)(k = 1, 2, . . . , 5). (28)

Note that |〈A31〉λ〈B2〉λ〈B3〉λ〈B4〉λ〈B5〉λ| ≤ 1 for all λ ∈ [d]
and −1 is an extreme point of the unit disk D = {z ∈ C :
|z| ≤ 1}, we see from Eqs. (20) and (26) that

〈A31〉λ〈B2〉λ〈B3〉λ〈B4〉λ〈B5〉λ = −1, ∀λ ∈ [d]. (29)

z Similarly, one can prove that ∀λ ∈ [d],
〈B1〉λ〈A32〉λ〈B3〉λ〈B4〉λ〈B5〉λ = −1, (30)

〈B1〉λ〈B2〉λ〈A33〉λ〈B4〉λ〈B5〉λ = −1, (31)

〈B1〉λ〈B2〉λ〈B3〉λ〈A34〉λ〈B5〉λ = −1, (32)

〈B1〉λ〈B2〉λ〈B3〉λ〈B4〉λ〈A35〉λ = −1. (33)

By finding the product of the left-hand sides of Eqs. (29-33),
we obtain that

〈A31〉λ〈A
3
2〉λ〈A

3
3〉λ〈A

3
4〉λ〈A

3
5〉λ ·

4∏
k=1

(〈Bk 〉λ)4 = −1. (34)

Hence, |〈A3k 〉λ| = |〈Bk 〉λ| = 1(k = 1, 2, . . .) and so 〈A3k 〉λ
as well as 〈Bk 〉λ are extreme points of the unit disk D. Note
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that both 〈A3k 〉λ and 〈Bk 〉λ are convex combinations of points
1, ω4, ω

2
4 and ω

4
4, we conclude that both 〈A

3
k 〉λ and 〈Bk 〉λ are

elements of 1, ω4, ω
2
4 and ω

4
4, i.e.,

Pk (a′k |1, λ) = 1,Pk (ak |1, λ) = 0(ak 6= a′k ),

Pk (a′′k |2, λ) = 1,Pk (ak |2, λ) = 0(ak 6= a′′k )

for some a′k and a
′′
k . Thus, when k = 1, 2, . . . , 5,

〈A3k 〉λ = ω
3(a′k−1)
4 = (〈Ak 〉λ)3, 〈Bk 〉λ = ω

a′′k−1
4 .

It follows from (34) that we have

(〈A1〉λ〈A2〉λ〈A3〉λ〈A4〉λ〈A5〉λ)3 = −1. (35)

Since 〈Ak 〉λ ∈ {1, ω4, ω
2
4, ω

3
4}, we have

〈A1〉λ〈A2〉λ〈A3〉λ〈A4〉λ〈A5〉λ ∈ {1, ω4, ω
2
4, ω

3
4}.

Consequently, we see from (35) that

〈A1〉λ〈A2〉λ〈A3〉λ〈A4〉λ〈A5〉λ = ω2
4 = −1.

The proof is completed.
Corollary 11: Let dk = dim(Hk ) ≥ 4(k = 1, 2, . . . , 5)

and ρ ∈ BL(H(5)). Then for all families {Ak ,Bk} of unitary
operators onHk with the spectrums:

σ (Ak ) = σ (Bk ) = {1,−1, i,−i}(k = 1, 2, . . . , 5)

and satisfying

〈A31⊗B2⊗B3⊗B4⊗B5〉ρ = 1, (36)
〈B1⊗A32⊗B3⊗B4⊗B5〉ρ = 1, (37)
〈B1⊗B2⊗A33⊗B4⊗B5〉ρ = 1, (38)
〈B1⊗B2⊗B3⊗A34⊗B5〉ρ = 1, (39)
〈B1⊗B2⊗B3⊗B4⊗A35〉ρ = 1, (40)

it holds that 〈A1⊗A2⊗A3⊗A4⊗A5〉ρ = 1.
Proof: The proof is completed by using Theorem 10 for

the families {−Ak ,Bk}(k = 1, 2, . . . , 5).
Corollary 12: For a state ρ ∈ D(H(5)), if there exist fami-

lies {Ak ,Bk} of unitary operators on Hk with the spectrums:

σ (Ak ) = σ (Bk ) = {1,−1, i,−i} (k = 1, 2, . . . , 5)

and satisfying the conditions (36)-(40) and

〈A1⊗A2⊗A3⊗A4⊗A5〉ρ = −1,

then ρ ∈ BNL(H(5)).
To use Corollary 12 and check the Bell nonlocality of the

generalized GHZ state

|G4×5〉 =
1
2

3∑
k=0

|kkkkk〉, (41)

let us introduce generalizations [46] of the Pauli matrices

σ x = X =
(
0 1
1 0

)
,

σ y = Y =
(
0 −i
i 0

)
,

σ z = Z =
(
1 0
0 −1

)

as follows. Let H be a d-dimensional Hilbert space with an
ONB {|ek 〉}

d−1
k=0 . Define

σ xd = X =
d−1∑
k=0

|ek⊕1〉〈ek |, k ⊕ 1 = k + 1(mod d), (42)

σ
y
d = Y = epπ i/d

d−1∑
k=0

(ωd )k |ek	1〉〈ek |,

k 	 1 = k − 1(mod d), (43)

σ zd = Z =
d−1∑
k=0

(ωd )k |ek 〉〈ek |, (44)

where ωd = e2π i/d denotes the principal d th-root of unity,
p = 0 for d odd and p = 1 for d even.
It is easy to check that X ,Y and Z are all unitary operators

onH with the same spectrum

σ (X ) = σ (Y ) = σ (Z ) = {1, ωd , (ωd )2, . . . , (ωd )d−1}.

We call X ,Y and Z the generalized Pauli operators (GPOs)
of order d . Under the basis {|ek 〉}

d−1
k=0 used in the definition

of X ,Y and Z , GPOs have their matrix representations. For
example, when d = 2, we have

σ x2 = X =
(
0 1
1 0

)
= σ x ,

σ
y
2 = Y = i

(
0 −1
1 0

)
= σ y,

σ z2 = Z =
(
1 0
0 −1

)
= σ z.

When d = 3, we have

σ x3 = X =

 0 0 1
1 0 0
0 1 0

 ,
σ
y
3 = Y =

 0 ω3 0
0 0 ω2

3
1 0 0

 ,
σ z3 = Z =

 1 0 0
0 ω3 0
0 0 ω2

3

 ,
When H = C4, d = 4, we have

σ x4 = X =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

σ
y
4 = Y = eπ i/4


0 ω4 0 0
0 0 ω2

4 0
0 0 0 ω3

4
1 0 0 0

 ,

σ z4 = Z =


1 0 0 0
0 ω4 0 0
0 0 ω2

4 0
0 0 0 ω3

4

 .
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Moreover, it is easy to check that the generalized Pauli
operators X ,Y and Z have the following properties:
(1) XY = e2πpi/dZ ;
(2) Xd = Y d = Zd = Id ;
(3) ∀a, b ∈ Z,

Y bXa = e2πabi/dXaY b,ZbXa = e2πabi/dXaZb.

In the case that H = C2 and the ONB {|e0〉, |e1〉} takes
as the usual basis {|0〉, |1〉} for C2, the generalized Pauli
operators X ,Y ,Z reduce to σ x , iσ y,−σ z.

When H = C4, d = 4, X ,Y and Z have the same
spectrum {1, i,−1,−i} and lead to the following six local
unitary operators on (C4)⊗5:

V0 = X1⊗X2⊗X3⊗X4⊗X5;
V1 = (X1)3⊗Y2⊗Y3⊗Y4⊗Y5;
V2 = Y1⊗(X2)3⊗Y3⊗Y4⊗Y5;
V3 = Y1⊗Y2⊗(X3)3⊗Y4⊗Y5;
V4 = Y1⊗Y2⊗Y3⊗(X4)3⊗Y5;
V5 = Y1⊗Y2⊗Y3⊗Y4⊗(X5)3,

(45)

where Xk = X ,Yk = Y , acting on the kth subsystem. We call
these operators the 4× 5-GHZ operators.
By using Corollary 12 for Ak = σ x4 ,Bk = σ

y
4 (k =

1, 2, . . . , 5), we see that if a state ρ of (C4)⊗5 satisfies
〈Vk 〉ρ = −1(k = 1, 2, . . . , 5) but 〈V0〉ρ 6= −1, then it is Bell
nonlocal. Especially, when the ONB {|ek 〉}3k=0 takes as the
usual basis {|k〉}3k=0 forC

4, we can prove the Bell nonlocality
of |G4×5〉 given by (41). In this case, it is easy to check
that |G4×5〉 is a common eigenstate of the above operators
V0,V1, . . . ,V5 with eigenvalues v0 = 1, v1 = . . . = v5 =
−1, respectively. Thus, 〈Vk 〉ρ = −1(k = 1, 2, . . . , 5) but
〈V0〉ρ = 1. It follows from Corollary 12 that |G4×5〉 is Bell
nonlocal.
Similar to the proof of Theorem 10, one can deduce the

following theorem.
Theorem 13: Let d = dim(Hk ) be an even integer
≥ 2(k ∈ [d + 1]) and ρ ∈ BL(H(d+1)). Then for all families
{Ak ,Bk} of unitary operators onHk with the spectrums:

σ (Ak ) = σ (Bk ) = {1, ωd , (ωd )2, . . . , (ωd )d−1},

where k ∈ [d + 1], satisfying

〈Ad−11 ⊗B2⊗B3⊗ · · ·⊗Bd⊗Bd+1〉ρ = −1, (46)

〈B1⊗A
d−1
2 ⊗B3⊗ · · ·⊗Bd⊗Bd+1〉ρ = −1, (47)

〈B1⊗B2⊗A
d−1
3 ⊗ · · ·⊗Bd⊗Bd+1〉ρ = −1, (48)

· · · · · · , (49)

〈B1⊗B2⊗B3⊗ · · ·⊗A
d−1
d ⊗Bd+1〉ρ = −1, (50)

〈B1⊗B2⊗B3⊗ · · ·⊗Bd⊗A
d−1
d+1〉ρ = −1, (51)

it holds that 〈A1⊗A2⊗A3 · · · ⊗Ad+1〉ρ = −1.
Corollary 14: When d = dim(Hk ) is an even integer
≥ 2(k ∈ [d + 1]) and ρ ∈ D(H(d+1)), if there exist families
{Ak ,Bk} of unitary operators onHk with the spectrums:

σ (Ak ) = σ (Bk ) = {1, ωd , (ωd )2, . . . , (ωd )d−1}

for all k ∈ [d + 1] and satisfying conditions (46)-(51) and

〈A1⊗A2⊗A3 · · · ⊗Ad+1〉ρ 6= −1,

then ρ ∈ BNL(H1⊗ · · ·⊗Hd+1).
The 4× 5-GHZ operators (45) have the following general

forms given in [46]:

V0 = X1⊗X2⊗X3⊗X4⊗X5⊗ · · ·⊗Xd⊗Xd+1;
V1 = (X1)d−1⊗Y2⊗Y3⊗Y4⊗Y5⊗ · · ·⊗Yd⊗Yd+1;
V2 = Y1⊗(X2)d−1⊗Y3⊗Y4⊗Y5⊗ · · ·⊗Yd⊗Yd+1;
V3 = Y1⊗Y2⊗(X3)d−1⊗Y4⊗Y5⊗ · · ·⊗Yd⊗Yd+1;
· · · · · · ;

Vd = Y1⊗Y2⊗Y3⊗Y4⊗Y5⊗ · · ·⊗(Xd )d−1⊗Yd+1;
Vd+1 = Y1⊗Y2⊗Y3⊗Y4⊗Y5⊗ · · ·⊗Yd⊗(Xd+1)d−1,

(52)

where d is an even positive integer ≥ 2 and Xk = σ xd ,

Yk = σ
y
d . When we take the ONB {|ek 〉}

d−1
k=0 as the usual basis

{|k〉}d−1k=0 for Cd , it is easy to check that the generalized GHZ
state

|Gd×(d+1)〉 =
1
√
d

d−1∑
k=0

|k〉⊗(d+1)

is a common eigenstate of the operators V0,V1, . . . ,Vd+1
with corresponding eigenvalues v0 = 1, v1 = . . . = vd+1 =
−1, respectively. By using Corollary 14, for Ak = σ xd ,Bk =
σ
y
d (k = 1, 2, . . . , d+1), we see that if a state ρ of (Cd )⊗(d+1)

satisfies 〈Vk 〉ρ = −1(k ∈ [d + 1]) but 〈V0〉ρ 6= −1, then it is
Bell nonlocal. Especially, |Gd×(d+1)〉 is Bell nonlocal.
Theorem 15: Let d = dim(Hk ) be an even integer
≥ 2(k ∈ [d + 2]) and ρ ∈ BL(H(d+2)). Then for all families
{Ak ,Bk} of unitary operators onHk with the spectrums:

σ (Ak ) = σ (Bk ) = {1, ωd , (ωd )2, . . . , (ωd )d−1}

for all k ∈ [d + 2] satisfying the following d + 3 equations

〈Ad−11 ⊗B2⊗B3⊗ · · ·⊗Bd+1⊗Bd+2〉ρ = −1, (53)

〈B1⊗A
d−1
2 ⊗B3⊗ · · ·⊗Bd+1⊗Bd+2〉ρ = −1, (54)

〈B1⊗B2⊗A
d−1
3 ⊗ · · ·⊗Bd+1⊗Bd+2〉ρ = −1, (55)

· · · · · · , (56)

〈B1⊗B2⊗B3⊗ · · ·⊗A
d−1
d+1⊗Bd+2〉ρ = −1, (57)

〈B1⊗B2⊗B3⊗ · · ·⊗Bd⊗Bd+1⊗A
d−1
d+2〉ρ = −1, (58)

〈Bd−11 ⊗A2⊗A3⊗ · · ·⊗Ad+1⊗Ad+2〉ρ = −1, (59)

it holds that 〈A1⊗B2⊗B3⊗ · · ·⊗Bd+2〉ρ = −1.
Indeed, when the dimension d is a small even number,

to find different GHZ operators is possible. For example,
we have the following two results.
Theorem 16: Let ρ ∈ BL(H(4)). Then for all familiesAk =

{Xk ,Yk} of ±1-valued observables of Hk (k = 1, 2 . . . , 4),
with

〈X1⊗Y2⊗Y3⊗X4〉ρ = −1, (60)

〈X1⊗Y2⊗X3⊗Y4〉ρ = −1, (61)

〈X1⊗X2⊗Y3⊗Y4〉ρ = −1, (62)

it holds that 〈X1⊗X2⊗X3⊗X4〉ρ = −1.
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When H(4)
= (C2)⊗4, by using Theorem 16 for

{Xk ,Yk} = {σ x , σ y} and ρ = |G2×4〉〈G2×4|, we see that the
GHZ state

|G2×4〉 =
1
√
2
(|0000〉 + |1111〉)

is Bell nonlocal since conditions (60)-(62) hold but
〈X1⊗Y2⊗Y3⊗X4〉ρ = 1.

IV. CONCLUSION
Usually, Bell nonlocality is detected by violation of some
Bell’s inequalities, such as CHSH inequality for two qubits.
It can be revealed by a method without invoking Bell inequal-
ities, e.g. by constructing a Hardy paradox or a GHZ paradox
to prove Bell locality of the constructed states.

Hardy Paradox says essentially that there exists a state ρ
of system AB and±1-valued observables Ak ,Bk (k = 1, 2) of
systems A and B, respectively, with t1 < t2 satisfying

Pρ(A1 < B1) = Pρ(B1 < A2) = Pρ(A2 < B2) = 0,

Pρ(A1 < B2) 6= 0 (63)

Contrast to the existing all-versus-nothing test of nonlocal-
ity, Dong et al. obtained [19] somemethods for detecting Bell
nonlocality based on the Hardy Paradox and proved mathe-
matically if there are {t1, t2}-valued observables Ak ,Bk (k =
1, 2) of systems A and B, respectively, with t1 < t2 such
that Eq. (63) holds, then the state ρ must be Bell nonlocal
according to the definition of Bell nonlocality proposed by
Cao and Guo in [18].

GHZ paradox says indeed that there exists a tripartite
state ρ and some families A = {A1,A2}, B = {B1,B2}
and C = {C1,C2} of ±1-valued observables of A,B and C ,
respectively, such that

〈A1⊗B2⊗C2〉ρ = 〈A2⊗B1⊗C2〉ρ = 〈A2⊗B2⊗C1〉ρ = 1,

〈A1⊗B1⊗C1〉ρ = −1. (64)

Distinguishing with the existing discussions about the
GHZ paradox, but motivated by them, we have established
some methods for detecting Bell nonlocality in a multipartite
system without invoking Bell inequalities. All of our results
have been given as theorems and corollaries in terms of
‘‘expectations’’ of local observables without invoking Bell
inequalities. For instance, based on the mathematical defi-
nition of Bell locality, we have proved logically that when
Eq. (64) is satisfied by a tripartite state ρ and some families
A = {A1,A2}, B = {B1,B2} and C = {C1,C2} of ±1-valued
observables of A,B and C , respectively, the state ρ must be
Bell nonlocal.
This may lead to a new idea for proving Bell nonlocality

without using Bell inequalities.
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