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ABSTRACT A fault diagnosis model for rolling bearing based on complementary ensemble adaptive
local iterative filtering (CEALIF), Laplacian score (LS) feature selection, and genetic algorithm-based
backpropagation neural network (GA-BPNN) is proposed in this article. When the rolling bearing fails, the
field-measured waveforms usually shows strong nonlinearity and non-stationary characteristics. Adaptive
Local Iterative Filtering (ALIF) is an alternative novel approach to empirical mode decomposition to
decompose complex signals into multiple intrinsic mode functions (IMFs), but modal aliasing will occur
in actual processing. Aiming at the phenomenon of modal aliasing, a noise-assisted analysis methodology,
namely complementary ensemble adaptive local iterative filtering, which could overcome the modal aliasing
problem of ALIF. This article applies it to the pre-processing of rolling bearing time series. Then, the
time domain (TD) statistical features of the IMFs, their Fourier frequency domain (FD) features, and the
time frequency domain (TFD) energy features are extracted to capture the fault information. Meanwhile,
to avoid feature redundancy and enhance the diagnostic performance, the LS is adopted to rank the features to
improve the fault characteristics. Subsequently, the optimized feature vectors are entered into the GA-BPNN
to automatically achieve the fault type recognition. The experimental data analysis results of rolling bearings
indicate that the model can effectively diagnose the degree and type of failure.

INDEX TERMS Complementary ensemble adaptive local iterative filtering (CEALIF), Laplacian score
(LS), feature selection, genetic algorithm-based BP neural network, fault diagnosis.

I. INTRODUCTION
The rolling bearing is an integral component of the rotating
machinery and its failure would directly affect the function-
ing of the machinery as a whole [1], [2]. Therefore, it has
become increasingly important to improve bearing reliabil-
ity and detect bearing failure in timely and accurately [3].
When the rolling bearing fails, it will produce periodic pulse
impact force, causing the system’s nonlinear vibration, which
makes the collected vibration signal always has nonlinear
nonstationary features, so the key to its fault diagnosis is how
to derive failure characteristic information from nonlinear,
nonstationary signal [4], [5].
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The traditional signal analysis approaches are often only
applicable to the analysis of smooth signals, while the rolling
bearing fault signal has certain limitations [6]. For rolling
bearing fault signals, the signal analysis processing tech-
nology must be adaptive and stable to ensure the effective
fault signal characteristic information can be obtained in the
face of complex fault signals [7]. In the past few decades,
vibration-based analysis approaches have been well devel-
oped in fault diagnosis, such as short-time Fourier transform
(STFT); Wavelet transform (WT); Empirical mode decom-
position (EMD), and so on. STFT [8], [9] employs a moving
window function to intercept non-stationary signals, which
will result in STFT’s time resolution and frequency reso-
lution not being optimal at the same time, and when the
frequency changes rapidly, the analysis effect is not good.
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WT [10], [11] has been well employed in mechanical fault
diagnosis, but how to choose a wavelet basis function with
better time-frequency resolution is not yet clear, which
needs to be determined manually. EMD [12] is an adap-
tive non-stationary signal analysis technique developed by
Huang et al., which achieves adaptive decomposition by
seeking the envelope average curve of the time series to
be handled. However, this method also has many problems,
such as under-envelope and over-envelope phenomena when
seeking the extreme envelope, and serious modal aliasing
and end-point effects will occur in the face of certain fault
signals. The decomposition results are distorted or even
completely invalid, which leads to the misunderstanding of
signal processing analysis, which affects the accuracy of
fault diagnosis. At the same time, this method has been
lacking rigorous and effective mathematical proof in the-
ory. To solve the EMD modal aliasing problem, Wu and
Huang [13] suggested ensemble EMD (EEMD) utilizing
the statistical properties of white noise. Li et al. combined
EEMD with improved frequency band entropy to derive
bearing failure characteristics [14]. However, when the num-
ber of integrations is not large enough, the residual noise
in the IMF will increase. Therefore, Yeh et al. [15] pro-
posed complementary EEMD (CEEMD) to reduce the resid-
ual noise by adding a pair of white noise to the analysis
signal. However, CEEMD cannot solve problems such as
different IMF orders due to the addition of different noises.
So Torres et al. [16] proposed complete ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN),
which can avoid the problem of generating different IMF
orders due to the addition of different noises. Cheng et al.
successfully employed CEEMDAN for rolling bearing fault
diagnosis [17]. Although CEEMDAN overcomes the afore-
mentioned problems of EEMD, it is still essentially not free
from the lack of theoretical support for EMD.

Lin et al. improved the EMD methodology and proposed
the Iterative filtering (IF) [18] algorithm, which employs a
low-pass filter function instead of EMD to solve the envelope
average curve in EMD to solve the issue of lack of theoretical
support for EMD and its derivatives methods, and proved
the convergence of the algorithm [19]. Dash et al. applied
IF to the feature extraction of EEG signals and achieved
positive results [20]–[22]. When the signal to be processed
contains strong nonlinear and non-stationary components,
a fixed low-pass filter function may cause problems such
as distortion of the decomposition results and poor adaptive
behavior. To improve the adaptive and accurate decomposi-
tion of the method, Cicone et al. [23]–[25] propose a novel
signal processing technology, the Adaptive Local Iterative
filtering (ALIF) algorithm, by reworking traditional filters
to ensure that the IF method can be accurately decomposed
when applied to non-stationary signals. It is derived from the
EMDmethod and developed from the IF method. It also uses
iterative decomposition technology. The difference is that it
uses an adaptive filter with a filter length driven by data to
achieve the necessary adaptive decomposition. The solution

of the Planck equation constitutes this method, which avoids
some defects in the EMD method. The ALIF decomposition
method is not only highly adaptive, it can accurately process
AM-FM signals containing multiple components and decom-
pose it into several stationary signals [26]–[29]. At the same
time, the method has a stronger ability to suppress modal
aliasing and is still faced with complex noise. There is a good
performance. In addition, the method already has rigorous
mathematical proofs, and its decomposed components have
proved to be convergent [25]. Therefore, it can be introduced
into the discipline of mechanical fault diagnosis.

Since the ALIF is obtained by solving the Fokker-Planck
equation and the filtering interval based on extreme-scale
drive, the filtering interval of the filter is adaptively adjusted
according to the extreme-scale during the iterative filter-
ing process [23]. It was found that when the signal to
be processed contains high-frequency intermittent signals,
the extreme value of the signal to be decomposed will change
suddenly, which affects the ability of the filter to distinguish
different modes, resulting in the decomposition result dis-
tortion [13], [15]. Therefore, to improve the decomposition
effect of ALIF, inspired by the idea of EMD modal alias-
ing, a complementary ensemble adaptive local iterative fil-
tering (CEALIF) algorithm based on noise-assisted analysis
is presented. When the ALIF method is employed to process
the signal, a pair of white noise with the same amplitude
and opposite sign is added, which allows the different pro-
portional components of the original signal to fill the time-
frequency space evenly over the entire time range. The noise
addition results in a more uniform distribution of extreme
points, which improves the performance of the adaptive filter
and provides better resolution to different modes. Each result
is averaged over a finite number of ensembles to remove
the noise effect and obtain the final result. The CEALIF
algorithm is employed to the pre-processing of the vibration
signal of bearing failure, which decomposes it into the sum of
several IMFs, and subsequently extract the IMF characteristic
parameters as well as the time frequency domain information.

After extracting the above rolling bearing fault charac-
teristics, to avoid information redundancy due to the high
dimensionality of the feature vector and reduce the efficiency
of diagnosis, this article adopts Laplace score (LS) to re-rank
the features [30], and select the most relevant features as
the feature vectors to characterize the failure indicators, thus
reducing the dimensionality of feature vectors and improving
the diagnostic efficiency.

Naturally, after obtaining the feature vectors, a multiple-
fault categorizer is adopted to automatically identify the
failure category and the degree of damage of the rolling
bearing [3]–[33]. Some common classifiers such as support
vector machines (SVM) [34], [35] and Backpropagation neu-
ral network (BPNN) have been widely used in machinery and
equipment diagnosis. However, SVM requires prior selection
of kernel function and its parameters, which is essentially
binary classification, and multiple binary classification is
required for multi-classification problems. In order to reduce
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the reliance on human experience and achieve automatic
diagnosis, a suitable multi-classifier needs to be selected.
BPNN [36]–[38] does not require the introduction of new
parameters in the training process, which relies entirely on
the adjustment of initial weights and thresholds. To avoid
the local optimization problem of random initialization and
to enhance the performance of BPNN, this article adopts
genetic algorithm (GA) [39], [40] to find the optimal ini-
tial weights and thresholds of BPNN and applies them to
construct predictive models. The model developed through
this approach is more stable and can converge faster than the
standard BPNN.

Based on the above analysis, the paper proposes a
rolling bearing fault diagnosis model via CEALIF, LS, and
GA-BPNN. Firstly, CEALIF is utilized to handle the vibra-
tion signal of rolling bearing and several IMFs are obtained.;
secondly, the first few IMFs containing the main fault infor-
mation are selected and their TD and FD fault parameters are
extracted respectively, and then the TFD feature values of the
vibration signal are extracted to form the initial feature vector;
thirdly, the LS is adopted for each feature of the initial feature
vector according to its importance, and the first few more
important features are selected as feature vectors according to
the order of scores from smallest to largest; finally, the feature
vectors are entered into the BPNN to automatically diagnose
the type and degree of rolling bearing failures. Public datasets
as well as experimental data were employed to validate the
efficacy of the model.

The rest of the organizational structure is given below:
Section 2 introduces the ALIF method and the basic prin-
ciples of CEALIF. Section 3 uses simulated signals to
test the performance of CEALIF and compares it with
EEMD and CEEMDAN. Section 4 gives an introduction to
the various feature quantities to be extracted and Laplace
scores. Section 5 validates the proposed model and com-
pares it with several similar methods. Conclusions are given
in Section 6.

II. THEORETICAL DESCRIPTION
A. INTRINSIC MODE COMPONENTS AND THEIR
FILTERING
The essence of empirical mode decomposition algorithm is
actually a filtering algorithm from high frequency to low
frequency, and similar algorithms such as variational mode
decomposition (VMD), empirical wavelet transform (EWT)
and stationary wavelet transform (SWT) have been devel-
oped. The EMD algorithm obtains IMF step-by-step and the
modal components satisfy the following conditions:

c1(t) = lim
n→∞

0n1(s(t))

ck (t) = lim
n→∞

0nk (s(t)−
k−1∑
i=1

ci(t))
(1)

where s(t) is a time series to be processed, 0 is a wave
operator (also known as the fluctuant operator), and ζ is a
sliding operator in 0 = s(t)− ζ (s(t)).

Further, the following is the process of IMF:
Step 1. The sliding operator ζ (s(t)) is calculated for a

given signal s(t).
Step 2. The time series s(t) is subtracted from the

sliding operator ζ (s(t)) to obtain the wave operator
0 = s(t)− ζ (s(t)).

Step 3. If the fluctuant operator 0 satisfies Equation (1),
then the first IMF is c1(t) = 0. If the condition is not satisfied,
then the next process to obtain IMF component will continue
to Steps 1-2 until Equation (1) is satisfied.

Step 4. Subtract the signal s(t) from the preceding
m IMF components and obtain the residual components

r(t) = s(t)−
m∑
i=1

ci(t).

where r(t) is regarded as the previous s(t), and it is looped
Steps 1-3 until r(t) becomes a trend component. After the
loop stops, the original time series can be expressed by the
following equation:

s(t) =
N∑
i=1

ci(t)+ r(t) (2)

The sliding operator ζ represents different decompo-
sition methods if its computational method is different.
In EMD algorithm, the sliding operator is computed by taking
the average value of the envelopes as follows:

ζ (s(t)) =
1
2
(E1(t)+ E2(t)) (3)

where the upper envelope is E1 and the lower envelope is E2.

B. THEORETICAL DESCRIPTION OF ADAPTIVE LOCAL
ITERATIVE FILTERING (ALIF)
Under the framework of EMD algorithm, researchers
obtained the sliding operator by convoluting the low-pass
filter with the original signal, and thus obtained another algo-
rithm called iterative filtering algorithm (IF) [18], [19].

In the IF algorithm, the convolution of signal s(t) and the
filtering function h(t) is regarded as a sliding operator as
follows:

ζ (s(t)) =
∫ L(n)

−L(n)
s(t + l)h(l, t)dl (4)

where L(n) is filter length, which is calculated as:

L(n) = 2[
ηK
t
] (5)

where the steady-state coefficient η is 1.6, t denotes the
number of extreme points of the sequence, K is the length
of signal, and [·] is rounded to zero.

Due to the limitation of operation time, it is difficult to
realize the situation that n tends to infinity in Equation (1).
Considering the actual situation, the features of IMF can be
described as follows:|(emin + emax)− e0| ≤ 1

e1(t)+ e2(t)
2

= 0
(6)
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where emin, emax and e0 are the minimum, the maximum
and zero values of the IMF respectively, e1(t) denotes the
envelope function formed by IMF’s local maximum and
e2(t) enotes the envelope function formed by IMF’s local
minimum.

Equation (7) can be employed to determine whether the
component satisfies the IMF condition:

SD =
‖0i,n − 0i,n−1‖2

‖0i,n−1‖2
(7)

whenever the SD value reaches the set threshold, iteratively
stop to obtain an IMF component.

It is worth mentioning that in the iterative filtering tech-
nique, the filter h(t) is a general filter, and the filter interval
L(n) is also a fixed value. In order to improve the adaptability
and accuracy of the decomposition of this method, the tra-
ditional iterative filtering technique is improved to ensure
that it can be applied to the decomposition of non-stationary
signals. In ALIF, the filter h(t) is given by the solution of the
Fokker-Planck equation, and the filter interval L(n) is also
adaptive according to the change trend of the signal to be
decomposed [23]. The Fokker-Planck equation is as follows:

∂p
∂t
= −α

∂(k(x)p)
∂x

+ β
∂2(f 2(x)p)
∂x2

(8)

where α and β are constants in (0,1); and f (x) and k(x) are
two smooth differentiable functions; and f (a) = f (b) = 0 is
satisfied in (a, b) (where a < 0 < b); and k(a) < 0 < k(b),
f (t) > 0 for any x ∈ (a, b).
Among them, ∂2(f 2(x)p)

∂x2
will cause a diffusion effect to

make the solution of the equation move to both ends; mean-
while,−α ∂(k(x)p)

∂x will move the solution p(x) from both ends
of (a, b) to the center. When the two reach equilibrium, there
are as follows:

−α
∂(k(x)p)
∂x

+ β
∂2(f 2(x)p)
∂x2

= 0 (9)

At this point, the solution to the equation (9) satisfies the
condition: ∀x ∈ (a, b), p(x) > 0 and in other case p(x) = 0.

This shows that the solutions p(x) of the above steady-state
equations are all between (a, b), and then p(x) can be regarded
as a filter function. With the change of the filtering interval,
the filtering function also changes, so as to realize the adap-
tive decomposition of the ALIF algorithm.

C. RESTRAIN OF MODE MIXING AND COMPLEMENTARY
ENSEMBLE ADAPTIVE LOCAL ITERATIVE
FILTERING (CEALIF)
Mode mixing is the disadvantage of most iterative screening
algorithms. ALIF’s mode mixing is defined as the existence
of multiple scales in a single modality or the existence of the
same scale information in different modalities. In this arti-
cle, EMD’s suppressing mode mixing strategy is employed
to solve the mode mixing issue of ALIF. The study found
that the modal aliasing of ALIF mainly comes from the
discontinuity of the time scale, which is the influence of

signal intermittent. When there is an intermittent signal in the
signal to be analyzed, there is no extreme value related to the
intermittent signal in certain intervals, so the extreme points
of other scales supplement the missing extreme points of the
intermittent signal and some of them will remain on the scale
of the intermittent signal in the end, the result will cause the
performance of ALIF’s filter bank to be compromised, which
is commonly referred to as modal aliasing. The white noise is
evenly distributed throughout the time-frequency space. The
original signal will be projected to the corresponding scale
when white noise is added [41]–[43]. Therefore, the ALIF
filter set can be restored by adding white noise Performance.
The addition of noise will include additional noise com-
ponents in the decomposition results. In this article, white
noise of opposite sign is added enough times to eliminate the
impacts of the noise. The flowchart of the CEALIF algorithm
is depicted in Fig. 1:

Step 1: Let the signal to be decomposed be s(t) and add
white noise of opposite sign to s(t) respectively.[

s+i (t)
s−i (t)

]
=

[
1 1
1 −1

] [
s(t)
ni(t)

]
(10)

where ni(t), i = 1, 2, . . . ,Ne represents the added white
noise signal, Ne represents the number of additions.

Step 2: Use the ALIF technique to decompose the target
signals s+i (t) and s−i (t) to obtain the component IMF+ij (t)
and IMF−ij (t).

Step 3: Repeat steps 1-2 until i = Ne, where Ne is the
logarithm of white noise added and the number of integrated
averages.

Step 4: Integrate all the IMF components obtained above
to obtain the first IMF component s(t).

IMFj(t) =
1

2Ne

Ne∑
i=1

[IMF+ij (t)+IMF
−

ij (t)] (11)

The amplitude of white noise is added to different sig-
nals; there is no consistent standard with the integration
numberNe. The magnitude of each added noise is determined
from the standard deviation of the raw decomposed signal,
which is generally less than 0.5 times the difference of the
raw signal standard, Ne is generally within one hundred.

III. NUMERICAL SIMULATION ANALYSIS
There are widespread high-frequency intermittent signals in
mechanical signals. To demonstrate the mode mixing issue
and verify the validity of CEALIF, the high-frequency inter-
mittent signal is added to the signal composed of modulated
signals and harmonic components. The expression is pro-
vided by:

s1(t) = sin(2π × 200t)× (δ(t − 0.1)− δ(t − 0.3)

+ δ(t − 0.7)− δ(t − 0.9))

s2(t) = sin(2π × 100t)× (1+ cos(2π × 15t))

s3(t) = sin(2π × 40t)

s(t) = s1(t)+ s2(t)+ s3(t) (12)
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FIGURE 1. The flowchart of CEALIF algorithm.

FIGURE 2. High-frequency intermittent signal and its component time-domain waveform.

where δ(t) is the step signal. s1(t) is a 2-segment high-
frequency intermittent signal with a frequency of 200Hz, s2(t)
and s3(t) are frequency-modulation signal and harmonic sig-
nal respectively. The mixed signal and its frequency spectrum
are plotted in Fig. 2(a), and its components are presented
in Fig. 2(b).

The intermittent signal is a classic example ofmodemixing
and the modulated signal is generally a bearing fault sig-
nal. We know that the more ensembles there are, the less
noise residue there is. To achieve the decomposition effect,
the Ne is set to 100. Meanwhile, to avoid the noise

amplitude is too large to swamp the original signal, the noise
amplitude is set to 0.1. The mixed signal is decomposed
by ALIF and CEALIF methods, respectively. Fig. 3(a)
provides the ALIF processing results of the mixed-signal.
According to the results, the three components are heav-
ily contaminated by high-frequency intermittent signals and
the IMFs are distorted. Fig. 3(b) presents the frequency
domain diagram of each component after ALIF decomposi-
tion. Where IMF1 contains both frequency modulated signals
and high-frequency intermittent signals. Among them, mod-
ulation components also appear in IMF2, while IMF2 and

VOLUME 9, 2021 47279



Y. Zhang et al.: CEALIF and Its Application to Rolling Bearing Fault Diagnosis

FIGURE 3. Processing results through different approaches: (a) the component obtained by ALIF and (b) its Fourier spectrum; (c) the
component obtained by CEALIF and (d) its Fourier spectrum.

IMF3 both contain low-frequency harmonic components.
This means that serious mode mixing has occurred in ALIF
and the intermittent signals are not separated. Therefore,
the decomposition capability of the ALIF algorithm needs to
be improved when the signal to be processed contains high-
frequency intermittent components.

The CEALIF decomposition results of the high-frequency
intermittentmixed-signal and the frequency domain diagrams
of its components are depicted in Fig. 3(c) and Fig. 3(d),
respectively. The high-frequency intermittent signal is basi-
cally decomposed into the IMF1 component, while IMF2 and
IMF3 also correspond to the original mixed-signal compo-
nents. The obtained components not only correspond to the
original signal components but also the decomposition results
do not produce redundant components, which indicates that
the CEALIF method can suppress the modal aliasing effect
well and the decomposition results are basically unaffected
by the additional noise.

To demonstrate the validity of the CEALIF algorithm,
EMD’s mode mixing improvement methods EEMD and
CEEMDAN are also employed to analyze high-frequency
intermittent mixed signals for comparison. EEMD and
CEEMDAN methods process high-frequency intermittent
mixed signals to obtain 12 and 9 IMF components, respec-
tively. For simplicity, the first six effective IMF components
are taken for analysis, and the results of EEMD and

CEEMDAN are displayed in Fig. 4 and Fig. 5, respectively.
From Fig. 4, we can see that the time domain components in
the high-frequency intermittent band are subject to different
degrees of pollution, and the distortion is more serious. In the
frequency domain, it can be found that IMF1 and IMF2 con-
tain multiple frequency components, and low-frequency har-
monic components also appear in IMF2 and IMF3 at the
same time. That is to say, EEMD in processing contains
high-frequency intermittent signal will be a serious mode
mixing. In the CEEMDAN processing of Fig. 5, the low-
frequency harmonic components are completely separated
and only the high-frequency intermittent and modulated sig-
nals undergo modal mixing. That is to say, CEEMDAN will
also suffer from modal aliasing when processing signals with
high-frequency intermittent signals, but the aliasing will be
less than EEMD and the redundant component will be less
than EEMD.

The simulated signals indicate that ALIF has serious
mode aliasing when the signal to be processed contains
high-frequency intermittent components, while CEALIF
improves the performance of adaptive filter by adding white
noise based on ALIF, which makes the performance of
CEALIF method better and has high recognition ability for
different modal components. By comparing with EEMD and
CEEMDAN, which are proposed to address the modal alias-
ing of EMD, CEEMDAN suffers less modal aliasing than
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FIGURE 4. EEMD analysis results and frequency spectrum of high-frequency intermittent signals.

FIGURE 5. CEEMDAN analysis results and frequency spectrum of high-frequency intermittent signals.

EEMD when dealing with high-frequency intermittent sig-
nals, but there is still a certain gap comparedwith the CEALIF
decomposition results.

IV. FEATURE EXTRACTION, SELECTION, AND
RECOGNITION
A. FEATURE PARAMETER EXTRACTION
When the vibration state of the rolling bearing changes,
the TD information, FD information, and TFD information
of the measured signal may change accordingly [40]. As the
measured rolling bearing vibration signal is more complex,
the feature extraction approach based on a single TD or FD
has certain limitations. To obtain more fault information,
the TD, FD and TFD features of the vibration signal are
extracted simultaneously in this article.

Time-domain (TD) indicators (such as kurtosis, impulse
factor) and frequency domain (FD) characteristics (such as
frequency variance, mean square frequency) are physical
quantities based on statistical characteristics, which reflect
the amplitude and energy fluctuations in the TD and FD of
the vibration signal, and when the vibration signal changes,
these characteristics can be accurately monitored from both
the TD and FD, so they can effectively characterize the fault
signal [40].

Whenmechanical equipment failure, not only the vibration
signal of TD and FD characteristics of the change, and the
time- frequency domain (TFD) energy characteristics will
also change, mainly manifested in the time-frequency surface
of the different time-frequency block energy distribution dif-
ferences, using the time frequency entropy (TFE) to represent
the energy differences.
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TABLE 1. Feature parameters and their expressions.

The TFE is determined as follows: the time frequency
plane is divided into N blocks of equal areas, where the total
energy is E and the energy of each block is Ei. Normalize
the energy of each block to obtain ei = Ei/E , so there is
N∑
i=1

ei = 1, In line with the initial normalization conditions

for calculating information entropy, imitating the calculation
formula of information entropy, the TFE of the signal is

determined as TFE(e) = −
N∑
i=1

ei ln ei [44]. In conclusion,

to obtain more information about the fault status, 11 charac-
teristics are extracted in this article, as listed in the Table 1.
Since the values of more feature parameters do not belong

to the same order of magnitude, the feature matrix is nor-
malized before entering the fault model. The normalization
formula utilized was as follows:

xnorm = (κmax − κmin)×
x − xmin

xmax − xmin
+ κmin (13)

where [κmin, κmax] is the normalized interval, xmin and xmax
respectively correspond to the minimum and maximum val-
ues of the characteristic matrix respectively. This article nor-
malizes the characteristic parameters to [− 1, 1].

B. FEATURE SELECTION-BASED LAPLACIAN SCORE(LS)
Although the faults in the equipment can be identified from
different angles based on the above features, however, all
features are not equally sensitive to faults. Some features are
highly sensitive to faults, and there may also be components
that are irrelevant or even redundant. Therefore, the feature

set may be further sorted and selected before it is entered into
the classifier [45].

Laplacian score (LS), based on mapping and projec-
tion [46], measures feature through local retention capabil-
ities, directly learns the feature set to extract the internal
information structure of the data, transform high-dimensional
features into low-dimensional ones. The selection of features
with smaller scores in the low-dimensional feature space
largely preserves information about the overall geometric
structure contained in the failure signal character set and thus
aids in rolling bearing fault recognition.

Let Lk be the LS of the k-th feature, pki be the k-th feature of
the i-th sample, where k = 1, 2, . . . , n represents the number
of features of each sample and i = 1, 2, . . . ,m represents the
sample. The Laplace score approach is presented below:

Step 1: Given a sample of features, the nearest neighbor
graph G with m nodes is constructed, where xi denotes the
i-th node. Then the premise that xi and xj are connected by
edges is that they belong to the same class and are k neighbors
of each other.

Step 2: The distance weight of the edges in G are denoted
by Equation (14).

Sij = exp(−
∥∥xi − xj∥∥2 /(2σ 2)) (14)

where σ is a suitable constant; if xi and xj have no edges
connected, Sij = 0.
Step 3: For the k-th feature, define

pk = (pk1pk2, . . . , pkm)T (15)
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FIGURE 6. Flowchart of GA-BPNN.

D = diag(SI) (16)

I = (1, 1, . . . , 1)T (17)

L = D− S (18)

The matrix L is often denoted as the Laplace matrix of
graph G. De-averaging pr yields:

p̄k = pk −
pkDI

ITDI
I (19)

Step 4: Calculate the LS of the k-th feature.

Lk =

∑
ij (pki − pkj)

2Sij
Var(pk )

=
p̄Tk Lp̄k
p̄TkDp̄k

(20)

where Var() denotes the variance.
It is observed that for a well-defined feature, the larger Sij

is, the lower the corresponding Laplacian score is. Therefore,
the feature with a lower LS is selected as the feature vector.

C. GENETIC ALGORITHM-BASED BPNN
BPNN have strong self-organizing learning capabilities
via error backpropagation, which can realize classification
through the nonlinear mapping between the layers. How-
ever, the choice of initial weights and thresholds significantly
affects its nonlinear mapping performance.

Genetic algorithm (GA) [47], [48] is an intelligent opti-
mization algorithm with powerful global nonlinear optimiza-
tion function. In this article, GA was employed to optimize
the initial weight and threshold to boost the nonlinear map-
ping capacity and convergence speed of the BPNN. In the
GA, the population individuals are firstly coded; the neural
network training error is then adopted as the fitness function;
secondly, the best fitness individuals of the population are
obtained through selection, adaptive crossover and mutation
operators. Finally, the best initial weights and thresholds are

obtained by the best fitness individuals of the population until
the set prediction error requirements are satisfied or the set
maximum number of iterations are reached, thus obtaining
a mature GA-BPNN. where the mean relative error (MRE)
is set as the termination criterion, the expression of which is
shown in Equation (21). Fig. 6 depicts the whole flow chart
of GA-BPNN.

MRE =
1
N

N∑
i=1

∣∣xi − x̂∣∣
xi

× 100% (21)

where N denotes the sample size, xi is the true value, and x̂ is
the predicted value.

V. THE PROPOSED FAULT DIAGNOSIS MODEL AND
EXPERIMENTAL VERIFICATION
A. THE PROPOSED MODEL BASED ON CEALIF
1) CEALIF is employed to process each sample signal and
generate a sequence of IMFs for each.

2) Select the first 5 IMF components, extract their TD and
FD features in section 4.1 and extract the TFE of the vibration
signal to construct the following initial feature vector: T=
[M1, RMS1, PK1, CF1, KU1, SF1, IF1, MF1, FC1, RMSF1,
RVF1, M2, RMS2, PK2, CF2, KU2, SF2, IF2, MF2, FC2,
RMSF2, RVF2, M3, RMS3, PK3, CF3, KU3, SF3, IF3, MF3,
FC3, RMSF3, RVF3, M4, RMS4, PK4, CF4, KU4, SF4, IF4,
MF4, FC4, RMSF4, RVF4, M5, RMS5, PK5, CF5, KU5, SF5,
IF5, MF5, FC5, RMSF5, RVF5, TFE]1∗56.
3) Calculating the LS of the initial featurematrix composed

of the initial feature vector T, ranking the feature vectors in
order of importance from lowest to highest according to their
scores, and selecting the first five features as the novel failure
feature vectors.
4) The obtained new failure feature vectors are input into

the GA-BPNN for training the network to enable automatic
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FIGURE 7. Flow chart of bearing fault diagnosis model.

FIGURE 8. Rolling bearing experimental device and transmission diagram: (a) Transmission diagram; (b) experimental equipment, 1,
3-Hp motor, 2-Torque transducer and encoder.

diagnosis of rolling bearings. The proposed model is schema-
tized in Fig. 7.

B. EXPERIMENTAL VERIFICATION
1) CASE 1: APPLICATION TO OPEN-SOURCE DATASETS
In order to validate the validity of the proposed rolling bearing
fault diagnosis model, bearing experimental signals from
Case Western Reserve University were employed to test the
model performance. The transmission sketch as well as the
experimental apparatus is presented in Fig. 8 and its descrip-
tion is given in [49]. The data collected at the drive end was
utilized for analysis and truncated in 4096 points.

For the above experimental data, the types of failure are
categorized as rolling element failure, inner race failure and
outer race failure. The degree of failure is categorized as
slight, moderate and severe, and considering the normal oper-
ating condition, a total of 10 categories need to be identi-
fied. A sample waveform for each of these categories are
displayed in Fig. 9. For each category, 10 samples were
randomly selected for training and the other 10 samples were
employed to determine the type of failure. In total, there
are 100 training samples and 100 sets of test samples. All
data types are listed in Table 2. Since the measured vibra-
tion signals containing mechanical faults generally present
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FIGURE 9. Time domain diagrams for each condition.

TABLE 2. The experimental datasets were employed for identification.

nonlinear and non-stationary properties, it is impossible to
identify the failure type only based on the waveforms in
Fig. 9. Therefore, it is essential to further decompose the
time-domain waveform.

Firstly, CEALIF is adopted to decompose each vibration
signal of each category separately and to obtain multiple
IMFs; secondly, the aforementioned characteristic parame-
ters of the first five IMF components and the TFE of the vibra-
tion signal are extracted to construct the feature vector T =
[Ti]1×56. Then, the feature vectors T of 100 training samples
is formed into the initial feature matrix T̃ = [T ]100×56. The
LS of each feature in the matrix T̃ = [T ]100×56 is calculated

and the 56 features are sorted according to the LS from small-
est to largest, and then the top 5 features with smaller scores
are considered as the optimal feature vectors (the number of
optimal feature vectors is denoted by F) to form the final
feature matrix IT̃100×5. For the above experimental datasets,
the order of LS from low to high is: LS(T56) < LS(T22) <
LS(T20) < LS(T13) < LS(T17) < LS(T2) < LS(T39) <
LS(T10) < LS(T9) < LS(T28) < LS(T6) < LS(T35) <

LS(T14) < LS(T3) < LS(T46) < LS(T31) < LS(T50) <
LS(T33) < LS(T21) < LS(T8) < LS(T36) < LS(T32) <
LS(T5) < LS(T45) < LS(T7) < LS(T24) < LS(T47) <

LS(T4) < LS(T25) < LS(T16) < LS(T27) < LS(T30) <

VOLUME 9, 2021 47285



Y. Zhang et al.: CEALIF and Its Application to Rolling Bearing Fault Diagnosis

FIGURE 10. Comparison between the sorted optimized feature set and the random initial feature set (left T56, T22, T20 right
T1, T2, T3).

LS(T19) < LS(T29) < LS(T18) < LS(T15) < LS(T54) <
LS(T42) < LS(T55) < LS(T26) < LS(T44) < LS(T43) <
LS(T53) < LS(T52) < LS(T51) < LS(T48) < LS(T37) <
LS(T40) < LS(T38) < LS(T41) < LS(T49) < LS(T12) <
LS(T1) < LS(T11) < LS(T23) < LS(T34).

According to LS, the first five optimal feature values can be
obtained as the TFE of the original signal, the RMSF of IMF2,
the FC of IMF2, the RMS of IMF2, and the SF of IMF2,
which indicates that the second component of IMF2 obtained
from the decomposition contains important fault information.
In addition, the first five selected features completely contain
the TD, FD, and TFD indicators, which make the diagnosis
results more reliable. Furthermore, to demonstrate the better
fault correlation of the sort-optimized feature set, we plot-
ted the first three features of the sort-optimized feature set
(T56, T22, T20) and compared them with the random fea-
tures (T1, T2, T3) before the sort-optimization, as illustrated
inFig. 10. It can be seen that the samples in the sort-optimized
feature set are mostly clustered around their corresponding
centers and a clear demarcation line between classes can be
observed. On the contrary, the unordered optimized feature
set basically exhibits a dispersion trend and most of the
categories have no obvious boundaries between them.

Finally, the optimal feature vector matrix IT̃100×5 is
imported into the GA-BPNN categorizer for training to derive
the prediction models of each category. According to the
feature matrix IT̃100×5, extract the 5 optimal feature values
of 100 test samples (for the following comparison, the paper
still extracts 56 feature values of each vibration signal), and
the feature matrix OT̃100×5 of the test sample is obtained,
which is input into the trained GA-BPNN categorizer to gen-
erate the identification results of the test samples, as presented
in Fig. 11. The results demonstrate that the proposed model
has a good fault recognition effect, which not only realizes
the distinction of fault categories but also the partitioning of
different fault degrees, and the test samples have a high fault
identification rate (100%).

In addition, the number of feature values has an important
impact on the diagnosis result. If the dimension of the feature

FIGURE 11. GA-BPNN output results of the model proposed in this article.

vector is too small, that is, the number of feature values
is small, it will not be able to fully reflect and distinguish
the fault type and fault degree, which will affect the reli-
ability of diagnosis; on the contrary, too many eigenvalues
will cause information redundancy and increase the classi-
fier Training time, thereby reducing diagnostic efficiency.
For comparison, this article selects the first F feature values
(F = 3, 4, 5, 6, 7) after LS sorting as the feature vector input
to the GA-BPNN classifier. The number of samples from
the training and the test samples remained the same. After
training, a prediction model was established and the output
results of the test samples were tested, as depicted in Fig. 12.
The results revealed that too few features will lead to poor
diagnostic accuracy, and too many features will inevitably
lead to a decrease in diagnostic efficiency. It means that too
many or too few features have an inappropriate effect on the
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FIGURE 12. GA-BPNN output results for test samples with different feature values: (a) F = 3; (b) F = 4; (c) F = 6; (d) F = 7.

failure identification results. Meanwhile, the conclusions in
Fig. 12 also verify that it is feasible and reasonable to select
the first five characteristic quantities in the fault diagnosis
model presented in this article.

To illustrate the necessity and superiority of the LS-
optimized feature vectors, select the F (F = 3, 4, 5, 6, 7) fea-
ture values before LS sorting as feature vectors to be imported
into the GA-BPNN categorizer. The number of training and
test samples remains the same, the trained prediction model is
created, and the test samples are obtainedwith the recognition
rates shown in Table 3. Comparing Table 3 with Fig. 11
and Fig. 12, it can be obtained that the feature vector is not
optimized by LS, and for the same GA-BPNN categorizer,

the recognition rate of the test sample is significantly lower
than the results of the test sample with the LS-optimized
feature vector as the input feature vector, which shows that
LS optimization of feature values has certain advantages and
necessities.

In addition, to illustrate the superiority of GA-BPNN clas-
sifier, an unoptimized BPNN categorizer was employed to do
the same process, in which the network structure was 8 layers
of hidden layer and 10 layers of output layer, the training
target was 0.001, the maximum number of training was 1000,
and other parameters were set by default. The feature vectors
are composed of the first 3 to 7 feature values after LS
optimization, and the number of samples from the training
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TABLE 3. GA-BPNN output result of feature vector not sorted by LS.

TABLE 4. The output result of the BPNN after the feature vector is selected by LS.

and the test samples remained the same. The output results of
the test samples are obtained by training BPNN classifier, and
the recognition rate of the test samples is shown in Table 4.
Comparing Table 4 with Fig. 11 and Fig. 12, it is found that
for the same features, the recognition rate of BPNN is lower
than GA-BPNN, which indicates the necessity of optimizing
the neural network and verifies that GA-BPNN is an effective
classification method.

2) CASE 2: APPLICATION TO ROTATING MECHANICAL
FAILURE TEST BENCHES
To further validate the proposed model, different bearing
damage vibration signals were collected under different oper-
ating conditions, with damage types including rolling element
failure, outer race failure, and inner race failure. The experi-
mental equipment is shown in Fig. 13, which consists of an
AC motor, a coupling and a magnetic powder brake. The test
bearing is a cylindrical roller bearing of model SKF 6202-2Z.
The above damages were simulated using the EDM technique

TABLE 5. Bearing test states.

with a damage depth of 1.5 mm and the three faulty bearings
are presented in Fig. 14. The data sampling frequency is
2560Hz. Three operating conditionswere designed, as shown
in Table 5, with four bearing classes for each condition.
Each of the different operating conditions contained 35 sets
of data samples per operating condition, resulting in a total
of 140 sets of data samples per operating condition, each
consisting of 4096 data points.

For the above experimental data, four categories of bearing
working conditions under different operation states are identi-
fied separately. The waveforms of the four bearing categories
under the three operating conditions are depicted in Fig. 15.
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FIGURE 13. Rotating machinery experiment platform and transmission diagram: (a) Experimental equipment; (b) Transmission
diagram, 1-AC motor, 2-coupling, 3-bearing housing, 4-Gearbox, 5-Magnetic powder brake.

FIGURE 14. Bearing defect diagram: (a) Inner race failure; (b) Outer race failure; (c) Rolling element failure.

FIGURE 15. The collected vibration signals of four categories ((1) Inner race failure; (2) Outer race failure; (3) Rolling element failure; (4) Normal) under
different operating state: (a) operation at 1200 rpm with a load of 0; (b) operation at 1320 rpm with a load of 0.8 N/m; (c) operation at 1500 rpm with a
load of 1.6 N/m.

For each category, 20 samples were arbitrarily picked for
training and the remainder were taken for testing, and the
data sample labels are shown in Table 6. Hence, there were

80 training samples and 60 test samples for each condition.
The above operation was implemented for all three operating
states listed in Table 5.
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FIGURE 16. LS in 3 operating states: (a) operation at 1200 rpm with a load of 0; (b) operation at 1320 rpm with a load of
0.8 N/m; (c) operation at 1500 rpm with a load of 1.6 N/m.

TABLE 6. Experimental data for identification.

The model proposed in this article is deployed for three
different operating states. Firstly, CEALIF is employed to
pre-process each sample and obtain a number of IMFs, and
then TD and FD parameters of the first five IMFs and the
TFE of the raw vibration signal are extracted in turn, which
can constitute the feature vector T = [Ti]1×56. The feature
vector T of the 80 training samples is then constructed into
the initial feature matrix T̃ = [T ]80×56. Since the values of
each feature parameter do not belong to the same order of
magnitude, the feature matrix is normalized by Equation (13).
The next step is to compute the LS of each characteristic and
prioritize it from smallest to largest, select the first five fea-
tures with the smallest score as the optimal features and form

the optimal feature vector matrix. For the above experimental
data, the inverse of the LS was adopted as an indicator for
a clearer display, as shown in Fig. 16, which shows the LS
scores for the three operating conditions.

According to the LS optimization ranking in Fig. 16, the
first five important indicators for operating state 1 are RMS
of IMF1, the RMS of IMF2, the PK of IMF1, the SF of
IMF2, the RMSF of IMF1; the first five important indicators
for operating state 2 are the RMS of IMF1, TFE for IMF5,
the SF of IMF1, the RMSF of IMF1, the M of IMF2; the first
five important indicators for operating state 3 are the RMS of
IMF1, the PK of IMF1, the FC of IMF2, the RVF of IMF2,
and the RMS of IMF2. The above data shows that the vibra-
tion signal fault information is essentially found in the first
two IMFs and the vibration signal time-frequency entropy.
It also justifies choosing different indicators such as TD,
FD and TFD as indicators of fault characteristics. In addition,
to demonstrate better fault correlation of the ranked optimized
feature set, for ease of observation, we plotted the first three
features of the five important indicators mentioned above
and compared them with the unoptimized random features,
as indicated in Fig. 17. Most of the samples of the feature set
that were LS ranked optimized in the three conditions in the
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FIGURE 17. The comparison between the sorted optimized feature set and the random initial feature set:
(a) Optimal feature set after sorting in operating state 1 (T2, T13, T3); (b) Random initial feature set of
operating state 1 (T1, T2, T3); (c) Optimal feature set after sorting in operating state 2 (T2, T56, T50);
(d) Random initial feature set of operating state 2 (T1, T2, T3); (e) Optimal feature set after sorting in operating
state 3 (T2, T3, T20); (f) Random initial feature set of operating state 3 (T1, T2, T3).

FIGURE 18. GA-BPNN recognition results under different loads: (a) operation at 1200 rpm with a load of 0; (b) operation at 1320 rpm with a load
of 0.8 N/m; (c) operation at 1500 rpm with a load of 1.6 N/m.
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figure are clustered around their centers and there are clear
boundaries between categories. In contrast, the unoptimized
initial feature set largely exhibits a dispersion trend, with
no obvious clustering centers except for the normal bearing
operating conditions. In particular, the inner and outer race
failures are mixed together in all three operating states and
cannot be effectively recognized.

Finally, the optimal feature vector matrix IT̃80×5 obtained
above is input to the GA-BPNN categorizer for training to
derive the prediction model for each category. According to
the feature matrix IT̃80×5, extract the first five optimal fea-
ture values of 60 test samples (for consistency, the paper still
extracts 56 feature values of each sample) to obtain the feature
matrixOT̃60×5 of the training sample, and inputOT̃60×5 into
the trained GA-BPNN classifier for automatic recognition.
Fig. 18 depicts the recognition rates of the test samples under
three different operating conditions. The results demonstrate
that the proposed model has good fault recognition and can
distinguish well between different loading conditions and
different rotational speed conditions, and the fault recognition
rates of the test samples are 100%.

VI. CONCLUSION
A rolling bearing fault diagnosis model integrating CEALIF,
LS, and GA-BPNN is presented. In the proposed model, TD,
FD, and TFD information were utilized as damage indica-
tors, where the CEALIF method was employed for signal
pre-processing. Then with the help of LS and GA-BPNN,
the optimal feature vector was adopted to examine the rolling
bearing failure category. The experimental results demon-
strate the superior capabilities of the model in determining
the different typologies of rolling bearing failures as well
as the different degrees of damage. The main aspects of the
work are as follows: (1) the noise-assisted CEALIF method
was proposed to suppress the ALIF modal aliasing prob-
lem, and the simulation signal part showed that the CEALIF
method was more stable in processing signals containing
high-frequency intermittent signals, which was an effective
data analysis technique; (2) the TD, FD and TFD features
were extracted simultaneously, which reflected the fault char-
acteristics in many aspects and improved the reliability of
the diagnostic results; (3) the LS was introduced to rank the
obtained feature parameters according to their importance
for selection and reduce redundant features to improve the
classification performance; (4) GA is employed to address
the shortcomings of the tendency of BP neural networks
to fall into local optimality as well as slow convergence to
obtain the best BPNN performance. In further investigations,
more alternative characteristic parameters andmore advanced
damage indicators will be proposed to provide enhanced
classification performance, which can guide further studies
in bearing failure diagnosis.
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