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ABSTRACT In this paper, we consider the problem of the S-asymptotically ω-periodic synchronization of
fractional-order complex-valued recurrent neural networks with time delays. Firstly, we can not explicitly
decompose the fractional-order complex-valued systems into equivalent fractional-order real-valued sys-
tems, bymeans of the contractionmapping principle and some important features ofMittag-Leffler functions,
we obtain some sufficient conditions for the existence and uniqueness of S-asymptotically ω-periodic
solutions for this class of neural networks. Then, by constructing an appropriate Lyapunov functional,
the theory of fractional differential equation, and some inequality techniques, sufficient conditions are
obtained to guarantee the global Mittag-Leffler synchronization of the drive-response systems. Finally, two
examples are given to illustrate the effectiveness and feasibility of our main results.

INDEX TERMS Fractional-order derivative, S-asymptotically ω-periodic solution, Mittag-Leffler function,
complex-valued neural network, synchronization.

I. INTRODUCTION
In the past few years, the dynamical behaviors of
complex-valued neural networks (CVNNs) have been exten-
sively studied and analyzed, their application has been
extended to optoelectronics, image, remote sensing, quantum
neuron devices and systems, spatiotemporal analysis of the
physiological nervous system, and artificial neural informa-
tion processing [1], [2]. Complex-valued neural networks are
not only the simple extension of real-valued neural networks,
but also are quite different from real-valued neural networks
and havemore complicated properties than real-valued neural
networks. Hence, it is very important to study the dynamical
properties of CVNNs, such as the existence and stability of
the equilibrium, periodic solutions, almost periodic solutions,
which have been studied by many scholars [3]–[11]. For
example, authors of [8] considered the robust passivity and
stability analysis of uncertain complex-valued impulsive neu-
ral network. Since the concept of the drive-response synchro-
nization for coupled chaotic systems was proposed in Pecora
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and Carrol [12], chaos synchronization has become a hot
topic and much attention ( [13]–[18]) has been paid to control
and chaos synchronization because of its potential applica-
tions in secure communication, automatic control, biological
systems, information science. Recently, some scholars have
studied the synchronization of the complex-valued neural
networks [19]–[22].

Note that Caputo fractional derivative can more accu-
rately depict the memory and hereditary characteristics
of various materials and processes, which has been suc-
cessfully applied in various fields, such as electromag-
netic waves, dielectric polarization, mathematical biology
and neural networks [23]–[31]. In recent years, some
outstanding results about dynamical analysis and synchro-
nization control for fractional-order complex-valued neu-
ral networks have been reported [32]–[38]. For example,
authors of [33] considered the problem of synchroniza-
tion of fractional-order complex-valued neural networks
with time delays via a decomposing method; in [38],
authors studied the quasi-projective synchronization of
fractional-order complex-valued recurrent neural networks
by a non-decomposition method.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 37883

https://orcid.org/0000-0003-4087-6288
https://orcid.org/0000-0001-7184-4102


Y. Hou, L. Dai: S-Asymptotically ω-Periodic Solutions of Fractional-Order Complex-Valued Recurrent Neural Networks

Besides, the theory of S-asymptotically ω-functions
with values in Banach spaces was initiated in [39].
Later, some researchers have considered the existence of
S-asymptotically ω solutions of fractional-order differen-
tial equations, and fractional-order integro-differential equa-
tions [40]. Since the Caputo fractional-order derivative,
it is shown that ω-periodic or autonomous fractional-order
neural networks cannot generate exactly ω-periodic sig-
nals. Thus, during recent years, many researchers have
paid increasing attention to deal with the S-asymptotically
ω-periodic solution of fractional-order non-autonomous
neural networks [41]–[43]. Compared with the previ-
ous results, rare results are available for S-asymptotically
ω-periodic solutions of fractional-order complex-valued neu-
ral networks.

However, up to now, there is no result about the
S-asymptoticallyω-periodic synchronization of the fractional-
order complex-valued recurrent neural networks with time
delays, which is still an open challenge. Therefore, it is
necessary to study the synchronization of fractional-order
complex-valued recurrent neural networks.

With the inspiration from the previous research, in order
to fill the gap in the research field of fractional-order
complex-valued recurrent neural networks, the work of
this article comes from two main motivations. (1) In
practical applications, ω-periodic motion is an interest-
ing and significant dynamical property for fractional-order
differential equations. However, some results show that
ω-periodic or autonomous fractional-order neural networks
cannot generate exactly ω-periodic signals. So, in past
decade, many authors studied S-asymptotically ω-periodic
oscillations of fractional-order non-autonomous neural net-
works [41]–[43]. (2) Recently, many literatures [33]–[38]
had studied the fractional-order complex-valued neural net-
works. It is noteworthy that the scholars have not begun
to consider the S-asymptotically ω-periodic oscillation for
fractional-order complex-valued neural networks, thus it
is worth studying S-asymptotically ω-periodic motion of
fractional-order complex-valued neural network models via a
non-decomposition
method.

Compared with the previous literatures, the main contribu-
tions of this paper are listed as follows.

(1) Firstly, to the best of our knowledge, this is the first time
to study the S-asymptotically ω-periodic synchronization for
complex-valued neural networks.

(2) Secondly, in this paper, without separating the
complex-valued neural networks into two real-valued sys-
tems. Therefore, the results are less conservative and more
general [33]–[35], and we improve the norm.

(3) Thirdly, our method of this paper can be used
to study the S-asymptotically ω-periodic synchronization
for other types of fractional-order complex-valued neural
networks.

(4) Finally, examples and numerical simulations are given
to verify the effectiveness of the conclusion.

A. NOTATIONS
Throughout this paper, for fractional-order derivative,
we always choose the Caputo fractional derivative operator
C
0 D

α
t . Let R, Rn, C and Cn denote the set of real numbers,

the n-dimensional real vector space, the set of complex num-
bers, and the n-dimensional complex vector space, respec-
tively. Let x = xR − ixI be the conjugate of x ∈ C. For a
complex number x = xR + ixI , i =

√
−1 is the imaginary

unit, xR and xI are the real and imaginary parts of x, respec-
tively. For every x ∈ C, the norm of x is defined as ‖x‖C =√
xx =

√
(xR)2 + (xI )2, and for x = (x1, x2, . . . , xn)T ∈

Cn, we define ‖x‖0 = max
l∈J
{‖xl‖C}. C([0,+∞),Cn) is

a set composed of all continuous functions from [0,+∞)
into Cn. The notation SAPω(Cn) stands for the sub-
space of C([0,+∞),Cn) consisting of the S-asymptotically
ω-periodic functions.

B. MODEL DESCRIPTION
Motivated by the above statement, in this paper, we consider
the following fractional-order complex-valued recurrent neu-
ral network with time-varying delays:

C
0 D

α
t xl(t) = −dl(t)xl(t)+

n∑
j=1

alj(t)fj
(
xj(t)

)
+

n∑
j=1

blj(t)gj
(
xj(t − τlj(t))

)
+ Il(t), (1)

where 0 < α < 1, t ≥ 0, l ∈ {1, 2, . . . , n} =: J , n is
the number of neurons in layers; xl(t) ∈ C and Il(t) ∈ R
are the state and bias of the l-th neuron at time t , respec-
tively; dl(t) > 0 is the self-feedback connection weight;
alj(t), blj(t) ∈ C are the connection weight and the delay
connection weight of neural network at time t , respectively;
τlj(t) is the transmission delays; fj, gj : C → C are the
activation functions.

For the convenience, we will adopt the following notation:

a+lj = sup
t∈R
‖alj(t)‖C, b+lj = sup

t∈R
‖blj(t)‖C,

τ = max
l,j∈J

{
sup
t∈R

τlj(t)
}
.

The initial conditions of the system (1) are of the form

xl(s) = ϕl(s), s ∈ [−τ, 0], l ∈ J ,

where ϕl ∈ C([−τ, 0],C).
This paper is organized as follows: In Section 2, we intro-

duce some definitions and preliminary lemmas. In Section 3,
we establish some sufficient conditions for the existence of
S-asymptotically ω-periodic solutions of (1). In Section 4,
the global Mittag-Leffler synchronization is investigated.
In Section 5, some numerical examples are provided to
verify the effectiveness of the theoretical results. Finally,
in Section 6, the conclusions are drawn.
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II. PRELIMINARIES
In this section, we recall some definitions and make some
preparations. In this paper, we will adopt Caputo fractional
derivative.
Definition 1: [23] The fractional integral with fractional

order α > 0 of function f (t) is defined as

0Iαt f (t) =
1

0(α)

∫ t

0
(t − s)α−1f (s)ds,

where 0(·) is Gamma function defined by 0(α) =∫
+∞

0 tα−1e−tdt .
Definition 2: [23] Caputo fractional derivative of function

f (t) is defined by

C
0 D

α
t f (t) =

1
0(1− α)

∫ t

0

f ′(s)
(t − s)α

ds, 0 < α < 1.

Definition 3: [23] The one parameterMittag-Leffler func-
tion is defined as

Eα(x) =
+∞∑
k=0

xk

0(kα + 1)
,

the two parameter Mittag-Leffler function is defined as

Eα,β (x) =
+∞∑
k=0

xk

0(kα + β)
,

where x ∈ C, α, β > 0. Furthermore, E1,1(x) = E1(x) = ex .
Definition 4: [23] The Laplace transform for f (t) is

defined as

F(s) = L{f (t); s} =
∫
+∞

0
e−st f (t)dt, s ∈ C.

Lemma 1: [23] d
dx

[
xαEα,α+1(λxα)

]
= xα−1Eα,α(λxα),

where α, λ, x ∈ C.
Lemma 2: [31] If λ > 0 and α ∈ (0, 1], then
lim

t→+∞
tαEα,α+1(−λtα) = 1

λ
and tαEα,α+1(−λtα) ≤ 1

λ
for

t ≥ 0.
Lemma 3: [43] If a, λ > 0 and α ∈ (0, 1], then
lim

t→+∞
Eα(−λtα) = 0 and

lim
t→+∞

∫ a

0
(t − s)α−1Eα,α(−λ(t − s)α)ds = 0.

Definition 5: A function f ∈ C([0,+∞),Cn) is called
S-asymptotically periodic if there exists ω > 0 such that
lim

t→+∞
‖f (t + ω) − f (t)‖0 = 0. In this case, we say that ω

is an asymptotic period of f and that f is S-asymptotically
ω-periodic.
Consider a fractional delayed equation

C
0 D

α
t x(t) = f (t, xt ), t ≥ 0, (2)

where 0 < α ≤ 1 and xt (σ ) = x(t + σ ), σ ∈ [−τ, 0] f is a
continuous vector function satisfying f (t, 0) = 0.
Lemma 4: [30] (Modified fractional Razumikhin theo-

rem). The zero solution of fractional delayed equation (2) will
be asymptotically stable if there exist three constants β1 > 0,

β2 > 0, β3 > 0 and a quadratic Lyapunov function V (x)
satisfying

β1‖x‖2 ≤ V (x) ≤ β2‖x‖2,

and its α-order derivative along equation (2) satisfies

C
0 D

α
t V (x(t)) ≤ −β3‖x‖

2,

whenever

V (x(t + σ )) ≤ ξV (x(t)), σ ∈ [−τ, 0],

for some ξ > 1.
Lemma 5: [24] Let V (t) be a continuous function on

[0,+∞) and satisfying

C
0 D

α
t V (t) ≤ −ξV (t),

where 0 < α < 1 and ξ > 0. Then

V (t) ≤ −ξV (0)Eα
[
− ξ tα

]
, t ≥ 0.

Lemma 6: [36] Suppose x(t) ∈ Cn is a differentiable
vector-valued function, then for any t ≥ 0 and 0 < α < 1,

C
0 D

α
t

(
x(t)x(t)

)
≤ x(t)C0 D

α
t x(t)+

(
C
0 D

α
t x(t)

)
x(t).

Throughout this paper, we assume that the following con-
ditions hold:
(H1) τlj is ω-periodic function; dl ∈ C(R,C) is S-

asymptotically ω-periodic function; alj, bljk , Il ∈

C(R,C) are S-asymptotically ω-periodic functions,
where l, j ∈ J .

(H2) There exist positive constants L fj , L
g
j such that for any

x, y ∈ C, ∥∥fj(x)− fj(y)∥∥C ≤ L fj
∥∥x − y∥∥C,∥∥gj(x)− gj(y)∥∥C ≤ Lgj
∥∥x − y∥∥C,

where l ∈ J .
(H3) For l ∈ J , ϒl < d−l , where

ϒl =

n∑
j=1

[
a+lj L

f
j + b

+

lj L
g
j

]
.

III. S-ASYMPTOTICALLY ω-PERIODICITY
In this section, we will study the existence S-asymptotically
ω-periodic solutions of system (1).

A. VOLTERRA INTEGRAL EXPRESSION OF
FRACTIONAL-ORDER COMPLEX-VALUED NEURAL
NETWORKS
Let E =

{
x = (x1, x2, . . . , xn)T ∈ SAPω(Cn)

}
with the norm∥∥x∥∥E = max

l∈J

{
sup
t∈R
‖xl(t)‖C

}
, then E is a Banach space.

From (H3), we can choose a positive constant λ > d−l −ϒl
such that

0 < δ := max
l∈J

{
λ− d−l + ϒl

λ

}
< 1. (3)
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Now, for any given φ ∈ E, we consider the following
system:

C
0 D

α
t xl(t) = −λxl(t)+Hφ

l (t), l ∈ J , (4)

where

Hφ
l (t) = (λ− dl(t))φl(t)+

n∑
j=1

alj(t)fj
(
φj(t)

)
+

n∑
j=1

blj(t)gj
(
φj(t − τlj(t))

)
+ Il(t).

Taking the Laplace transform in the two sides of system (4),
it can be obtained

sαxl(s)− sα−1φl(0) = −λxl(s)+ L
[
Hφ
l (t)

]
(s),

that is

xl(s) =
sα−1

sα + λ
φl(0)+

1
sα + λ

L
[
Hφ
l (t)

]
(s),

by taking the inverse Laplace transform in the two sides of
the above equality, we can obtain

xl(t) = Eα
[
− λtα

]
φl(0)+

∫ t

0
(t − s)α−1

×Eα,α
[
− λ(t − s)α

]
Hφ
l (s)ds.

B. THE EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC
SOLUTIONS
Theorem 1: Let (H1)-(H3) hold. Then system (1) has a

unique S-asymptotically ω-periodic solution.
Proof: Let 8 : SAPω(Cn) → C

(
[0,+∞),Cn

)
be the

operator defined by

(8φ)l(t) = Eα
[
− λtα

]
φl(0)+

∫ t

0
(t − s)α−1

×Eα,α
[
− λ(t − s)α

]
Hφ
l (s)ds, (5)

where l ∈ J .
First, we show that 8 : E → E. For any φ ∈ E with
‖φ‖E < +∞, then for any ε > 0, there is a positive number
t1 > 0 such that∥∥φl(t + ω)− φl(t)∥∥C < ε, t > t1.

From (5), for any t > t1, l ∈ J , it follows that

(8φ)l(t + ω) = Eα
[
− λ(t + ω)α

]
φl(0)

+

∫ t+ω

0
(t + ω − s)α−1

×Eα,α
[
− λ(t + ω − s)α

]
Hφ
l (s)ds

= Eα
[
− λ(t + ω)α

]
φl(0)

+

∫ t

−ω

(t − s)α−1

×Eα,α
[
− λ(t − s)α

]
Hφ
l (s+ ω)ds.

Consequently, for any t > t1, l ∈ J , we have

(8φ)l(t + ω)− (8φ)l(t)

= Eα
[
− λ(t + ω)α

]
φl(0)− Eα

[
− λtα

]
φl(0)

+

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

[
(λ− dl(s+ ω))φl(s+ ω)− (λ− dl(s))φl(s)

+

n∑
j=1

[
alj(s+ ω)fj

(
φj(s+ ω)

)
− alj(s)fj

(
φj(s)

)]
+

n∑
j=1

[
blj(s+ ω)gj

(
φj(s+ ω − τlj(s))

)
− blj(s)gj

(
φj(s− τlj(s))

)
+ Il(s+ ω)− Il(s)

]
ds

+

∫ 0

−ω

(t − s)α−1Eα,α
[
− λ(t − s)α

]
×

[
(λ− dl(s+ ω))φl(s+ ω)+

n∑
j=1

alj(s+ ω)

× fj
(
φj(s+ ω)

)
+

n∑
j=1

blj(s+ ω)

×gj
(
φj(s+ ω − τlj(s))

)
+ Il(s+ ω)

]
ds

=: K̂ 1
l (t)+ K̂

2
l (t)+ K̂

3
l (t)+ K̂

4
l (t)+ K̂

5
l (t)

+ K̂ 6
l (t)+ K̂

7
l (t)+ K̂

8
l (t)+ K̂

9
l (t)+ K̂

10
l (t)

+ K̂ 11
l (t)+ K̂ 12

l (t),

where

K̂ 1
l (t) = Eα

[
− λ(t + ω)α

]
φl(0)− Eα

[
− λtα

]
φl(0),

K̂ 2
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
× (λ− dl(s+ ω))

[
φl(s+ ω)− φl(s)

]
ds,

K̂ 3
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×
[
dl(s+ ω)− dl(s)

]
φl(s)ds,

K̂ 4
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

n∑
j=1

[
alj(s+ ω)− alj(s)

]
fj
(
φj(s+ ω)

)
ds,

K̂ 5
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

n∑
j=1

alj(s)
[
fj
(
φj(s+ ω)

)
− fj

(
φj(s)

)]
ds,

K̂ 6
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

n∑
j=1

[
blj(s+ ω)− blj(s)

]
× gj

(
φj(s+ ω − τlj(s))

)
ds,
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K̂ 7
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

n∑
j=1

blj(s)
[
gj
(
φj(s+ ω − τlj(s))

)
− gj

(
φj(s− τlj(s))

)]
ds,

K̂ 8
l (t) =

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×
[
Il(s+ ω)− Il(s)

]
ds,

K̂ 9
l (t) =

∫ 0

−ω

(t − s)α−1Eα,α
[
− λ(t − s)α

]
× (λ− dl(s+ ω))φl(s+ ω)ds

K̂ 10
l (t) =

∫ 0

−ω

(t − s)α−1Eα,α
[
− λ(t − s)α

]
×

n∑
j=1

alj(s+ ω)fj
(
φj(s+ ω)

)
ds

K̂ 11
l (t) =

∫ 0

−ω

(t − s)α−1Eα,α
[
− λ(t − s)α

]
×

n∑
j=1

blj(s+ ω)gj
(
φj(s+ ω − τlj(s))

)
ds,

K̂ 12
l (t) =

∫ 0

−ω

(t − s)α−1Eα,α
[
− λ(t − s)α

]
Il(s+ ω)ds.

From Lemma 3, for each ε > 0, l ∈ J , it has t2 > t1 such
that∥∥K̂ 1

l (t)
∥∥
C =

∣∣∣Eα[− λ(t + ω)α]
−Eα

[
− λtα

]∣∣∣∥∥φl(0)∥∥C < ε, ∀t > t2.

Noting that Eα,α
[
− λtα

]
≥ 0 for t ≥ 0. By Lemma 1,

it deduces∥∥K̂ 2
l (t)

∥∥
C ≤

∥∥∥∥ ∫ t1

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
× (λ− dl(s+ ω))

[
φl(s+ ω)− φl(s)

]
ds

∥∥∥∥
C

+

∥∥∥∥ ∫ t

t1
(t − s)α−1Eα,α

[
− λ(t − s)α

]
× (λ− dl(s+ ω))

[
φl(s+ ω)− φl(s)

]
ds

∥∥∥∥
C

≤ 2λ‖φl‖C

∫ t1

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
ds

+ λε

∫ t

t1
(t − s)α−1Eα,α

[
− λ(t − s)α

]
ds

= 2λ‖φ‖E

∫ t1

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
ds

+ λε(t − t1)αEα,α+1
[
− λ(t − t1)α

]
,

t > t1, l ∈ J . (6)

From Lemmas 2-3, there exists t3 > t2 such that∥∥K̂ 2
l (t)

∥∥
C < 2ε, t > t3, l ∈ J . (7)

In a similar way, there exists t4 > t3 such that

∥∥K̂ 3
l (t)

∥∥
C <

2‖φ‖E
λ

ε,∥∥K̂ 4
l (t)

∥∥
C <

2
λ

n∑
j=1

(
L fj ‖φ‖E + ‖fj(0)‖C

)
ε,

∥∥K̂ 5
l (t)

∥∥
C <

2
λ

n∑
j=1

a+lj L
f
j ε,

∥∥K̂ 6
l (t)

∥∥
C <

2
λ

n∑
j=1

(
Lgj ‖φ‖E + ‖gj(0)‖C

)
ε,

∥∥K̂ 7
l (t)

∥∥
C <

2
λ

n∑
j=1

b+lj L
g
j ε,

(8)



∥∥K̂ 8
l (t)

∥∥
C <

2
λ
ε,∥∥K̂ 9

l (t)
∥∥
C < λ‖φ‖Eε,∥∥K̂ 10

l (t)
∥∥
C <

n∑
j=1

a+lj
(
L fj ‖φ‖E + ‖fj(0)‖C

)
ε,

∥∥K̂ 11
l (t)

∥∥
C <

n∑
j=1

b+lj
(
Lgj ‖φ‖E + ‖gj(0)‖C

)
ε,∥∥K̂ 12

l (t)
∥∥
C < I+l ε, t > t4, l ∈ J .

(9)

By (6)-(9), it has K > 0 large enough ensuring that∥∥(8φ)l(t + ω)− (8φ)l(t)
∥∥
C < Kε, t > t4, l ∈ J ,

which implies that 8φ ∈ SAPω(Cn).
Next, we show that 8 is a contraction mapping in E. For

any φ,ψ ∈ E, l ∈ J , it gets from (5) and Lemma 2 that∥∥(8φ)l(t)− (8ψ)l(t)
∥∥
C

=

∥∥∥∥ ∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

[[
(λ− dl(s))φl(s)− (λ− dl(s))ψl(s)

]
+

n∑
j=1

alj(s)
[
fj
(
φj(s)

)
− fj

(
ψj(s)

)]
+

n∑
j=1

bljk (s)
[
gj
(
φj(s− τlj(s))

)
− gj

(
ψj(s− τlj(s))

)]]
ds

∥∥∥∥
C

≤

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
×

[
(λ− d−l )

∥∥φl(s)− ψl(s)∥∥C
+

n∑
j=1

∥∥alj(s)∥∥C∥∥∥fj(φj(s))− fj(ψj(s))∥∥∥C
+

n∑
j=1

∥∥blj(s)∥∥C∥∥gj(φj(s− τlj(s)))
− gj

(
ψj(s− τlj(s))

)∥∥
C

]
ds
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≤

[
λ− d−l +

n∑
j=1

a+lj L
f
j +

n∑
j=1

b+lj L
g
j

]∥∥φ − ψ∥∥E
×

∫ t

0
(t − s)α−1Eα,α

[
− λ(t − s)α

]
ds

≤

[
λ− d−l +

n∑
j=1

a+lj L
f
j +

n∑
j=1

b+lj L
g
j

]
×
∥∥φ − ψ∥∥EtαEα,α+1[− λtα]

≤
1
λ

[
λ− d−l +

n∑
j=1

a+lj L
f
j +

n∑
j=1

b+lj L
g
j

]
×
∥∥φ − ψ∥∥E, t ≥ 0. (10)

It follows from (3) and (10) that∥∥8φ −8ψ∥∥E ≤ δ∥∥φ − ψ∥∥E,
which implies that 8 is a contraction mapping. Therefore,
8 has a unique fixed point in E, that is, (1) has a unique
S-asymptotically ω-periodic solution. The proof is
complete.
Remark 1: In the calculation process of Theorem 1,

by using the relevant properties of Mittag-Leffler functions,
we obtain the existence and uniqueness of S-asymptotically
ω-periodic solution of system (1).
Remark 2: Theorem 1 to S-asymptotically ω-periodic

solution existence criteria for considered network models by
employing non-decomposing method. When α = 1, our
result is still true for an integer-order case.

IV. S-ASYMPTOTICALLY ω-PERIODIC
SYNCHRONIZATION
In this section, by designing a very general nonlinear con-
troller, constructing an appropriate Lyapunov functional,
we shall study the S-asymptotically ω-periodic synchroniza-
tion problem of system (1).

For this purpose, we consider the system (1) as a drive
system, and a response system is designed as:

C
0 D

α
t yl(t) = −cl(t)yl(t)+

n∑
j=1

alj(t)fj
(
yj(t)

)
+

n∑
j=1

blj(t)gj
(
yj(t − τlj(t))

)
+ Il(t)+ Ul(t), (11)

where l ∈ J , yl(t) ∈ C denotes the state of the response
system, and Ul(t) ∈ C is a state-feedback controller, the rest
notation is the same as those in system (1).

Set z(t) = y(t) − x(t), where z(t) =
(
z1(t), . . . , zn(t)

)T .
For l ∈ J , subtracting (1) from (11) yields the following
error system:

C
0 D

α
t zl(t) = −dl(t)zl(t)+

n∑
j=1

alj(t)f̂j
(
zj(t)

)

+

n∑
j=1

blj(t)ĝj
(
zj(t − τlj(t))

)
+ Ul(t), (12)

where

f̂j
(
zj(t)

)
= fj

(
yj(t)

)
− fj

(
xj(t)

)
,

ĝj
(
zj(t − τlj(t))

)
= gj

(
yj(t − τlj(t))

)
− gj

(
xj(t − τlj(t))

)
.

In order to realize the S-asymptotically ω-periodic syn-
chronization of the drive-response system, we design the
following state-feedback controller:

Ul(t) = −el(t)zl(t)+
n∑
j=1

clj(t)hj
(
zj(t)

)
, (13)

where el ∈ C(R,R+), clj ∈ C(R,C), hj : C→ C, l, j ∈ J .
Definition 6: The response system (11) and the drive sys-

tem (1) are said to achieve globalMittag-Leffler synchroniza-
tion, if there exist positive constantsM , ξ and β such that∥∥y(t)− x(t)∥∥Cn ≤ M∥∥ψ − φ∥∥1(Eα[− ξ tα])β , t ≥ 0,

where∥∥y(t)− x(t)∥∥Cn = max
l∈J

{∥∥yl(t)− xl(t)∥∥C},∥∥ψ − φ∥∥1 = max
l∈J

{
sup

s∈[−τ,0]

∥∥ψl(s)− φl(s)∥∥C}.
Theorem 2: Let (H1)-(H3) hold. Suppose further that

(H4) There exist positive constants Lhj such that for any
x, y ∈ C, ∥∥hj(x)− hj(y)∥∥C ≤ Lhj ∥∥x − y∥∥C
and hj(0) = 0, where j ∈ J .

(H5) For µ > 1, we have ρ − µζ > 0, where

ρ = min
l∈J

{
2d−l + 2e−l − 3−

n∑
j=1

(
a+jl L

f
j

)2
−

n∑
j=1

(
c+jl L

h
j

)2}
,

ζ = max
l∈J

{ n∑
j=1

(
b+jl L

g
j

)2}
.

Then the drive system (1) and response system (11) are glob-
allyMittag-Leffler synchronized based on the controller (13).

Proof: We consider the Lyapunov function as follow:

V (t) = max
l∈J

{
zl(t)zl(t)

}
. (14)

From Lemma 6, calculating the Caputo derivative of V (t)
along the trajectory of (12) derives that

C
0 D

α
t V (t)

≤ max
l∈J

{
zl(t)C0 D

α
t zl(t)+

(
C
0 D

α
t zl(t)

)
zl(t)

}
= max

l∈J

{
zl(t)

[
− dl(t)zl(t)+

n∑
j=1

alj(t)f̂j
(
zj(t)

)
+

n∑
j=1

blj(t)ĝj
(
zj(t − τlj(t))

)
− el(t)zl(t)
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+

n∑
j=1

clj(t)hj
(
zj(t)

)]
+

[
− dl(t)zl(t)

+

n∑
j=1

alj(t)f̂j
(
zj(t)

)
+

n∑
j=1

blj(t)ĝj
(
zj(t − τlj(t))

)
− el(t)zl(t)+

n∑
j=1

clj(t)hj
(
zj(t)

)]
zl(t)

}
= max

l∈J

{(
− 2dl(t)− 2el(t)

)
zl(t)zl(t)

+

n∑
j=1

[
zl(t)alj(t)f̂j

(
zj(t)

)]
+ alj(t)f̂j

(
zj(t)

)
zl(t)

]
+

n∑
j=1

[
zl(t)blj(t)ĝj

(
zj(t − τlj(t))

)
+ blj(t)ĝj

(
zj(t − τlj(t))

)
× zl(t)

]
+

n∑
j=1

[
zl(t)clj(t)hj

(
zj(t)

)
+ clj(t)hj

(
zj(t)

)
zl(t)

]}
≤ max

l∈J

{(
− 2dl(t)− 2el(t)

)
zl(t)zl(t)

+

n∑
j=1

alj(t)f̂j
(
zj(t)

)
×

(
alj(t)f̂j

(
zj(t)

))
+ zl(t)zl(t)

+

n∑
j=1

blj(t)ĝj
(
zj(t − τlj(t))

)
×

(
blj(t)ĝj

(
zj(t − τlj(t))

))
+ zl(t)zl(t)

+

n∑
j=1

clj(t)hj
(
zj(t)

)(
clj(t)hj

(
zj(t)

))
+ zl(t)zl(t)

}
≤ max

l∈J

{(
3− 2dl(t)− 2el(t)

)
zl(t)zl(t)

+

n∑
j=1

(
a+lj L

f
j

)2
zj(t)zj(t)+

n∑
j=1

(
b+lj L

g
j

)2
× zl(t − τlj(t))zl(t − τlj(t))

+

n∑
j=1

(
c+lj L

h
j

)2
zj(t)zj(t)

}

≤ max
l∈J

{[
3− 2d−l − 2e−l +

n∑
j=1

(
a+jl L

f
j

)2

+

n∑
j=1

(
c+jl L

h
j

)2]
zl(t)zl(t)

+

n∑
j=1

(
b+jl L

g
j

)2
zl(t − τ )zl(t − τ )

}
= −ρV (t)+ ζV (t − τ ). (15)

Combining (15) and Lemma 4 has
C
0 D

α
t V (t) ≤ −ρV (t)+ µζV (t)

= −(ρ − µζ )V (t) (16)

for µ > 1. Combining (16) with Lemma 5 derives
V (t) ≤ V (0)Eα

[
− (ρ − µζ )tα

]
, 0 < α < 1.

From the Lyapunov function (14), we haveV (0) ≤
∥∥ψ−φ∥∥21.

Furthermore, we have∥∥y(t)− z(t)∥∥Cn ≤ ∥∥ψ − φ∥∥1(Eα[− (ρ − µζ )tα
]) 1

2
.

Therefore, the drive system (1) and the response system (11)
are globally Mittag-Leffler synchronized based on the con-
troller (13). This completes the proof.
Remark 3: As far as we know, the Lyapunov method pro-

vides a very effective tool to realize synchronization anal-
ysis of nonlinear systems. However, it is very complicated
to calculate the fractional-order derivative of an auxiliary
function. The mathematical difficulties we encounter in this
paper are as follows. (1) How to calculate Caputo derivative
of Lyapunov function that contains complex-valued function
and its conjugate. To solve this problem, we use Lemma 6
to avoid calculating the fractional-order derivatives of the
Lyapunov functional. (2) How to deal with time-delay terms.
For this problem, we adopt Modified fractional Razumikhin
theorem.

V. ILLUSTRATIVE EXAMPLE
In this section, we give two examples to illustrate the fea-
sibility and effectiveness of our results obtained in Sec-
tions 3 and 4.
Example 1: Let n = 2. Consider the following

fractional-order complex-valued neural network:

C
0 D

α
t xl(t) = −dl(t)xl(t)+

2∑
j=1

alj(t)fj
(
xj(t)

)
+

2∑
j=1

blj(t)gj
(
xj(t − τlj(t))

)
+ Il(t), (17)

the corresponding response system is given by

C
0 D

α
t yl(t) = −dl(t)yl(t)+

2∑
j=1

alj(t)fj
(
yj(t)

)
+

2∑
j=1

blj(t)gj
(
yj(t − τlj(t))

)
+ Il(t)+ Ul(t), (18)

where l = 1, 2, α = 0.5, the coefficients are follows:

fj(xj) =
1
3
sin xRj + i

1
4
sin xIj ,
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FIGURE 1. Time revolution of the real parts of system (17) without control.

gj(xj) =
1
4
tanh xRj + i

1
6
cos xIj ,

hj(xj) =
1
6
arctan xRj + i

1
6
tanh xIj ,

d1(t) = 3+ | cos(
√
2t)|, d2(t) = 4− 2 sin(

√
3t),

alj(t) = 0.5 cos(
√
3t)+ i0.2 cos(2t),

blj(t) = 0.8 sin(
√
2t)+ i0.5 sin t,

e1(t) = 1+ | sin(
√
3t)|, e2(t) = 2− 0.5 cos(

√
2t),

clj(t) = 1.5 cos(2t)+ i0.8 sin(
√
2t),

Il(t) = 0.2 sin(
√
3t)+ i0.3 cos(

√
2t),

τlj(t) =
1
2
| sin t|, l, j = 1, 2.

By a simple calculation, we have

d−1 = 3, d−2 = 2, e−1 = 1, e−2 = 1.5,

L fj ≤ 0.4167, Lgj ≤ 0.3005, Lhj ≤ 0.2357,

a+lj ≤ 0.5385, b+lj ≤ 0.9434, c+lj ≤ 1.7,

ϒ1 = ϒ2 ≈ 1.0158, ϒ1 < d−1 , ϒ2 < d−2 .

Take µ = 4, we have

ρ = min
l=1,2

{
2d−l + 2e−l − 3−

2∑
j=1

(
a+jl L

f
j

)2
−

2∑
j=1

(
c+jl L

h
j

)2}
≈ 3.5782,

ζ = max
l=1,2

{ 2∑
j=1

(
b+jl L

g
j

)2}
≈ 0.1607.

Thus, we have

ρ − µζ = 2.9354 > 0.

So, all the assumptions of Theorems 1 and 2 are satisfied.
Therefore by Theorem 2, system (17) and (18) are globally
Mittag-Leffler synchronized based on the controller (13). The
drive system (17) have the initial value x1(0) = 0.5 − 0.1i,
x2(0) = −0.8+0.5i. The response system (18) have the initial
value y1(0) = 0.5 − 0.1i, y2(0) = −0.8 + 0.5i. The error

FIGURE 2. Time revolution of the imaginary parts of system (17) without
control.

FIGURE 3. Time revolution of the real parts of system (18) under
controller (13).

system have the initial value z1(0) = −0.2 + 0.4i, z2(0) =
0.3 − 0.5i. By using the Simulink toolbox in MATLAB,
Figures 1-4 depict the time revolution of real parts and imag-
inary parts of x1, x2, y1 and y2, respectively. Figure 5 shows
simulation results of error system. From simulation results
in Figures 1-5, it is clearly seen that the drive-response sys-
tems (17)-(18) achieve synchronization.
Example 2: Let n = 3. Consider the following

fractional-order complex-valued neural network:

C
0 D

α
t xl(t) = −dl(t)xl(t)+

3∑
j=1

alj(t)fj
(
xj(t)

)
+

3∑
j=1

blj(t)gj
(
xj(t − τlj(t))

)
+ Il(t), (19)

the corresponding response system is given by

C
0 D

α
t yl(t) = −dl(t)yl(t)+

3∑
j=1

alj(t)fj
(
yj(t)

)
+

3∑
j=1

blj(t)gj
(
yj(t − τlj(t))

)
+ Il(t)+ Ul(t), (20)
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FIGURE 4. Time revolution of the imaginary parts of system (18) under
controller (13).

FIGURE 5. State response curve of the real and imaginary parts of
synchronization error.

where l = 1, 2, 3, α = 0.75, the coefficients are follows:

fj(xj) =
1
5
tanh xRj + i

1
8
sin(xRj + x

I
j ),

gj(xj) =
1
4
sin(xRj + x

I
j )+ i

1
5
tanh xIj ,

hj(xj) =
1
8
sin xRj + i

1
10

sin(xRj + x
I
j ),

d1(t) = 2+ | sin(
√
3t)|, d2(t) = 5− 2 cos(

√
2t),

d3(t) = 7− 3 cos(
√
5t), e1(t) = 1.5+ | cos(2t)|,

e2(t) = 2+ | sin(2t)|, e3(t) = 3− 0.5 sin(
√
3t),

alj(t) = 0.8 sin(2t)+ i0.5 cos(
√
3t),

blj(t) = 0.9 cos(
√
3t)+ i0.6 sin(

√
2t),

clj(t) = sin(
√
2t)+ i1.5 cos(

√
3t),

Il(t) = 0.4 cos(
√
2t)+ i0.5 cos(3t),

τlj(t) = 1+ sin(2t), l, j = 1, 2, 3.

By a simple calculation, we have

d−1 = 2, d−2 = 3, d−3 = 4,

e−1 = 1.5, e−2 = 2, e−3 = 2.5,

L fj ≤ 0.2358, Lgj ≤ 0.3202, Lhj ≤ 0.1601,

FIGURE 6. Time revolution of the real parts of system (19) without control.

FIGURE 7. Time revolution of the imaginary parts of system (19) without
control.

a+lj ≤ 0.9434, b+lj ≤ 1.0817, c+lj ≤ 1.8028,

ϒ1 = ϒ2 = ϒ3 ≈ 1.7064,

ϒ1 < d−1 , ϒ2 < d−2 , ϒ3 < d−3 .

Take µ = 5, we have

ρ = min
l=1,2,3

{
2d−l + 2e−l − 3−

3∑
j=1

(
a+jl L

f
j

)2
−

3∑
j=1

(
c+jl L

h
j

)2}
≈ 3.6016,

ζ = max
l=1,2,3

{ 3∑
j=1

(
b+jl L

g
j

)2}
≈ 0.3599.

Thus, we have

ρ − µζ = 1.8021 > 0.

So, all the assumptions of Theorems 1 and 2 are satisfied.
Therefore by Theorem 2, system (19) and (20) are globally
Mittag-Leffler synchronized based on the controller (13). The
drive system (19) have the initial value x1(0) = −0.5+ 0.4i,
x2(0) = 0.5 + 0.25i, x3(0) = 0.4 − 0.3i. The response
system (20) have the initial value y1(0) = −0.5 + 0.4i,
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FIGURE 8. Time revolution of the real parts of system (20) under
controller (13).

FIGURE 9. Time revolution of the imaginary parts of system (20) under
controller (13).

FIGURE 10. State response curve of the real and imaginary parts of
synchronization error.

y2(0) = 0.5 + 0.25i, y3(0) = 0.4 − 0.3i. By using the
Simulink toolbox in MATLAB, Figures 6-9 depict the time
revolution of real parts and imaginary parts of x1, x2, x3,
y1, y2 and y3, respectively. Figure 10 has the initial value
z1(0) = 0.1− 0.2i, z2(0) = −0.3+ 0.3i, z3(0) = 0.25− 0.1i
and shows the synchronization errors between x and y. From
simulation results in Figures 6-10, it is clearly seen that the
drive-response systems (19)-(20) achieve synchronization.

Remark 4: Fractional-order complex-valued system
includes fractional-order real-valued system as its special
cases. In fact, in Example V.1 and Example V.2, if all the
coefficients are functions from R to R, and all the activation
functions are functions from R to R, then the state xl(t) ≡
xRl (t) ∈ R, in this case, systems (17)-(20) are fractional-order
real-valued system. Then, similar to the proofs of 1 and 2
and under the same corresponding conditions, one can show
that the similar results of Theorems 1 and 2 are still valid
(see [41]–[43]).

VI. CONCLUSION
In this paper, we consider the problem of the S-asymptotically
ω-periodic synchronization of fractional-order complex-
valued recurrent neural networks. By using the Banach fixed
point theorem and some important features of Mittag-Leffler
functions, we obtain some sufficient conditions for the exis-
tence of S-asymptotically ω-periodic solutions for the neural
networks by direct method, and we improve the norm. Then,
by constructing an appropriate Lyapunov functional, the the-
ory of fractional differential equation, and some inequality
techniques, a novel sufficient condition has been derived to
ensure the global Mittag-Leffler synchronization for the con-
sidered fractional-order neural networks. In order to demon-
strate the usefulness of the presented results, some numerical
examples are given. The works of this paper improve and
extend the old results in literatures [33]–[35], and propose a
good research thinking to study S-asymptotically ω-periodic
solutions and the global Mittag-Leffler synchronization of
fractional-order complex-valued recurrent neural networks
with time-varying delays. In future work, S-asymptotically
ω-periodic solutions in the quaternion field can be
considered.
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