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ABSTRACT In this paper, the consensus tracking problem for nonlinear multi-agent systems subjected to
the output constraint, data loss and switching topologies is considered. Firstly, a consensus term is defined
based on the communication information in present of the nonlinear output saturation and time-varying
switching topologies. Since the random data loss is taken into consideration, the consensus term is redesigned
by an introducing stochastic variable, which obeys the Bernoulli sequence with known probability. Then,
a novel distributed ILC algorithm is designed by using the incomplete communication data of agents, which
is more universal than the results without considered nonlinear constraint and random factors simultaneously.
Through the contraction mapping method, an obtained convergence condition can also guarantee the
asymptotic convergence of the agent along the iteration axis under nonlinear saturation factor and random
factors. It is verified that the proposed algorithm can handle more complex situations in the consensus control
of multi-agent systems. Simulation examples are further provided to verify the effectiveness of the proposed
algorithm.

INDEX TERMS Multi-agent systems (MASs), consensus, saturation, data loss, switching topologies.

I. INTRODUCTION
Consensus control for the multi-agent systems has attracted
a growing attention recently. [1], [2]. This is because the
multi-agent system has many applications, such as unmanned
air vehicles (UAVs), rendezvous and flocking, sensor net-
works, and formation of robots. Consensus control gener-
ally aims at steering the states of nodes in the network
to an agreement on certain quantities of interest to per-
form a joint control task. For the agent model, the existing
results cover single integrator model [3]–[6], double inte-
grator model [7]–[9], high-order integrator model [10], [11],
linear system [12], [13], and nonlinear system [14]–[17].
Moreover, the information exchange topology, described by
a graph, has been thoroughly developed in the existing liter-
ature [18], [19]. A series of existing results on the consensus
tracking problemwere focused on the design and analyses the
methods to reach the consensus tracking performance. The
consensus algorithm is important to generate complex group
level behaviors using simple local coordination rules, which
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are highly related to practical problems [20]–[22]. In [23],
the output feedback protocol based on the event-trigged
scheme was designed for the consensus tracking control of
the second-order multi-agent systems with unknown inertias.

The iterative learning control strategy has been applied
for MASs to achieve learning consensus recently, which is
a matured intelligent control technique to achieve high pre-
cision tracking performance by the inherent repetition mech-
anism [24], [25]. Ahn and Chen proposed the first result on
formation control using the learning strategy in [26]. Later,
the reports on satellite trajectory-keeping [27], mobile robots
formation [28], and coordinated train trajectory tracking [29]
illustrate successful applications of ILC to MASs. For the-
oretical research, the contraction mapping method for con-
vergence analysis of affine nonlinear MASs has employed
in [30]. The 2D system technique was used to prove the con-
sensus performance in [31] and [32] for linear systems. The
Lyapunov function method was introduced in [33] for MASs
where agents were of first-order, second order and high-order
models, respectively. The data driven iterative learning con-
trol protocol was designed for the nonlinear multi-agent
systems with completely unknown dynamics in [34].
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A composite energy function (CEF) based analysis for net-
worked Lagrangian systems was provided in [35]. In [36],
the completely distributed iterative learning control scheme
was designed for the multi-agent systems with unknown
control directions and position constraints based on the
barrier composite energy function and multiple piece-wise
Nussbaum functions. While various techniques have been
developed for the ILC-based MAS consensus, the existing
literature mainly focuses on the conventional system setting
without any constraint on the system output.

However, when concerning MASs in the real world, it is
found that nearly almost all real systems are subject to
certain constraints. The constraints arise for the output due
to various practical limitations and safety considerations,
such as the nonlinear saturation causes by hardware satura-
tion [37]. If ignore such constraints and conduct the con-
ventional control strategy directly, the system output may
be beyond the tolerant range and lead to serious problems.
In [38], the input saturation problem in the consensus control
for the uncertain multi-agent systems by iterative learning
control method was considered. On the other hand, the com-
munication among the agents is though the network, how-
ever, the network also has its constraints, such as network
congestion, bandwidth limitation and network switching, etc.
These constraints lead to certain data loss problem and net-
work communication structure changes in the process of
communication. To solve the control problem of multi-agent
systems with data loss, many results have been obtained.
For example, in [39] the consensus problem with data loss
was considered as an equivalent asymptotic stability problem.
Sufficient condition to solve this asymptotic stability issue
was derived by Lyapunov-based methodologies and Linear
matrix inequalities (LMIs) techniques. In [40], the consensus
method was proposed for linear multi-agent systems such
that the multi-agent systems with sampled data and packet
losses can reach consensus, where random and deterministic
packet losses have considered, respectively. In fact, the com-
munication topology of the agents in the multi-agent systems
will change at the same time the data is lost in the network
communication [41]. In [42], the mean square consentability
problem for multi-agent systems with stochastic switching
topology was studied. It has proved that in Markov-switching
topologies, the network is mean square consentable under
linear consensus protocol if and only if the union of graphs
in the switching topology set has globally reachable nodes.
In [43], the time-varying formation tracking analysis and
design problems for second-order multi-agent systems with
switching interaction topologies was studied. Motivated by
the existing results, in this paper, we try to propose distributed
learning protocol to achieve asymptotical consensus along the
iteration axis for the multi-agent systems subjected to output
constraint, data loss and switching topologies simultaneously.

To this end, we design a distributed iterative learning
control to solve the consensus tracking problem for the
multi-agent systems subjected to output constraint, data loss
and switching topologies simultaneously. Differing from the

existing results on output constraint, data loss and switching
topologies respectively, we introduce a general design of
distributed learning protocol for the repetitive multi-agent
systems. Since the nonlinear saturation factor and random
factors take into consideration in this paper, the measured
data between the agents are incomplete. In this paper, the data
before transmitting to the agents to communicate is suffered
with the sensor saturation. Then the data is described by
the introduced saturated function, where a relationship exists
between the measured output and the agent’ actual output.
With the limitation of network resource, the agent’ saturated
data transmitted to its neighbors or the data received from its
neighbors maybe loss in the communication process. At the
same time, the neighbor agents for a certain agent are also
switched in each time instant. Then, we define a stochastic
variable to described the data packet of the neighbor agents’
whether successfully transmitted or not, where the variable
obeys the Bernoulli sequence with known probability. Fur-
ther, a consensus term is defined based on the incomplete
information. On the basis of the consensus term, the dis-
tributed learning algorithm is designed. With the incomplete
data of the agents, the theoretical analysis is complex than that
for the multi-agent systems without consider these problems
simultaneously. By using a diagonal matrix, the relationship
between the measured saturated data and system output is
established firstly. With the use of technology of contraction
mapping and a defined α′-norm, the output error of the agents
in the compact form is derived to be asymptotically converge
to zero under mathematical expectation. Then, convergence
of the tracking errors is guaranteed. It is indicated that the
proposed algorithm can ensure the multi-agent systems reach
the consensus tracking goal although the output of the agents
subject to output saturation, data loss and saturation. Illustra-
tive simulations are provided to verify the effectiveness of the
proposed algorithm.
Notations: The ‖ · ‖ denotes the Euclidean norm,
⊗ denotes the Kronecker product, N refers to the set
{1, · · · ,N }, 1N stands for a column vector filled with ones,
IN denotes the identity matrix of size N . E {·} denotes the
mathematical expectation operator.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a group of N + 1 nodes consisting of N identical
followers and one leader indexed by 0. We describe the
communication topology among the nodes asG = (V ,E,A),
where V is the vertex set, E is the edge set and A =

[
alj
]
∈

RN×N is the adjacency matrix with elements alj denoting the
connections such that alj = 1 if there is a path from node j to
node l, and alj = 0 otherwise. Self-edge (j, j) is not allowed
in this paper, i.e., ajj = 0.

The dynamics of follower j, j ∈ R is described by


xi,j(k + 1) = f (t, xi,j(k))+ Bui,j(k)
yi,j(k) = Cxi,j(k)
zi,j(k) = saty0j(yi,j(k)),

(1)
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where k ∈ [0, 1, . . . ,T ] represents the time index ended at T
time instant, j = 1, 2, . . . ,N denotes the jth agent, i denotes
the operated iteration number, xi,j ∈ Rn is the state of each
agent, ui,j ∈ Rp is the corresponding control input, and f (., .)
is a continuously differentiable unknown nonlinear function.
yi,j ∈ Rm is the actual output of agent j and zi,j ∈ Rm is
the measured output of the agent j. saty0j(·) is the saturation
function of the agent j, and y0j > 0 represents threshold for
each function, where y0 = [y01, y02, . . . , y0N ] ∈ RN .
A desired trajectory yd (k) is viewed as a virtual leader

agent and labeled 0. Assume that there only some of the
agents in the system can obtain the desired trajectory. The
new graph includes the leader agent is Ḡ = (V ∪ {0}, Ē, Ā),
where Ē is the edges set, Ā represents the adjacency matrix
of the graph Ḡ.
Since the multi-agent system is a complex dynamic net-

work system, there is a fast switching in the network sense.
Consider the topology of the agents is switched as time vary-
ing, where Ḡσ (k) denotes the switching topology at time k .
Define a piecewise function σ (k) to describe the randomness
of topology switching, which has a mapping relationship
with the rules of topology switching over time and records
as σ (k) : {1, 2, . . . ,∞} 7→ {1, . . . ,M}. For a number of
known and fixed agents, the number of switchable topologies
is bounded and marked as M , i.e., Ḡσ (k) ∈

{
Ḡ1, . . . , ḠM

}
.

That is, the switching topology at k time is included in
the Ḡσ (k).
For the multi-agent systems with saturated output and

switching topologies, considered there is inevitable data loss
in the communication between agents. That is, in the com-
munication interaction process, the measured outputs of the
agents may exist random data loss such that the received
information incomplete.

Thus, the objective of this paper is to design an appropriate
algorithm for consensus of the multi-agent systems subject to
output saturation, switching topologies and data loss.

To facilitate analysis, the multi-agent systems (1) satisfy
the following assumptions
Assumption 1: The nonlinear function f (·, ·) satisfies the

global Lipschitz condition, that is, there exists a constant
bf > 0, for any two different x1, x2 such that

‖f (k, x1(k))− f (k, x2(k))‖ ≤ bf ‖x1(k)− x2(k)‖ (2)

Assumption 2: The matrix CB is a full-rank matrix.
Assumption 3: Each switching topology Ḡσ (k) with

respect to k has a spanning tree with the leader agent be the
root.
Assumption 4: The initial state of each iteration of the

agent is fixed as xi,j(0) = x0j , where x
0
j is a constant.

Assumption 5: For a given bounded desired output yd (k),
there are bounded desired state xd (k) and desired control
input ud (k), satisfying system (1) such that{

xd (k + 1) = f (k, xd (k))+ Bud (k)
yd (k) = Cxd (k)

(3)

Remark 1: The switching topologies Ḡσ (k) switches as
time varying, each switching topology Ḡσ (k) satisfies span-
ning tree assumption. That means that in the time interval
k ∈ [0, 1, . . . ,T ], the multi-agent systems do not have iso-
lated agents. The switching topology may remain consistent
with or change from the previous time, then the switching is
random. The defined piecewise function σ (k) described the
randomness of the switching topologies along time axis.
Remark 2: The assumption 4 is a typical initialization con-

dition of the ILC method. It is claimed that the initial value of
the agent in each iteration need to be identical. Besides, same
initial values for any two agents are not a necessary operating
condition for the control processing.

III. ALGORITHM DESIGN AND MAIN RESULT
A. ALGORITHM DESIGN
For the multi-agent systems (1) with saturated outputs,
we first define a distributed error ξi,j(k) as follows:

ξi,j(k)=
∑
l∈Nj

ajl(k)(zi,l(k)−zi,j(k))+dj(yd (k)−zi,j(k)), (4)

where zi,j ∈ Rm is the measured output of the agent j in ith
iteration. ajl(k) is the element of the adjacencymatrixAσ (k) =
[ajl(k)] at time k , where the current topology is Ḡσ (k). The
corresponding Laplacian matrix denotes as

Lσ (k)=diag


N∑
j=1

a1j(k),
N∑
j=1

a2j(k), · · · ,
N∑
j=1

aNj(k)

−Aσ (k),
which belongs to the set {L1, . . . ,LM } with respect to the
direct graph Ḡσ (k). Define matrix D = diag {d1, d2, · · · , dN }
to represent the accessibility of the agents to the leader agent,
where Dσ (k) is the matrix at time k .
Remark 3: In each switch, each switching topology is

known, but which topology to switch to at different times is
random and unknown. Thus, thematrix Lσ (k),Dσ (k),Aσ (k) are
time-varying, but it is a determined digital matrix independent
of time, due to the elements of which only related to the
communication topology graph of the current switching.

Consider the multi-agent systems (1) have inevitable
data loss in the process of communication between agents.
Therefore, we design the following control algorithm for
multi-agent systems (1) subject to data loss:

ui+1,j(k) = ui,j(k)+ ηi,j(k)0ξi,j(k + 1), (5)

where ηi,j(k) is defined as a stochastic index to describe
the data loss or not at time k . The index is assumed obey
the Bernoulli distribution with the probability of η̄. That is,
if the received data for agent j at time k is lost, ηi,j(k) = 0,
otherwise, ηi,j(k) = 1.
Remark 4: Since the phenomenon of data loss is com-

pletely random in practical, this paper considers that the data
is randomly lost in the time domain and iterative domain,
which is used to meet the needs of the problem of data loss
encountered in the actual system and improve the applicabil-
ity of the design algorithm.
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Further, we need to find a suitable gain matrix under the
designed control algorithm (5), such that the multi-agent
systems (1) subject to output saturation, switching topologies
and data loss can achieve the consensus tracking task for
∀k ∈ [1,T ]. Therefore, we need analyze the condition for
matrix selection to ensure the consensus of the multi-agent
systems (1).

B. MAIN RESULT
Define tracking error ei,j(k) = yd (k) − yi,j(k). The perfect
tracking track of the iterative multi-agents systems (1) in a
finite time interval [1,T ]is achieved if lim

i→∞
yi,j(k) = yd (k),

∀k ∈ [1,T ] yd (k), i.e., ei,j(k) = 0 as iteration goes to infinite.
That is, the asymptotical convergence of tracking error is
required to be provide.
Theorem 1: For the multi-agent systems (1) satisfied

Assumptions 1-5 with algorithm (5), if the gain matrix is
selected satisfy∥∥I − (η̄ ⊗ Ip)(Lk + Dk )⊗ 0CB

∥∥ ≤ ρ′ < 1, (6)

such that the tracking error ei,j(k) converges to 0 as iteration
goes to infinite.

Proof: Firstly, we given the compact form of the follow-
ing variable

xi(k) = [xTi,1(k), x
T
i,2(k), x

T
i,3(k), . . . , x

T
i,N (k)]

T ,

yi(k) = [yTi,1(k), y
T
i,2(k), y

T
i,3(k), . . . , y

T
i,N (k)]

T ,

ui(k) = [uTi,1(k), u
T
i,2(k), u

T
i,3(k), . . . , u

T
i,N (k)]

T ,

ξ̄ i(k) = [ξ̄Ti,1(k), . . . , ξ̄
T
i,N (k)]

T

Then, the multi-agent systems can be rewritten as{
xi(k + 1) = f (k, xi(k))+ (IN ⊗ B)ui(k)
yi(k) = (IN ⊗ C)xi(k)

(7)

Introduce an index ri,j(k), then we can have the following
relationship between actual tracking error and the measure
tracking error e′i,j(k) = ri,j(k)ei,j(k), where

ri,j(k) =



yd (k)− y0j
ei,j(k)

, ei,j(k) < yd (k)− y0j

1, yd (k)− y0j ≤ ei,j(k) ≤ yd (k)+ y0j

yd (k)+ y0j
ei,j(k)

, yd (k)+ y0j < ei,j(k)

(8)

Based on (4) and (8), we can have the compact form of the
distributed error

ξi,j(k) =
∑
l∈Nj

aj,l(k)(e′i,j(k)− e′i,l(k))+ dj(e′i,j(k)) (9)

Define the tracking error in the similar way as

ei(k) = [eTi,1(k), e
T
i,2(k), e

T
i,3(k), · · · , e

T
i,N (k)],

e′i(k) = [e′i,1(k)T , e′i,2(k)T , e′i,3(k)T , · · · , e′i,N (k)T ],

ri(k) = diag{ri,1(k), . . . , ri,N (k)}. (10)

Then it yields that e′i(k) = ri(k)ei(k).

Then, we can obtain

ξ̄ i(k) = ((Lk + Dk )⊗ Im)e′i(k)

= ((Lk + Dk )ri(k)⊗ Im)ei(k) (11)

ui+1(k) = ui(k)+ (ηi(k)⊗ Ip)(IN ⊗ 0)ξ̄ i(k + 1) = ui(k)

+ (ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0)ei(k + 1)

(12)

From (12), the control error 1ui+1(k) and state error
1xi(k + 1) are

1ui+1(k)

= ud (k)− ui+1(k)

= 1ui(k)− (ηi(k)⊗ Ip)(IN ⊗ 0)ξi(k + 1)

= 1ui(k)− (ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0)ei(k + 1)

= 1ui(k)− (ηi(k)⊗ Ip)((Lk + Dk ))ri(k + 1)⊗ 0C)

×1xi(k + 1)

= [I − (ηi(k)⊗ Ip) ((Lk + Dk )ri(k + 1)⊗ 0CB)]1ui(k)

−(ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0C)

× [f (k, xd (k))− f (k, xi(k))] (13)

1xi(k + 1)

= xd (k + 1)− xi(k + 1)

= (f (k, xd (k))− f (k, xi(k)))+ (IN ⊗ B)1ui(k) (14)

where f (k, xd (k)) = 1N ⊗ f T (k, xd (k)), f (k, xi(k)) =
[f T (k, x1(k)), . . . , f T (k, xN (k))]T .
Taking the norm of both sides of (14)

‖1xi(k + 1)‖ ≤ ‖f (k, xd (k))− f (k, xi(k))‖

+ bB ‖1ui(k)‖ ,

bB = ‖IN ⊗ B‖ (15)

According to Assumption 1, it yields that

‖f (k, xd (k))− f (k, xi(k))‖ ≤ bf ‖1xi(k)‖ (16)

Subsisting (16) into (15), we have

‖1xi(k + 1)‖ ≤ bf ‖1xi(k)‖ + bB ‖1ui(k)‖ (17)

From the inequality relationship described in formula (17),
it can be recursively obtained

‖1xi(k)‖ ≤ bf ‖1xi(k − 1)‖ + bB ‖1ui(k − 1)‖ ,

‖1xi(k − 1)‖ ≤ bf ‖1xi(k − 2)‖ + bB ‖1ui(k − 2)‖ ,
...

‖1xi(1)‖ ≤ bf ‖1xi(0)‖ + bB ‖1ui(0)‖ , (18)

That further equals to

‖1xi(k)‖ ≤
k−1∑
l=0

bk−1−lf bB ‖1ui(l)‖ + bkf ‖1xi(0)‖ (19)
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Taking norm of the both sides of (13), it yields that

‖1ui+1(k)‖
≤
∥∥I − (ηi(k)⊗ Ip) ((Lk+Dk )ri(k+1)⊗0CB)

∥∥ ‖1ui(k)‖
+bf

∥∥(ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0C)
∥∥ ‖1xi(k)‖

(20)

Subsisting (19) into (20), we have

‖1ui+1(k)‖
≤
∥∥I − (ηi(k)⊗ Ip)(Lk + Dk )ri(k + 1)⊗ 0CB

∥∥ ‖1ui(k)‖
+ bf

∥∥(ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0C)
∥∥

×

k−1∑
l=0

bf k−1−lbB ‖1ui(l)‖

+ bf
∥∥(ηi(k)⊗Ip)((Lk+Dk )ri(k+1)⊗0C)∥∥ bkf ‖1xi(0)‖

(21)

Taking α′-norm of the both sides of (21), where α′ >
max[1, bf ]

‖1ui+1(k)‖ (1/α′)k

≤ ρ̃i(k) ‖1ui(k)‖ (1/α′)k +
b1(k)
α′

×

k−1∑
l=0

(
bf
α′

)
k−1−l

bB ‖1ui(l)‖ (1/α′)
l
+ b1(k)bkf ‖1xi(0)‖

≤ ρ̃i(k) ‖1ui(k)‖ (1/α′)k +
b1(k)
α′

×

k−1∑
l=0

(
bf
α′

)
k−1−l

bB sup
1≤k≤T

{‖1ui(l)‖ (1/α′)
l
}

+ b1(k)bkf ‖1xi(0)‖ , (22)

where

ρ̃i(k) =
∥∥I − (ηi(k)⊗ Ip)(Lk + Dk )ri(k + 1)⊗ 0CB

∥∥ ,
b1(k) = bf

∥∥(ηi(k)⊗ Ip)((Lk + Dk )ri(k + 1)⊗ 0C)
∥∥ .

Further we can obtain that from (22)

‖1ui+1‖α′ ≤

ρ̃i(k)+ b1(k)bB(1− ( bf
α′
)
k
)

α′ − bf

 ‖1ui‖α′
+ b1(k)bkf ‖1xi(0)‖ . (23)

Because of the introduction of random variable ηi(k),
the multi-agent iterative system (1) can become a random
system meanwhile, then we need to further consider the
convergence of the system in the meaning of mathematical
expectation.

Taking the mathematical expectation operation E {·} of
both sides of (23), it yields that

E
{
‖1ui+1(k)‖α′

}
≤ E

{(
‖ρ̃i(k)‖+

‖b1(k)‖ bB(1−
(
bf /α′

)k
α′−bf

)}
E{‖1ui(k)‖α′}

+E
{
b1(k)bkf ‖1xi(0)‖

}

≤

(
ρ +

ρ1bB(1−
(
bf /α′

)k )
α′ − bf

)
E {‖1ui(k)‖α′} + ε

≤ ρ̃E {‖1ui(k)‖α′} + ε (24)

where

ρ̃ = ρ +
ρ1bB

(
1−

(
bf /α′

)k)
α′ − bf

ρ = E {‖ρ̃i(k)‖} =
∥∥I−(η̄ ⊗ Ip)(Lk+Dk )⊗0CB∥∥

ρ1 = E {‖b1(k)‖} = bf
∥∥(η̄⊗Ip)(Lk+Dk )⊗ 0CB∥∥ ,

E
{
ηi,j(k)

}
= η̄j,

η̄ = diag{η̄1, η̄2, . . . , η̄N },

ε = ρ1bkf ‖1xi(0)‖ = ρ1b
k
f b0.

Then, if ρ̃ < 1, lim
i→∞

sup E {‖1ui‖α} ≤
ε

1−ρ̃ holds.

On the basis of the Lemma 1 in [44]

ρ =
∥∥I − (η̄ ⊗ Ip)(Lk + Dk )ri(k + 1)⊗ 0CB

∥∥
=
∥∥I − ((η̄ ⊗ Ip)(Lk + Dk )⊗ 0CB) (ri(k + 1)⊗ IN )

∥∥
That is if

∥∥I − (η̄ ⊗ Ip)(Lk + Dk )⊗ 0CB
∥∥ < 1 holds, then

ρ < 1. From (24), it is indicated that there exists a big enough
α′ such that ρ̃ < 1 if ρ < 1 holds. Then, the control input
error satisfies

lim
i→∞

sup E {‖1ui‖α} ≤
ε

1− ρ̃

It is worth pointing out that lim
i→∞

E {‖1ui(k)‖α′} = 0 holds

if the initial values of the agents satisfied xi,j(0) = x0j = xd .
Taking α′-norm of the both sides of (19), it yields,

‖1xi(k + 1)‖α′

≤ sup

{
k−1∑
l=0

bk−1−lf bB ‖1ui(l)‖

}
+ bkf ‖1xi(0)‖α′

≤
bf (1− α′

−(λ−1)Td )

α′λ−1 − 1
‖1ui(k)‖α′ + b

k
f ‖1xi(0)‖α′ (25)

That is, if 1x(0) = 0, E {‖1xi(k)‖α′} = 0 as
lim
i→∞

E {‖1ui(k)‖α′} = 0.

Further, lim
i→∞

E {‖1ei(k)‖α′} = 0, that means that when

the appropriate gain matrix is selected to satisfy ρ̃ < 1,
the consensus tracking task of the agents is fulfill by the
algorithm (5), i.e., lim

i→∞
yi,j(k) = yd (k), ∀k ∈ [1,T ]. The

proof is complete.
Remark 5: Although the same initial value assumption is

strong in the assumption 4, the proposed ILC design is also
applicable to the control problem under the initialization
condition with initial offset. In this case, the system cannot
be guaranteed to converge asymptotically to 0, but converges
to the bound of a convex hull related to the initial value of an
agent. For relaxing the assumption of initial condition, there
have been methods to remove this limitation by adding an
initial value learning, such as [45], [46].
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Remark 6: The proposed protocol is proved to be effective
to solve the consensus tracking problem for the nonlinear
multi-agent systems with output constraint, data loss and
switching topologies. Since the controller design is only data-
based, then the ILC protocol is suitable for the more general
nonlinear dynamics, as shown in [24], [25], [34], and the pro-
tocol proposed in this paper also can be extended to the handle
with the consensus for the nonlinear multi-agent systemswith
heterogeneous dynamics.
Remark 7: The main result of Theorem 1 shows that, it is

necessary to make this condition satisfy all times in theory.
However, this condition is essentially only related to the
number of topological structures, and does not need to be
satisfied at all times, because it has been assumed that the
switching topology of agents switches randomly between Ḡ1
and ḠM .

IV. SIMULATION
In this section, we verify the consensus tracking of a
multi-agent system contains 5 agents, where the dynamics are
shown as follows:

xi,j(k + 1) =

[
cos(0.67xi,j1 (k))+ 1.2xi,j1 (k)
−1.2 sin(0.8xi,j2 (k))+ 1.1xi,j2 (k)

]

+

[
2 −1.1
−0.98 1.5

]
ui,j(k)

yi,j(k) =
[
1 2

]
xi,j(k)

(26)

and given the desired trajectory

yd (k) = [1.1 sin(0.27k)+ cos(0.1πk)] ,

k ∈ [1, 50].
Consider the threshold of each agent is

[y01, y02, y03, y04, y05] = [1.7, 1.5, 1.6, 1.4, 1.8].

It can be seen that the desired trajectory is within the measur-
able range of the system.

In the simulation, we assume the switching graphs have
4 kinds of topologies as shown in Fig. 1, where Ḡσ (k) ∈
[Ḡ1, . . . , Ḡ4].
Define that the switching signal function σ (k) changes

randomly on the interval [0,1]. The switching rules are set
as follows

σi(k) ∈ [0, 0.25), σi(k) = 1, Ḡσi(k) = Ḡ1

σi(k) ∈ [0.25, 0.5), Ḡσi(k) = Ḡ2

σi(k) ∈ [0.5, 0.75), Ḡσi(k) = Ḡ3

σi(k) ∈ [0.75, 1), Ḡσi(k) = Ḡ4

The switching signal function is random. Fig. 2 shows the
switching of multi-agent communication topology when the
system changes with time in one simulation. The 1,2,3,4 in
the diagram refers to the switchable topology diagram
Ḡ1, Ḡ2, Ḡ3, Ḡ4, respectively.
In order to verify the effectiveness of the proposed method,

we set two cases of data loss rates by η̄ = 0.9 and η̄ = 0.5.
The multi-agent system example is simulated in two cases.

FIGURE 1. Switching interaction graphs.

FIGURE 2. The switching topology as time increases in one iteration.

Select the gain matrix as 0 =
[
0.13 0.14

]T . Through
verification, both data loss rates and four switching structures
meet the convergence condition. With the given control gain,
the control effect of the proposed algorithm on the system is
shown in Figs 3 to Fig. 7.

FIGURE 3. The measured outputs of agents at 20th iteration with
switching topology and 10% data drops.

In the presence of data loss and saturation constraint,
we present the simulation results of multi-agent systems. The
output curve of the system at the 20th iteration is shown
in Fig. 3 and Fig. 4. In Fig. 3 and Fig. 4, different colors
with marked lines represent different agents, and the cor-
responding solid lines represent the saturation threshold of
each agent. We can see in Fig. 3 that when the system has
20 iterations, some of the output at case1 η̄ = 0.9 (10% data
loss) is out of the threshold range. However, in Fig. 4 there are
more saturation constraints in the case of the data loss rate at
case 2 η̄ = 0.5 (50% data loss) with the same system gain and
saturation. The output of the system is more dispersed, which
indicating that more data is lost. It shows that the amount of
data loss has a direct impact on the output of the system under
the same configuration conditions.
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FIGURE 4. The measured outputs of agents at 20th iteration with
switching topology and 50%data drops.

FIGURE 5. The measured outputs of agents at 80th iteration with
switching topology and 10% data drops.

FIGURE 6. The measured outputs of agents at 80th iteration with
switching topology and 50% data drops.

With the increase of iteration numbers, although the topol-
ogy of the system is switched randomly, the agents asymptot-
ically converge to the desired trajectory under the proposed
algorithm. Compared with the output in Fig. 3 and Fig. 4,
it can be seen from Fig. 5 and Fig. 6 that systems at 20 itera-
tions, the output of the system in 80 iterations has obviously
tended to the desired trajectory. But the amount of data loss
still affects the output of the system. As shown in Fig. 5, when
the system loses 10% data, only a small part of the time value
is not fully tracked at 80 iterations. However, when the data
is lost by 50%, as shown in Fig. 6, although the output of the
system has approached the desired trajectory, there are still
large tracking errors at each time.

The system can finally achieve complete tracking of the
desired trajectory as iteration number increases. As can be
seen from Fig. 3 and Fig. 5, with the increase of iteration
numbers, the output of the system is asymptotically converge
to the desired trajectory. Therefore, even at different data loss
rates, the multi-agent system subject to saturation constraints
and switching topologies can finally achieve complete
tracking of the same desired trajectory in a finite time interval,
and the results are shown in Fig. 7.

It can be seen from the above results that the multi-agent
system subject to switching topologies, data loss rate and

FIGURE 7. The measured outputs of agents at 200th iteration with
switching topologies and data dropouts.

saturation constraints can achieve complete tracking of the
desired trajectory under the proposed algorithm. However,
because the different data loss has a direct impact on the
convergence rate of the system, the tracking error of the
system is not the same under the two data loss rates, as shown
in Fig. 8 and Fig. 9. It shows that the less data loss, the faster
the system converges.

FIGURE 8. The tracking errors of agents with switching topology, output
saturation, 10% data dropouts as iteration increases.

FIGURE 9. The tracking errors of agents with switching topology, output
saturation, 50% data dropouts as iteration increases.

Further, a multi-agent system composed of 5 brush
DC permanent magnet linear motor is given next to verify the
effectiveness of the algorithm, in which the nonlinear model
of each motor is shown as{

ẋ(t) = υ(t),

υ(t) = u(t)−ffriction(t)−fripple(t)
m ,

(27)

where ffriction(t) and fripple(t) are friction (N ) and thrust
pulse (N ), u(t) is thrust (N ), m is mass (kg), x(t) denotes
position (m), υ(t) is velocity (m/s), t is continuous time (s).

The model of friction shown as follows

ffriction(t) = (fc + (fs − fc)e−(ẋ/ẋδ)
δ

+ fυ ẋ)sgnẋ, (28)
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FIGURE 10. The speeds of motors under fixed topology without data
drops and output saturation at 50th iteration.

FIGURE 11. The speeds of motors with switching topology, output
saturation, 15% data dropouts at 50th iteration.

FIGURE 12. The speeds of motors at 300th iteration.

where fs is static friction, fc is the minimum value of Coulomb
friction, ẋδ is lubrication parameters, fυ is load parameters and
δ is empirical parameters.

According to the benefit of slot inmotor structure, the pulse
dynamic model produced by magneto resistive is

fripple(t) = b1 sin(ω0x(t)), (29)

where b1 is amplitude, ω0 is angular velocity.
The desired speed of the linearmotor is designed as follows

υd (τ ) = (x0 − xf )(60τ 3 − 30τ 4 − 30τ 2), (30)

where τ = t/(tf − t0), x0 is initial position, xf is terminal
position. x0 = 0, xf = 2m, tf = 1s. Sampling period during
simulation set as 0.001s.
The nonlinear model parameters are as follows

m = 0.59kg, ẋδ = 0.1, δ = 1, fc = 10N , fs = 20N ,
fυ = 10N · s · m−1, b1 = 8.5N , ω0 = 314s−1. Set u(t) = 0
and initial motor speed υ(t) = 0.

Without considering the data loss and saturation con-
straints factors, and assuming that the motors communicate
under the first topology of Fig. 1, the speed simulation results
of 5 DC motors are shown in Fig. 10. Fig. 10 shows the
convergence tracking effect of five DC motors in the system
at the 50th iteration.

Taking switching topologies, data loss and saturation con-
straint factors into account, the effectiveness of the proposed
algorithm is also verified. Set 15% data loss and saturation
threshold to 4. The topology of the system is randomly
switched as shown in Fig. 1. The simulation results are shown
in Fig. 11 and Fig. 12. Fig. 11 shows the output results of
motor speed considering the random switching of system
topology and the existence of data loss and saturation con-
straint. The output results when the motor speed in the system
reaches the consistent state are shown in Fig. 12.

V. CONCLUSION
For a class of repetitive multi-agent systems, its consensus
tracking problem subjective to switching topologies, data
loss and saturation constraints is considered. The distributed
ILC algorithm is established by the incomplete interaction
data. With the use of graph theory and contraction map-
ping technical, the convergence of the control input error is
firstly analyzed and further the convergence of the tracking
error is derived. The obtained sufficient condition provides
the selection criterion of the control gain, under which the
proposed ILC algorithm can ensure the agents reach consen-
sus tracking objective even the output saturation, data loss
and time-varying switching topologies factors exist. Finally,
the effectiveness is verified by simulation examples.
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