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ABSTRACT Handwritten mathematical expressions are an essential part of many domains, including
education, engineering, and science. The pervasive availability of computationally powerful touch-screen
devices, similar to the recent emergence of deep neural networks as high-quality sequence recognition
models, result in the widespread adoption of online recognition of handwritten mathematical expressions.
Also, a deeper study and improvement of such technologies is necessary to address the current challenges
posed by the extensive usage of distance learning, and remote work due to the world pandemic. This
paper delineates the state-of-the-art recognition methods along with the user’s experience in pen-centric
applications for operating with handwritten mathematical expressions. Recognition methods have been
categorized into classes, with a description of their merits and limitations. Particular attention is paid to
end-to-end approaches based on encoder-decoder architecture and multi-modal input. Evaluation protocols
and open benchmark datasets are considered as well as the comparison of the recognition performance,
based on open competition results. The use of handwritten math recognition is illustrated by examples of
applications for various fields and platforms. A distinctive part of the survey is that we also considered
how UI design relies on the use of different recognition approaches, which is aimed at helping potential
researchers improve the performance of the introduced approaches toward the best responses in practical
applications. Finally, this paper presents the prospective survey of future research directions in handwritten
mathematical expression recognition and their applications.

INDEX TERMS Deep learning, handwriting mathematical expressions recognition, human-computer
interaction, LSTM, neural networks, ubiquitous computing.

I. INTRODUCTION
Over the past decade, significant advances in sequence recog-
nition and computer vision models based on deep neural
networks (DNN), and the ubiquitous expansion of touch and
pen-enabled phones and tablets have led to an increase in
interest in handwritten document processing. Handwriting is
a natural part of everyday human interaction. These days,
in addition to widespread smartphones and tablets, new types
of devices such as interactive panels, digital pens and smart
writing surfaces have become widely adopted in offices and
educational institutions, opening up new opportunities for
technologies for recognizing specific handwritten content
such as mathematics, diagrams, charts, tables, sketches, etc.
At the same time, the sudden outbreak of COVID-19 pan-
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demic reveals another scene to users and puts forward new
requirements for handwriting interaction applications in edu-
cation, distance learning, and remote work. To address this
problem, it is necessary to make a deeper study and improve
the technologies of handwriting recognition in terms of their
practical applications.

Mathematical expressions (MEs) are a fundamental part of
engineering, science, finance, education, and other domains.
MEs differ from the textual representation by the presence of
a two-dimensional (2D) structure and a large codebook (more
than 1,500 symbols [1]), where the characters are often very
similar to each other, especially for handwritten MEs (HME).

Handwriting input ofME is often preferred by users to key-
board and mouse, which is much slower [2]. Despite promis-
ing new developments in HME recognition, this task is still
at a level where recognition errors happen quite often. Such
errors can cause user dissatisfaction. A good user interface

38352 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4268-0262
https://orcid.org/0000-0002-9900-601X
https://orcid.org/0000-0003-2877-4510
https://orcid.org/0000-0003-0868-143X


D. Zhelezniakov et al.: Online Handwritten Mathematical Expression Recognition and Applications: A Survey

FIGURE 1. Examples of challenges related to stroke order.

(UI) strengthens significantly the system and user experience
(UX), whereas ineffective UI can spoil UX even with almost
perfect HME recognition accuracy. Hence, efficient input of
HMEs should be regarded as a combination of recognition
system and UI that facilitates ME input and enables the user
to resolve inaccuracies quickly.

Recognition of HME could be considered from two points
of view: ‘‘online’’ and ‘‘offline’’. Online recognition oper-
ates with a dynamic representation of input (the traces of
pen/finger movement), and offline recognition considers a
static representation (an image).

A. HME RECOGNITION CHALLENGES
More often, HME recognition is compared to handwriting
text recognition. The recognition of HMEs is a much more
difficult task, mainly due to the 2D layout. Such a structure
poses impediments at all stages of handwritten ME process-
ing, from preprocessing to the final expression construction.
If in preprocessing of handwritten text one of the main
problems is ‘‘delayed’’ stroke associated with diacritics, then
when recognizing ME, the whole characters or subexpres-
sions can be ‘‘delayed’’. An example of such a case is an
expression where parentheses are written after the subex-
pression. Also, users can often correct a character by adding
new strokes after writing the entire expression. The simplest
example is to change the addition symbol ‘‘+’’ into the
asterisk symbol ‘‘∗’’. It often happens that one character can
be augmented several times. Examples of such characters
are radicals and fractions, which expand as the user writes
related subexpressions. Figure 1 shows some examples of
expressions with delayed strokes, where the digit next to the
gesture indicates the ordinal number of the stroke.

Another challenge is the large size of the alphabet, which
makes some expressions extremely difficult to recognize even
for a human. The most common examples are ambiguities
associated with very similar or even the same writing of many
characters. There, plenty of symbols have the same writing
in lower and upper case, where an example of such char-
acters would be ‘‘X/x’’, ‘‘C/c’’, ‘‘K/k’’, and many others.
The use of Latin, Greek and Roman characters also adds
confusion due to the similarity of many characters, such as
‘‘B/β’’, ‘‘p/ρ’’, ‘‘x/χ ’’, and ‘‘n/η’’. Notation ambiguity also
exist between symbols and operators such as ‘‘x/×’’, ‘‘1/|’’,
‘‘S/

∫
’’, ‘‘o/◦’’, ‘‘t/+’’, ‘‘ 6 / <’’. Writing multiple symbols

side by side can also cause ambiguity in the segmentation and

FIGURE 2. Some examples of challenges in HME recognition.

classification of symbols. Here are some examples of such
ambiguities: ‘‘)(’’ – ‘‘x’’, ‘‘13’’ – ‘‘B’’, ‘‘1 <’’ – ‘‘K ’’.

Ambiguity arises not only due to a large number of very
similar characters, but also due to the peculiarities of each per-
son’s handwriting or regional specifics of writing. Regional
differences also include discrepancies in mathematical nota-
tion. Some countries have their own naming conventions.
For example, the notation ‘‘tg’’ can be used for the tangent
function. This feature can have a huge impact on the rules for
constructing expressions.

Besides the ambiguities, associated with segmentation and
character classification, the next major problem is the spa-
tial relations classification. In mathematical notation, spatial
relationships are mostly used as implicit operators. Although
the number of spatial relationships used is small, relation-
ships between elements can be very vague. Also, an implicit
multiplication operator between subexpressions is often used
in mathematical notation, which can also create some diffi-
culties in determining the correct structure of an expression.
Examples of various ambiguities related to segmentation,
classification, and structure analysis are shown in Figure 2.

Preparing datasets for training and verification is also chal-
lenging task as it requires a significant dataset to be collected,
validated and labeled. A great number of approaches require
significant manual labour to annotate the collected datasets
character by character.

B. PREVIOUS SURVEYS ANALYSIS
Several reviews in this field have already been published.
Table 1 summarizes previous surveys. Since then, there have
been significant changes in recognition methods that have
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TABLE 1. Overview of existing surveys.

led to the improvement in recognition accuracy, which has
been achieved mainly due to breakthroughs in DNN such
as recurrent neural networks (RNN) and encoder-decoder
based architectures. Also, the existing surveys mainly focus
on the analysis of recognition methods, often not giving the
required attention to practical applications of HME recogni-
tion and aspects of UI/UX design associated with employed
approaches.

The prime aims of this work are: to trace the evolution of
HME recognition methods with a focus on new approaches
that have emerged over the past decade, including new end-to-
end recognition approaches (Section II); to consider perfor-
mance evaluation methods along with the description of open
datasets for training and verification, as well as the results
of open competitions (Section III); to discuss UI design
approaches with regard to various recognition methods and
applications to help potential researchers in improving the
performance of the introduced approaches toward the best
responses in practical applications (Section IV); to argue the
directions for future research (Section V).

II. RECOGNITION SYSTEMS
The first works in the field of recognition of MEs date back to
the second half of the 1960s [7], [8]. Although research works
between the 1960s and 1980s focused mainly on the recog-
nition of printed MEs in an image, they laid the foundation
for further development. With the evolution and widespread
of touch and pen devices in the early 2000s, such as Pocket
PCs, the interest in handwriting input and online recognition
has grown significantly. Contemporary approaches, based on
sequence-to-sequence deep machine learning (DML) have
led to an epoch-making improvement in the recognition accu-
racy in sequence recognition problems.

In general, the online HME recognition problem can be
formulated as the transformation of the handwriting strokes

FIGURE 3. Recognition workflow in sequential solutions.

into a tree representation such as MathML or LATEX. Recog-
nition of mathematical notation traditionally involves two
stages [4]: (1) symbol recognition and (2) structural analysis.
The symbol recognition stage contains the following tasks:
(1) stroke preprocessing, which includes a variety of methods
such as size normalization, stroke interpolation, slant correc-
tion, and resampling; (2) symbol segmentation, or grouping
of the input strokes that belong to the same character; (3) sym-
bol classification, or the strokes group labeling. The goal of
structural analysis is to identify spatial relationships between
elements, to find a mathematical interpretation of an expres-
sion, and to produce its mathematical notation. Figure 3
illustrates the classical workflow forME recognition. Zanibbi
and Blostein [6] considered recognizingMEs in the context of
document recognition and emphasized on an additional task:
detection of the ME in the document.

Zhang [9] indicated three epochs of mathematical recog-
nition systems: sequential solutions, integrated solutions,
and end-to-end neural network-based solutions (Figure 4).
Sequential solutions are characterized by the fact that the
result of the previous stage is used on the next one. This
leads to the propagation and accumulation of errors. In the
integrated solutions, a set of symbol hypotheses is generated,
and the structure analysis module uses the best symbol can-
didate to construct the proper ME taking into account gram-
mar and semantic knowledge. End-to-end solutions transform
an input representation (image or set of strokes) directly
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FIGURE 4. Epochs of the mathematical recognition systems evolution.

FIGURE 5. Strokes preprocessing.

to mathematical notation. Whereas the set of methods and
techniques for sequential and integrated solutions have been
studied quite deeply in recent decades, end-to-end solutions
began to be adopted for ME recognition quite recently.

A. SYMBOL SEGMENTATION & CLASSIFICATION
1) STROKES PREPROCESSING
Preprocessing is the first step in HME recognition and has a
significant impact on the accuracy of the recognition model.
The main goal of this step is to unify the input data in order
to improve the reliability of the recognition algorithm for
different input data. Typically, preprocessing of handwritten
strokes in online recognition includes: removing duplicated
points, and the hooks of the strokes, slant correction, smooth-
ing input points, filling intermediate points, resampling, size
normalization [10]–[12]. The Figure 5 illustrates the result of
preprocessing. However, ME recognition is associated with
a 2D structure where the order of strokes is not specified
and depends on the user’s preference. Therefore, the prepro-
cessing stage often involves stroke reordering. Le et al. [13]
proposed an optimized X-Y cut for reordering strokes to
ensure stroke order independence. This method is based on
the detection of horizontally and vertically ordered strokes.
Classification of vertically ordered strokes is based on the
detection of special vertical symbols such as a fraction bar,
‘
∫
’, ‘

∑
’, and ‘lim’. This algorithm requires the use of a

character recognizer in the preprocessing stage.

2) SYMBOL SEGMENTATION
A lot of strategies have been explored for symbol segmenta-
tion in handwritten and printed ME. Early approaches have
relied on the X and Y projections (X-Y cut) technique [14]–
[16], and were mainly aimed at the segmentation of printed
ME. In [17]–[19] approaches for simultaneous symbol seg-
mentation and classification were proposed. The so-called

‘‘soft-decision’’ algorithm tries to find the most probable
sequence of characters and keeps all the variants of char-
acter segmentation and recognition until the final decision.
Lehmberg et al. [18] firstly proposed Symbol Hypotheses
Net (SHN). Kosmala and Rigoll [19] solved the segmentation
problem using Hidden Markov Models (HMM). A Mini-
mum Spanning Tree (MST) approach has been demonstrated
by Matsakis [20]. Toyozumi et al. [21] presented a segmen-
tation method based on the candidate character lattice using
the position relation of strokes and mathematical structure
information, which allowed to reduce the problem of over-
segmentation and under-segmentation. A technique that is
based on the contour feature was presented by Tian and
Zhang [22]. Hu and Zanibbi [23] proposed a symbol seg-
mentation method using AdaBoost algorithm and geometric
multi-scale shape context features, which included 3 groups
of features: stroke pair, local neighborhood, and global shape
contexts. The SVM-based classifier for symbol segmentation
was employed by Le and Nakagawa [24]. Twelve geometric
features and nine additional features were applied to calculate
the separation probability. The final decision on whether a
pair of strokes belonged to the same segment or not was
made using a threshold value. Hu and Zanibbi [25] pre-
sented a Line-of-Sight stroke graph and symbol segmenta-
tion algorithm based on these graphs and Parzen window-
modified Shape Context features (PSC). PSC features are
based on a log-polar coordinate system and are widely used
in computer vision. This list of works can be supplemented
with the results of research in the field of optical character
recognition (OCR) [26]–[28].

3) SYMBOL CLASSIFICATION
There are three general groups of methods for handwriting
recognition: online, offline, and combined [24]. Obviously,
the set of input strokes can be converted into an image, and
then offline techniques can be applied for the classification.
But it is also possible to employ online methods for offline
recognition. Chan [29] developed a stroke extraction algo-
rithm for offline ME. This method includes multiple steps
such as binarization, skeletonization, decomposition into seg-
ments, stroke reconstruction, order normalization, etc. As the
author points out, offline to online transition approaches
require retraining the online recognitionmodel with extracted
strokes. In this survey, we will focus on online and combined
methods. Table 2 summarizes symbol classification methods.

Nowadays, sequence-to-sequence methods based on the
Bidirectional Long Short-Term Memory (BLSTM) neu-
ral networks with Connectionist Temporal Classifica-
tion (CTC) [50], [51] represent the state-of-the-art in the
complex sequence labeling tasks such as speech [52] and
text [53] recognition. The main feature of BLSTM models is
that they can use contextual information over a long period,
considering both the next part of the input sequence and the
previous one. CTC refers to the scoring functions, and the use
of CTC implies the introduction of an extra ‘Blank’ symbol
in an alphabet. The equation (1) is used as CTC loss function
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TABLE 2. Categorization of methods for symbol classification.

O(S), which is defined as the negative log probability of the
correct labeling of the training set S, where x is the input
sequence, and z is the ground-truth labeling:

O(S) = − ln

 ∏
(x,z)∈S

p(z|x)

 = − ∑
(x,z)∈S

ln p(z|x) (1)

CTC tends to find symbol prediction in the corresponding
part of the input sequence [54]. However, using CTC in
HME recognition can cause difficulties since HME recogni-
tion requires high segmentation accuracy. Figure 6 illustrates
the output of BLSTM neural network with CTC, where the
X-axis corresponds to the input points, and the Y-axis corre-
sponds to the symbol probability for each point.

Typically, the probability spike occurs at the last point of
the new character, while elsewhere the probability of ‘Blank’
character tends to 1.0. Liwicki and Bunke [35] investigated a
set of 25 online and pseudo-offline features and suggested a
subset of 16 features for BLSTM-based recognition systems.
Dai Nguyen et al. [33] studied BLSTM recognition method
using 6 time-based features (xi, yi – normalized coordinates;
x ′i , y

′
i – derivatives; di – the distance between the current

and the next point; EndPointi – the last stroke point flag).
Zhang [9] proposed method which uses features vector from

5 features (sin θi, cos θi – sine and cosine directors of the
tangent of the stroke; sin1θi, cos1θi – sine and cosine
direction changes; PenUDi – state of pen down-up) and
employed in-air points (non-visible strokes that connect two
visible strokes). To overcome the CTC segmentation issue,
she proposed the modified CTC algorithm, which was named
local CTC. Zhelezniakov et al. [36] utilized BLSTM based
on normalized features vector with 3 features (1xi, 1yi, and
PenUDi). The segmentation problemwas resolved by balanc-
ing datasets and applying postprocessing rules. Volkova et al.
[55] suggested a lightweight neural network for segmentation
correction.

Convolutional neural networks (CNN) are acknowledged
for offline recognition tasks and play a vital role in com-
puter vision applications [56]–[58]. There are several works
on CNN architecture applied to online HME recognition
problems. Nguyen et al. [59] presented a combination of
CNN and LSTM for character recognition, which increased
the recognition quality by 1.57%. Fang and Zhang [49]
introduced a new approach to isolated symbol recognition
called squeeze-extracted multi-feature convolution neural
network (SE-MCNN). This approach utilizes 8-directional
features [60] to convert the stroke path into a feature map and
thereby compensate for the loss of dynamic information. For
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FIGURE 6. An example of BLSTM output with CTC-based training.

offline mode, the corresponding 8-directional pattern images
are generated using the Gabor filter. Also, as a replacement
for the softmax, the Joint Loss function was proposed, so that
the model can distinguish the similar handwritten symbols
better and reduce the variation of features within the sym-
bol class. Approaches that use a combination of classifiers
require more computational resources, and therefore their use
is limited in many cases, for example, in mobile devices.

In contrast to classical batch recognition, Phan et al. [61]
developed an incremental recognition method for online
HME. Character candidates are updated after receiving each
new stroke. The proposed method has reduced the waiting
time, but this approach is stroke-order-dependent and, there-
fore, has limitations, related to the processing of delayed
strokes.

B. STRUCTURAL ANALYSIS
Structural analysis is the final step in the classic ME recog-
nition workflow. The recognition engine classifies the spa-
tial relationship between recognized symbols and groups
of symbols. Based on spatial relations information, it gen-
erates the best interpretation of the ME in 2D notation.
There are a great number of approaches to structural anal-
ysis, but all these methods can be classified into 2 groups:
graph-based and grammar-driven techniques. Graph-based
techniques produce a directed graph based on geometric fea-
tures of strokes and/or symbols, and often such techniques
implicate additional rules for error detection and correction.
In turn, grammar-driven approaches rely on grammar pro-
duction rules and parsing. The entire score calculation is
based on symbol recognition confidence, grammar produc-
tion rules confidence, relation confidence, and often language
model features to produce an accurate prediction. Usually,
the complexity of grammar-driven approaches is higher, but
they prevent the construction of the incorrect expression
like Ca + b). Moreover, the creation of production rules in
grammars-driver approaches should be done very carefully,
taking into account the specific domain (such as chemistry,
geometry, physics, etc.). The total number of production rules
can easily be up to several hundred. However, despite its com-
plexity, these grammar-driver approaches are widely used and
demonstrate better quality, compared to graph-based. This is

FIGURE 7. Examples of typographic classes of symbols.

substantiated by the fact that the use of grammar can remedy
errors in symbol recognition or spatial relation classification.

1) SPATIAL RELATION CLASSIFICATION
Classification of spatial relation is presented in both
approaches to structural analysis. The following spatial
relation classes are commonly used: ‘Right’ (ab), ‘Sub-
script’ (ab), ‘Superscript’ (ab), ‘Above’ (

∑a), ‘below’ (
∑

a),
‘Inside’ (

√
a). The list of spatial relation classes can also

include: ‘Pre-Subscript (ba), ‘Pre-Superscript’ (ba). Instead
of creating a separate class for the power of the root ( b

√
a),

a relation of type ‘Pre-Superscript’ or ‘Above’ is often used.
Despite the small number of spatial relation classes, deter-
mining the correct type of relation is still challenging. This
is largely due to the confusion between right, subscript, and
superscript. Researchers have studied a variety of methods
of spatial relationship classification. A brief overview is pro-
vided in Table 3. There are two sets of features for the clas-
sification of spatial relations: geometric and shape features.
All the bounding box approaches used typographic symbol
classes to compute geometric features (see Figure 7). Le and
Nakagawa [24] introduced a concept of body boxes based on
the 4 typographic symbol classes. The approaches based on
shape features construct shape context as a polar histogram
layout descriptor. Examples of geometric and shape features
are shown in Figure 8. Approaches based on geometrical
features and shape features demonstrate the order of the same
accuracy.

2) GRAPH-BASED
Almost all the graph-based techniques are aimed at the con-
struction of the oriented graph where each node represents
a symbol, and each edge represents spatial relation. Such
graphs are called Symbol Layout Tree (SLT) or Symbol
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TABLE 3. Spatial relation classification approaches.

FIGURE 8. Examples of spatial relation classification features.

Relation Tree (SRT). The main advantage of the graph-based
approach is a low complexity which usually does not exceed
O(N 2), where N is the number of recognized symbols.
Lee and Wang [70] suggested the system for expression

construction, using recursive analysis and character grouping
around special symbols such as ‘

∑
’, ‘

∫
’, ‘

∏
’, ‘√’, and a

fraction line. Spatial relation analysis includes blocking rules
for subscript and superscript for specified categories of sym-
bols. In the final stage, the correction of recognition error is
performed using the set of preassigned rules. The virtual link
network was introduced by Eto and Suzuki [71], the proposed
network has multiple edges with different spatial relation
labels and local costs. The recognition process consists of
two stages: virtual link network construction and finding the
final spanning tree. The final spanning recognition graph is
determined by the minimum cost, which consists of local and
global costs. The local cost is defined by the ambiguity of the
relation type decision between the two symbols. The global
cost reflects the global structure and is calculated using the
set of rules. Toyota et al. [72] extended the previous work

and proposed an approach for incorrect ME filtering by using
grammar as a verification step. Zanibbi et al. [73] investigated
an approach for SLT construction by searching linear struc-
tures (‘baselines’). Rhee and Kim [74] solved the ambiguity
problem by incrementally adding a symbol hypothesis one by
one and scoring each hypothesis with a heuristic function.

Tapia and Rojas [69] were the first to propose the method
for structure analysis of ME using Minimum Spanning Tree
(MST) and symbol dominance. They used Prim’s algo-
rithm for undirected MST construction. The weight function
W (ST , SN ) is based on verification of dominance during
the edge weight calculation between symbols. If symbol T
dominates a symbol N , then function W returns the minimal
distance between nearby points of symbols ST and SN . Oth-
erwise, it returns the distance between centroids of ST and
SN . Further, this method of ME constructing was extended by
Hu and Zanibbi [68]. Initially, Line-of-Sight (LOS) graph is
constructed taking into account the visibility between sym-
bols. The spatial relation classifier is employed as a weight
function for edge score generation in a LOS graph. Then
Edmonds’ algorithm is used to find the spanning tree. The
leftmost node on the main baseline is specified by a special
dummy symbol, which was inserted into the LOS graph in
the beginning.

Lods et al. [66] presented the concept of the Fuzzy Vis-
ibility Graph (FVG). Edges are defined by a spatial rela-
tion classifier, which includes a supplementary class ‘Junk’.
A parser with predefined rules for removing redundant edges
is applied to transform the obtained FVG to the valid ME.
Zhang et al. [75] proposed a tree-based BLSTM system that
generates SLT directly from the input strokes and does not
contain the classical stages: character recognition and struc-
tural analysis. An intermediate stroke-based graph is built
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FIGURE 9. Examples of CYK table for ‘x2 + 8 =’.

using spatial relation and temporal features. Then multiple
trees are labeled by tree-based BLSTM. After that, the result
is constructed from several trees based on the highest proba-
bility.

3) GRAMMAR-DRIVEN
The syntactic approaches to the recognition of two-
dimensional visual languages have been studied over the
past fifty years [7], [76]–[81]. All grammar-driven techniques
are based on the use of context-free grammar formalism.
Nowadays, the approaches based on 2D Stochastic Context-
Free Grammars (SCFG) are the most studied in the ME
recognition domain. Chou [82] first proposed the idea of
using 2D SCFG to recognize MEs. The proposed approach
utilized a two-dimensional probabilistic version of the Cocke-
Younger-Kasami (CYK) algorithm. Yamamoto et al. [83]
offered a system that simultaneous symbol recognition and
structure analysis under the constraints of a 2D SCFG.
In other words, stroke-based grammar was proposed. Alvaro
has further studied and developed 2D SCFG-based method
in numerous articles [47], [64], [84], [85]. He described
a stroke-level approach based on parsing 2D Probabilistic
Context-Free Grammars (PCFG) with the CYK algorithm
that employs bottom-up parsing and dynamic programming.
Usually, the CYK parsing algorithm is illustrated as a trian-
gular table (see Figure 9), where each cell contains candi-
date hypotheses and their score. The bottom level contains
non-terminal symbols that correspond to the basic elements
from which the expression is built. The lowest level is built
from segmented and classified symbols. However, for stroke-

FIGURE 10. The Encoder-Attention-Decoder framework.

based grammar, the bottom level contains hypotheses for the
single stroke instead of a symbol. Each next level contains a
valid expression that can be generated in accordance with the
grammar. The level in the CYK table determines the length
of the expression. Accordingly, the last level contains a set
of expressions allowed by the grammar that contain all the
original elements (symbols or strokes). Production rules for
the CYK algorithm are defined in Chomsky normal form
(CNF) (A → α and A → BC , where A, B, and C are
nonterminal symbols, α is a terminal symbol). Example of
production rules for ME parsing algorithm:

TERM H⇒ symbol

TERM H⇒ number

LEFT →
H⇒ operator TERM

EXPR →
H⇒ TERM LEFT

DENOM
↓
H⇒ hline TERM

FRAC
↓
H⇒ TERM DENOM

SUP
↗
H⇒ TERM TERM

SUB
↘
H⇒ TERM TERM

Several studies [86]–[88] have addressed the efficiency
and complexity of the CYK algorithm, which is equal
to O(N 3

|P|) for one-dimensional languages and O(N 4
|P|)

for 2D languages, where |P| is the number of production
rules in the grammar and N is the number of expres-
sion primitives(strokes). In his works, Alvaro presented
approaches of reducing the complexity and finally has
achieved O(N 3 logN |P|) [85]. Le and Nakagawa [87] sug-
gested pruning infeasible hypotheses in the parse tree. Refer-
ence [36] reduced recognition time by integrating the concept
of symbol dominance into the parse tree.

The fuzzy relational Context-Free Grammar (r–CFG), can
be differentiated from other approaches to grammar con-
struction. This approach was introduced by MacLean and
Labahn [89] and it has less computational complexity than
CYK. Fuzzy r–CFG complexity is O(N 3+K

|P|K ), where K
is the number of right-hand side (RHS) tokens in the largest
production. Another feature of this approach is more expres-
sive grammar, which avoids creating hundreds of production
rules. The proposed grammar is similar to the Backus–Naur
Form (BNF), making it easier to support models for specific
domains.

C. END-TO-END RECOGNITION
In recent years, end-to-end encoder-decoder based recog-
nition systems are dominant in speech recognition, image
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FIGURE 11. The architecture of stroke constrained attentional network (SCAN).

captioning, machine translation, these systems are also
referred to as data-driven, which implies the absence of an
explicitly defined domain knowledge. While this survey aims
at online HME recognition, in this section we will take a look
at end-to-end encoder-decoder based approaches, which are
now mainly adopted for offline HME recognition, as they
demonstrate impressive results, and some techniques can be
applied for the recognition of online HME. Figure 10 illus-
trates the general representation of encoder-decoder frame-
work with attention mechanism. The encoder transforms the
input sequence into the hidden states, and then the decoder
extracts the hidden representation through an attention mech-
anism and produces the result.

Zhang et al. conducted several experiments with several
architectures. In [90], they presented Watch, Attend, and
Parse (WAP) neural network model for offline ME recog-
nition. The proposed system utilizes VGG architecture for
the encoder implementation and gated recurrent unit (GRU)
for the decoder. The attention model enforces the decoder
to focus on a specific part of the input image to recognize
a single character or spatial relationship between charac-
ters. Later, they improved the solution [91] by replacing
the encoder architecture with densely connected convolu-
tional networks (DenseNet) and applying multi-scale atten-
tion (MSA) model, which allowed the system to deal better
with various scales of handwriting symbols. Their research
is not limited to offline recognition. In [92], they proposed
GRU-based encoder-decoder architecture for online recog-
nition systems. It consists of a single layer GRU decoder
with an implicit coverage-based attention mechanism and
a multi-layer bi-directional GRU encoder. A little bit later,
they improved their solution and proposed Track, Attend, and
Parse (TAP) framework [93], where Guided Hybrid Atten-
tion (GHA) was integrated into the decoder. GHA consists
of coverage-based spatial attention, temporal attention, and
attention guider. The attention guider is used during the learn-
ing process as a regularization method for spatial attention
mechanism, and temporal attention is responsible for the
balancing between tracker and language model. Finally, TAP

integrated with WAP and GRU-based language model (LM)
in the beam search procedure, where GRU-based LM was
trained on an additional text dataset.

He et al. [94] presented an end-to-end CNN-based frame-
work for offline recognition of printed ME. Deng et al. [95]
investigated different attention mechanisms for encoder-
decoder architecture in offline recognition of printed ME.
Le and Nakagawa [96] proposed an end-to-end solution with
3 layers: a CNN as a feature extractor, a BLSTM as an
encoder, and an LSTM attention-based model as a decoder
for LATEX generation. Zhang et al. [34] proposed a solution
based on one BSTLM architecture, which produces out-
put as a 1D sequence describing a graph with spatial rela-
tions. All models were trained and evaluated on the open
CROHME datasets (details about the CROHME datasets
see in sec III-B). The final results for TAP+WAP+LM [93]
approach were obtained with the ensemble of three instances
of each model.

Wang et al. adapted the methods outlined above and
focused on developing approaches based on encoder-decoder
architectures that combine the advantages of both online
and offline representations. He introduced multi-modal atten-
tional network (MAN) [97] and stroke constrained atten-
tional network (SCAN) [98]. MAN architecture uses CNN
and stack of bidirectional GRUs to encode the online chan-
nel and DenseNet [99] to encode the offline channel. The
decoder employs two unidirectional GRUs with a multi-
modal attention mechanism. Compared to MAN approach,
SCAN architecture (Figure 11) uses stroke masks to align
between online and offline channels. Each online stroke mask
contains information on whether the i point belongs to the j
stroke or not, and an offline stroke mask specifies if (x, y)
pixel belongs to j stroke. Applying such masks provides a
fusion of different channels in the encoder.

Duc Le suggested the dual loss attention network [100] to
improve HME recognition using printed MEs. In addition to
the decoder loss, the method also comprises context matching
loss to recognize semantic features from handwritten and
printed MEs. In [101], the proposed methods address the
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FIGURE 12. Examples of handwritten matrices.

problem of varying symbol sizes. First, it was suggested to
augment using different scaling factors, instead of normaliz-
ing to the same size. Second, the authors introduced a drop
attention mechanism that restrains features with the greatest
attention weight.

Table 4 shows the performance estimation (expression rate)
and the number of weights in the proposed end-to-end solu-
tions. The recognition accuracy was measured using open
data sets, whichwill be discussed inmore detail in Section III.

D. RECOGNITION OF MATRICES
HME recognition including mathematical matrices is a more
complex problem, since it involves additional recognition
steps associated with matrix detection and segmentation of
their elements. Handwriting matrices often do not meet the
requirements for the presence of space between elements,
elements can overlap each other along the X-axis, Y-axis, and
sometimes both axes simultaneously. Additional complexity
arises from the shorthand matrix notation, which uses ellipsis

(. . . ,
...,
. . .) to represent repetitive structures and sparse matri-

ces in which zero-valued elements are omitted. Figure 12
illustrates examples of the basic problems associated with
matrix recognition.

Despite the number of publications, related to the recog-
nition of MEs, only a few of them pay attention to the
recognition of matrices. Most of the approaches described
in the publications are related to the recognition of the table
representation in printed documents [70], [104]–[106]. Cur-
rently, all the existing approaches (online and offline) use
special symbols (like [, ], (, ), |) to define the boundaries of the
matrix to begin the analysis of the structure itself. The main
differences are only in the method of analysis of the matrix
structure (segmentation). The concept of attractor points and
area projection function for rows clustering was proposed
in [69]. Column clustering is based on the gaps between
symbols. Tausky et al. [107] compared two methods for the
matrices structure analysis. The first method is based on the

comparison of the distance between adjacent symbols with
some threshold value, which was calculated as the average
width and height of symbols. The second method utilizes the
expectation-maximization (EM) algorithm. Clustering was
performed separately for rows and columns and used pro-
jections of the geometric centers of the symbols on the X
and Y-axis. Li et al. [108] described an approach for matrix
structure analysis based on sequential row identification and
then column identification. To overcome the overlapping of
cell elements that can be caused by superscripts or sub-
scripts, they introduced ‘rowBox’ which is calculated from
the bounding boxes of the elements from the main baseline,
rather than include all elements from the cell’s expression
tree. This approach requires making an assumption about the
relationship between the elements inside the matrix cell.

A comparison of the accuracy of matrices recognition
methods is given in Table 5. Matrix recognition accuracy
evaluation uses additional metrics, which will be discussed in
Section III. There are currently no publications on end-to-end
solutions for matrix recognition. Also, all of the approaches
described above can be classified as sequential solutions. It is
not possible to make a comprehensive comparison of them
because there were no published common test datasets at that
time and no published evaluation.

E. MULTI-MODAL INPUT
Multi-modal interfaces are characterized by the use of sev-
eral modalities to support input or output. Typing, hand-
writing, speech, and vision are the main modalities for
human-computer interaction. Multi-modal systems are now
in trend since they can reduce the ambiguity that may be
characteristic of certain modalities. The voice modality can
be used to simple text input, but the input of more complex
elements (such as tables, charts, mathematics) using voice as
a single modality is required speaking conventions to over-
come the ambiguity and inconsistency [112]. During voice
input user usually skips a lot of information related to the ME
layout (for example, fences). The main difficulties in HME
voice input are associated with the identification of spatial
relations (especially for right, subscript, and superscript), and
the classification of characters with a similar way of writ-
ing. Medjkoune et al. [113] suggested and explored various
methods that reduce the uncertainty during MEs input that
occurs in single-modality mode (Fig. 13). Their method is
based on the simultaneous input of ME using two modalities,
and keyword extraction from the recognized text by the voice
modality. Further, these keywords are used to minimize hand-
writing ambiguity. Through the use of several modalities,
they managed to achieve an improvement in the quality of
recognition.

III. EVALUATION OF RECOGNITION SYSTEMS
Evaluation of handwritten MEs recognition systems is a non-
trivial task. There is a set of issues that is common to all the
types of recognition systems, such as creating or selecting
representative datasets and metrics. Recognition of MEs has
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TABLE 4. Comparison of end-to-end solutions. ER – Expression rate.

TABLE 5. Comparison of solutions with recognition of matrices. ER – Expression rate; SymRR – Symbol recall rate; MRR – Matrix recall rate; RowRR – Row
recall rate; ColRR – Column recall rate; CellRR – Cell recall rate.

its difficulties and features in the evaluation process, which
are associated with the 2D structure of ME, a wide range of
character classes, the ambiguity of mathematical notations,
and others. An example of ambiguity in LATEX notation is
the fact the same expression can be represented in multiple
ways. Such a fraction can be represented using the \frac and
\over commands (‘a \over b’ or ‘\frac{a}{b}’). Moreover,
the proper selection of performance metrics can identify
weaknesses of the verified system. Several works are devoted
to an in-depth analysis of ME recognition system evaluation
issues [114], [115].

A. METRICS
The choice of metrics highly depends on the goals and the
method of recognition used. Expression rate (2) is generally
used for the evaluation of HME recognition systems. This

metric is defined as the percentage of recognizedMEsmatch-
ing ground-truth up to the symbols, relations, and structure:

ER =
Number of correctly recognized expressions

Total number of expressions
(2)

ERmetric is employed to evaluate the overall solution, but
it does not provide information to identify weaknesses of the
system. Another integrated metric is a structure recognition
rate (3). It measures the percentage of expressions, whereME
tree was recognized correctly, ignoring the label of characters
in the tree nodes.

SRR =
Number of correctly recognized structures

Total number of expressions
(3)

The most common metrics were proposed at the stage of
sequential solutions dominance, and in addition to ER and
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TABLE 6. Performance evaluation methods.

FIGURE 13. Multi-modal ME recognition workflow.

SRR, include segmentation accuracy, symbol classification
accuracy, and the accuracy of structure analysis [121]. Each
of the mentioned metrics is directly related to a certain
recognition step. The development of recognition methods,
the complexity of comparison, the ambiguity of notation led
to the creation of a set of metrics and evaluation methods
that can be classified as follows: Graph-based – match-
ing between ground-truth and recognized result is made by
matching graphs; Text-based – plain text representation is
used for matching; Image-based – evaluation is based on a

comparison of two generated pictures of ground-truth and test
expression. Classification and brief description of evaluation
metrics are presented in Table 6.

There is no way to use stroke-based methods to evaluate
the accuracy of end-to-end solutions because these solu-
tions directly transform input gestures to mathematical nota-
tion. The stroke-based evaluation has been used for evalu-
ation from the start of CROHME. With the evolution and
widespread of end-to-end systems, since 2019 the stroke-
based evaluation has been replaced by object-based [122].

Layout recall rates are used to determine the quality of the
table structure analysis related to matrices recognition, where
there are four specific object types of interest. Such metrics
include Matrix recall, Row Recall, Column Recall, and Cell
Recall [109]. Typically, layout metrics utilize the result of
stroke level segmentation according to the required elements
of the matrix structure [110]. Metrics related to the quality of
segmentation and character classification are also indicated.
The quality of character recognition in matrices is usually
lower than in regular MEs, since the matrix structure makes
it difficult to detect character [111].

B. DATASETS
Collecting a large ground-truth dataset is expensive and
requires a lot of effort. To create such a dataset, many aspects
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need to be taken into account: such as the number of char-
acters supported and their frequencies, the spatial relations
used, the length of the expression, the domains (geometry,
physics, etc.), the number of writers, the available equipment,
workforce for proof-reading, and labeling. The most time-
consuming steps are handwritten samples gathering itself,
proof-reading, and labeling of ME at different levels (symbol
segmentation and classification). These steps are often the
cause of errors, as they are most often performed manually.
End-to-end approaches do not require a detailed ME annota-
tion, but they do require a huge number of training samples.
This significantly reduces the time for sample annotation
and the potential for human error but increases the cost of
gathering and verification collected samples.

One of themost common approaches is to generate ground-
truthed synthetic examples [123], [124]. However, such an
approach is more suitable for OCR recognition of printed
documents [125], [126] because handwriting input is very
diverse and depends on the region, age, etc. The quality of
the recognition systems is highly dependent on the variety
of real handwriting in the train set. This insight has led to
the creation of tools that automate, or at least simplify, data
annotation tasks. ExpressMatch [127] is a system designed to
simplify creation andmanagement datasets with ground-truth
annotation. The system provides semi-automatic annotation
while writing based on the use of time between strokes to
perform segmentation. The UI tool that supports automatic
annotation, manual verification, and correction has been pro-
posed in [128]. This system is also based on the time interval
between strokes for symbol segmentation, which forces users
to take breaks between writing characters. Hirata and Honda
[129] proposed an approach for automatic ME labeling based
on normalized graph matching. The search for the best fit is
performed using the matching cost function, which includes
cost ratios of vertices and edges. The cost function for edges is
based on geometric features and requires a reference sample
to calculate. A reference example for matching can be gener-
ated, using manual annotation or synthesized. Moreover, this
technique also requires the correct character segmentation in
the examples, which is achieved by requiring users to take a
break between writing characters.

1) CROHME
In 2011, during the preparation of the first CROHME,
Mouchere et al. presented a new dataset, whichwas a union of
several open datasets such asMfrDB [130], Mathbrush [131],
HAMEX [132], Expressmatch [127] and CIEL [38]. Since
then, the datasets released as part of CROHME, have become
the de facto standard benchmark for various studies and
comparisons. The proposed evaluation methods are used
as a standard, and the results, shown during the competi-
tion, become state-of-the-art. Within each next competition,
a new test dataset was prepared, and the training dataset was
expanded with the test dataset from the previous competition.
Datasets are distributed as a set of Ink Markup Language
(InkML) [133] files, where each file contains the following

information: ground-truth in LATEX and MathML formats;
input tracepoints; the segmentation and assigned labels of
each symbol in the expression.

Despite a gradual increase, this dataset is still quite small
compared to training data for other domains (ImageNet [134]
contains over 14 million images, AudioSet [135] contains
more than 2 million sound clips). Especially it concerns
end-to-end HME solutions that require significantly larger
datasets than sequential solutions. Le et al. [136] proposed
a set of techniques for extending existing datasets by synthe-
sizing new samples. To extend the dataset, they offer local
and global distortions. Where local distortions are applied
for symbols and include shear, shrink, perspective, rotation,
and their combinations. Global distortions apply to the entire
ME and contain scaling and rotation. Based on the CROHME
2014 and 2016 datasets and the proposed techniques, they
synthesized and published new datasets named Artificial
Online Handwritten Mathematical Expressions.

Quiniou et al. [132] presented the public datasets named
HAMEX for tasks, related to multimodal input of ME. It con-
tains 4 350 MEs in online handwritten and audio spoken
forms (in French) from 58 respondents.

C. COMPETITIONS
Nowadays, CROHME is the main driving force for the devel-
opment of ME recognition systems both online and offline.
Table 7 contains a brief competition summary, including
the number of participants, the main metrics of datasets,
the best results, and others. Each time the size of datasets
increases, and the number of participants remains almost
the same.

In 2019, a system based on the encoder-decoder end-to-
end approach won for the first time with ER = 80.73%
and SRR = 91.49%. The winner system was trained on the
CROHME training dataset only. Also, the winner combined
online and offline recognitionmodels, where eachmodel is an
attention-based encoder-decoder (RNN-based encoder for the
online model and CNN-based encoder for offline model), and
a single layer RNN-based language model. The gap between
the winner and the closest competitors is less than 1.6%.
Also, in 2019, the organizers abandoned the use of character
segmentation and classification accuracy metrics, since the
presented end-to-end solutions provide an answer in the form
of a LATEX string without binding information about input
strokes to output elements.

In different years, the conditions vary slightly. So in 2014
and 2016, tasks with matrix recognition were included. This
competition provides a comparison based on accuracy met-
rics. However, this is not enough to get a complete picture of
the approaches. There is no information about other important
indicators, such as recognition time, memory consumption,
and model size, necessary to understand hardware require-
ments. This is especially important when you need to evaluate
the possibility of using the solution on devices with limited
resources, such as mobile devices or interactive panels.
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TABLE 7. CROHME: datasets parameters and competition results: SR – Segmentation Rate; SCR – Symbol classification rate; SSCR – Symbol segmentation
and classification rate; SpRR – Spatial relation rate.

IV. HUMAN-COMPUTER INTERACTION
Most researchers focus on recognition methods and their
quality, as well as on the functional features of a particular
system. Fewer works focus on aspects related to the inte-
gration of recognition systems in the application and user
interactions. Little attention is given to the features of using
systems on mobile devices with limited screen size and com-
putational resources. The goal of this section is to poseUI/UX
design issues with respect to the recognition approaches.

A. RECOGNITION MODULES AND USER EXPERIENCE
Typically, researchers refer to two UX design methods for
integrating recognition systems into applications: iterative
(real-time) and batch recognition. Iterative input consistently
provides feedback and gives the user a chance to see what
went wrong and what needs to be corrected [140]. When
using the batch technique, recognition is performed after the
entire ME has been written, and often the user has to man-
ually start the recognition process. Bott et al. [141] studied
the user’s preferences for recognition mode depending on
the accuracy of the recognition system and the number of
MEs. This work demonstrated that the quality of recognition

weakly affects the preferences of users for recognition mode,
but during the input of multiple ME, users prefer the itera-
tive mode. Most systems today provide interactivity. Even if
recognition is performed on the whole ME, the intermediate
results of recognition are displayed to the user as they are
written. For modern systems, it is possible to distinguish three
main features: edit mode, recognition mode, and representa-
tion mode. Table 8 provides an overview of the modes used
in the considered solutions and applications.

1) EDIT MODES
The ability to correct errors more comfortably and quickly
is a key requirement for UI. The easiest way to support
the editing mode is to use the so-called eraser to remove
one or more strokes and then re-draw again. The second
method relies on different kinds of menus to select the cor-
rect character or the correct ME from the list of candidates.
The ‘undo’ operation is also applied to this mode, as it is
performed through the application menu (shortcut). The next
option is to use handwritten editing gestures (Figure 14).
This method is most natural for handwriting but requires a
gesture recognition system and conflict resolution since a lot
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FIGURE 14. Examples of edit gestures and their interpretations: a) delete
symbol(s) using scribble gesture; b) delete symbol(s) with a slash
gesture; c) slash to insert ‘/’ between characters; d) append a symbol;
e) insert a symbol between two others; f) insert a symbol as a
subexpression; g) replace a symbol.

of editing gestures are similar to mathematical symbols. The
last method is keyboarding (hardware or software for mobile
devices). All these approaches can complement each other
and be used simultaneously in the same application. However,
some recognition methods are incompatible with all of these
editing methods. For example, existing end-to-end solutions
do not support edit ‘gestures’ mode. Also, the menu mode is
more difficult to implement due to the complex structure of
ME, so it is most often used to select a recognition candidate
for a single character or an entire expression.

2) RECOGNITION MODES
Iterativemode assumes the recognition of characters sequen-
tially as they are drawn. That is, only new strokes are
transmitted for recognition, and ME is updated, taking
into consideration newly recognized characters. Using this
approach reduces latency. But it can lead to recognition qual-
ity degradation due to limited context while using RNN archi-
tecture for character recognition. In batch mode all strokes
are used for the new ME recognition. The response time in
this mode can greatly increase, but it is easier to implement
and allows you to make some changes without resorting to
editing mode (for example minus sign ‘−’ can be easy mod-
ified to equality sign ‘=’ or plus ‘+’ sign). However, in this
mode, the recognition result with the addition of one gesture
can be significantly different from the previous recognition.
BLSTM-based approaches are most susceptible to this effect.
As a result, this behavior can distract the user. Batch mode is
used more often than iterative and can be applied for any type
of recognition solution (sequential, integrated, and end-to-
end). The iterativemode cannot be implemented using current
end-to-end solutions. For grammar-driven approaches, it is
necessary to take into account the fact that the ME during
input may have the wrong structure (input is not yet complete,
and some elements can be missed). This leads to additional

TABLE 8. Iterative recognition features: Rec. – recognition mode; Rep. –
representation mode; G – gesture edit mode; G* – scribble gesture only
for the stroke/symbol erasing; M – menu edit mode; M* – undo/redo
menu operations only; K – keyboard edit mode; B – batch recognition
mode; I – iterative recognition mode; H – handwritten representation
mode; P – printed representation mode.

ambiguities in the analysis of theME. For instance, the recog-
nition algorithm can interpret an expression with an overline
as an uncompleted fraction with an empty numerator.

3) REPRESENTATION MODES
Editing HME with a stylus or finger is called handwritten
mode. In this mode, the recognition result can be displayed
in a separate area of the screen in printed form 15. But the
simultaneous presence of two representations of the sameME
can distract the user (which of the two instances should be
corrected?). The presence of the second instance also creates
inconvenience on mobile devices due to the limited screen
size. In printed mode, input strokes are transformed into
a printed representation and, further editing operations are
performed on top of it. Such mode removes the ambiguities
related to the choice of instance for editing, reduces the num-
ber of elements on the screen. At present, there are no end-
to-end solutions that support printed representation mode.

Gesture editing is not limited to the generally accepted
scribble gesture. LaViola Jr and Zeleznik [145] presented
the interface, which includes a set of gestures to create a
graph, simplify an expression, solve an equation, and others.
In [153] a system based on pen and touch modalities was
proposed. Separate processing of signals from the pen and
finger made it possible to simplify the interface and get rid of
many ambiguities, in which the pen is used to input strokes,
and finger gestures to control visual elements, movements,
etc. Zanibbi et al. [154] studied the feedbackmethod by trans-
formation handwritten symbols in ME to corresponding their
position in a printed version. Such a transformation is done
by translation and scaling of each symbol and preserves the
style of user drawn symbols. The purpose of this method is to
provide immediate feedback about the recognition result but
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TABLE 9. Applications: Avail. – Availability; P – Prototype; F – Free; C – Commercial; D – Desktop; B – Board; M – Mobile; MC – Mobile(cloud); MD –
Mobile(on-device).

to avoid sudden changes in the appearance that occur during
the transformation into a printed representation. Taranta and
LaViola Jr [155] suggested a hint-based approach for sim-
plified iterative input using visible bounding boxes around a
specific part of ME.

B. APPLICATIONS
The first application prototype for ME input was introduced
in 1993 [166]. This prototype supported iterative input of ME
as well as edit, delete, and move gestures. MathPad2 [145]
prototype is the mode-less interface that focused on the
combination of HME and free-form mathematical sketching.
It allows animated visualization of ME and graph creation
with pen gestures only. Besides, the system supports a wide
range of functions, including solving, simplifying, factoring.
Anthony et al. [157] proposed pencil-and-paper interfaces for
application in tutoring systems. Li et al. [158] presented a
system for sketching algorithms in pseudocode-like descrip-
tion style, which is based on the 2D traditional mathematical
notation. Document processors can also be equipped with
handwriting input recognition methods, where the input is
carried out through a special mode with creating a tem-
porary visual control (window). Applications for inputting
and managing user notes also include ME recognition [151],
[165]. To support diverse content, such applications com-
bine multiple recognition modules for text, diagrams, tables,
charts. However, the type of input element is mostly con-
trolled by the user. In one case, a dedicated input area is
created in the document; gestures inside this area are always

FIGURE 15. Examples of user interface: a) batch recognition and
handwriting representation; b) iterative recognition and printed
representation.

recognized as formulae. In another case, the user should
select the required strokes to perform transformation into the
mathematical notation. The reason for this UI design is the
difficulty of automatic classification of input strokes for text
and formulae. Therefore, document structure analysis is often
based on a binary classification of gestures into Text andNon-
Text [167], [168]. The list of applications and brief description
are presented in Table 9. Figure 15 demonstrates UI examples
for mobile devices.

As one can see, in recent years, the number of mobile
applications that focus on handwriting with a pen or finger
has increased. These applications are optimized for use on
small screens and under limited computational resources.
Using cloud computing is one of the most common methods
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to reduce processor load. But cloud-based approaches require
constant access to the Internet and are associated with the
risks of leakage of private information. In addition, users tend
to keep their data private and often do not want to pass them
to third parties [169]. The latest emerging trend in AI mobile
applications is the rollout of on-device recognizers, which
is privacy-preserving and always available, even without the
Internet connection [170].

V. SUMMARY AND DISCUSSION
A. CONCLUSION
This survey demonstrates that interest in online HME recog-
nition has been growing over the past 40 years. The devel-
opment of integrated solutions made it possible to combine
various methods (grammatical, statistical) minimizing the
accumulation of recognition errors. The research community
has now focused on DML techniques, resulting in third-
generation end-to-end solutions. Although end-to-end solu-
tions have taken the lead in many areas, in HME recognition,
these methods are still at an early stage of development and
have some limitations. One of the inherent features of these
methods is their high computational complexity, which often
prevents them from being used for on-device mobile comput-
ing. The second unresolved problem is the limited use-cases
in UX design. Despite the fact that they have established the
new state-of-the-art in the recognition performance, lagging
behind integrated solutions is not yet significant.

With the technological transition from desktop solutions to
mobile platforms, the number of pen-centric mobile applica-
tions is constantly increasing. These applications allow the
user to perform a variety of tasks from simple calculations to
the input of free-form diverse content. Although the deploy-
ment of next-generation networks (such as 4G, 5G) is nearly
ubiquitous, developers often prefer to provide solutions with
on-device recognition and calculation. In such a way, they
can avoid security and privacy concerns associated with cloud
computing.

The research in the field of user-centric and task-centric
handwriting interfaces continues to bring it closer to natural
input pen and paper interface. Using multi-modality (for
example, voice) allows reducing the recognition errors dur-
ing or simplify their correction.

B. FUTURE RESEARCH
In summary, this survey demonstrates that there continue
to be significant advances in HME recognition approaches
that use DNN. This progress together with the increase of
user requirements opens up new possibilities for further
research. In this section, we have summarized and briefly
described some of them.

1) END-TO-END RECOGNITION
Approaches for mobile platforms are in great demand now.
The current complexity of such solutions is burdensome for
many devices and requires cloud computing. Furthermore,

end-to-end solutions focus on the whole expression recogni-
tion, and the adaptation of these approaches to iterative input
expands the scope of these solutions.

2) CLOUD SOLUTIONS
The latest competition showed that a combination of online
and offline HME recognition methods provides a significant
increase in recognition accuracy. Also, cloud-based solutions
are expected to take full advantage of federated learning to
create more robust models.

3) INTEGRATED SOLUTIONS
Such methods still show significant progress from year to
year and have not yet passed their saturation point.

4) PERSONALIZATION ORIENTED APPROACHES
This branch of HME recognition is not yet developed.
Such techniques as reinforcement learning and few-short
learning can make the system more flexible and pro-
vide the ability to adapt to a specific user. This is espe-
cially important for sequence recognition systems with a
large codebook. The development of approaches related
to personalization will help reduce the ambiguity associ-
ated with the peculiarities of the handwriting of each user
significantly.

5) CONTEXT-AWARE APPROACHES
The context-aware methods for HME recognition still have
not received much attention from the research community.
The focus shift from recognizing single HME to support
multiple HME input reckoning with the document context
will help to avoid many ambiguities associated with the sim-
ilarity of many mathematical characters and a 2D structure
complexity.

6) HME COMPLEXITY
Currently, commercial systems support the recognition of
about 200 different types of characters. Verification of
approaches is carried out on open datasets that contain only
101 types of characters, while the mathematical notation
implies the use of more than 1500 kinds of symbols. Exist-
ing solutions provide a general recognition model that is
independent of a specific field, although many scientific and
engineering disciplines have adapted mathematical notation
to suit their needs. The rules for constructing expressions,
the used subset of symbols in many areas are significantly
different. Thereby it is expected that the number of characters,
supported expression types, and engineering domains will
increase.

7) HME DETECTION
One of the main tasks for researchers is the detection of
HME to ensure seamless input and recognition of different
document elements (text, math, tables, sketches, and others)
during HW input. Current research is mainly focused on
localizing mathematical expressions in printed text that does
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not involve iterative input. This situation leads to the creation
of complex user interfaces and does not allow the full use of
the concept of ‘‘pen and paper’’.

8) SKETCH-BASED APPLICATIONS
Educational applications that used both sketch-based input
and HME recognition are the most widely represented since
mathematics in high need there. For instance, deeper integra-
tion of HME recognition and sketch-based applications can
help provide interactive visualizations of physical phenom-
ena based on mathematical concepts. It should be noted that
the current state of the technology allows it to be applied in an
increasing number of industries, such as chemistry, finance,
and others.

9) MULTI-MODALITY
Multi-modality is developing in many spheres such as Visual
Question Answering. Moreover, users have different prefer-
ences on how to input information depending on the current
activity [171]. So applications will allow seamless switching
between keyboard/mouse input and handwriting by provid-
ing multiple modalities support. Voice control can also be
actively involved in the UX design of HME recognition sys-
tems.

10) MIXED AND AUGMENTED REALITY
We see the potential in facilitating interaction with HME in
augmented and mixed reality. In particular, this can lead to
revealing a lot of opportunities for improving the produc-
tivity of education. Combining on-screen pen-or-touch input
and HME recognition with gaze-and-touch-based editing,
augmented by visualization of ME dependencies, or predic-
tion/autocompletion results, can improve user experience and
open up new challenges in HME recognition.

Based on this survey, it can be argued that recognition of
HME is already a fairly mature technology that has been
moved from prototyping to commercial mobile solutions.
But despite significant progress, interactive recognition and
editing of HME remain a challenging task that requires the
joint efforts of researchers from different areas. We believe
that the lessons we are learning in HME recognition are likely
to be relevant to a wide range of other sequence recognition,
computer vision, and natural language processing tasks.
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