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ABSTRACT Monolithic integration of silicon with nano-sized Redox-based resistive Random-Access
Memory (ReRAM) devices opened the door to the creation of dense synaptic connections for bio-inspired
neuromorphic circuits. One drawback of OxRAM based neuromorphic systems is the relatively low ON
resistance of OxRAM synapses (in the range of just a few kilo-ohms). This requires relatively large currents
(many micro amperes per synapse), and therefore imposes strong driving capability demands on peripheral
circuitry, limiting scalability and low power operation. After learning, however, a read inference can be
made low-power by applying very small amplitude read pulses, which require much smaller driving currents
per synapse. Here we propose and experimentally demonstrate a technique to reduce the amplitude of read
inference pulses in monolithic neuromorphic CMOS OxRAM-synaptic crossbar systems. Unfortunately,
applying tiny read pulses is non-trivial due to the presence of random DC offset voltages. To overcome
this, we propose finely calibrating DC offset voltages using a bulk-based three-stage on-chip calibration
technique. In this work, we demonstrate spiking pattern recognition using STDP learning on a small 4 × 4
proof-of-concept memristive crossbar, where on-chip offset calibration is implemented and inference pulse
amplitude could be made as small as 2mV. A chip with pre-synaptic calibrated input neuron drivers and a
4×4 1T1R synapse crossbar was designed and fabricated in the CEA-LETIMAD200 technology, which uses
monolithic integration of OxRAMs above ST130nm CMOS. Custom-made PCBs hosting the post-synaptic
circuits and control FPGAs were used to test the chip in different experiments, including synapse char-
acterization, template matching, and pattern recognition using STDP learning, and to demonstrate the use
of on-chip offset-calibrated low-power amplifiers. According to our experiments, the minimum possible
inference pulse amplitude is limited by offset voltage drifts and noise. We conclude the paper with some
suggestions for future work in this direction.

INDEX TERMS Neuromorphic, low-power inference, pattern recognition, template matching, offset
calibration, memristive crossbar, nano-synapse.

I. INTRODUCTION
Neuromorphic computing has recently attracted more atten-
tion. It all started in the late 1980s, when Caver Mead first
coined the term ‘neuromorphic’ and proposed the concept of
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morphing the biological brain on a chip [1]. Like the biolog-
ical brain, the main components in neuromorphic computing
are neurons interconnected by synapses. The main idea of
silicon neurons is to use sub-threshold transistor currents (in
the order of nA) to mimic the biophysical properties of neu-
rons. Such brain-inspired neuromorphic computing systems
have been attractive because their co-location of memory
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and processing units offers an alternative to classical von
Neumann architectures [2].

Some of the best-known neuromorphic chips over the last
few decades have been Neurogrid [3], [4], BrainScaleS [5],
[6], TrueNorth [7], SpiNNaker [8] and Loihi [9], to mention
just a few. Other chips of this type include Darwin [10],
ROLLS [11], ODIN [12], and DYNAPs [13]. Comparisons
of these chips based on specifications like technology, fea-
ture size, number of transistors, number of neurons, number
of synapses, energy, etc. can be found in literature [14],
[15]. There are also low-cost user-friendly boards like Neu-
roShield, featuring theNM500 neuromorphic chip, which can
be driven by Raspberry Pi or Arduino [16].

A. THE MEMRISTOR AS A FAVORABLE SYNAPSE
When Chua first coined the term ‘memristor’ in the early
70s, nobody even knew the device existed [17]. Later
in 2008, when HP labs demonstrated the physical exis-
tence of memristors, several memristor models were pro-
posed to study and explore their potential applications
[18]–[22]. These sustained the neuromorphic community’s
enthusiasm about creating and using memristors as favor-
able synapses for neuromorphic circuits. The non-volatile
nature, analog behavior, nano-scale size, and monolithic
CMOS compatibility of a memristor make it the candidate
of choice for use as a synaptic element in neuromorphic
circuits. Moreover, its nano-size existence aids its mono-
lithic integration with silicon layers to build ultra-dense
synaptic connections along with its CMOS counterpart.
Research has been carried out into different memristor
switching mechanisms, such as redox-based, phase-change,
magnetic junction-based, and ferroelectric mechanisms, and
into different physical models, such as conductive filaments,
the Schottky barrier, charge trapping, and the electrochemi-
cal migration of point defects, in order better to understand
the working physics behind the device and its switching
phenomena [23]–[31].

ReRAMs are based on establishing a conductive filament
during switching and have transpired as a promising arti-
ficial synaptic device for high-density synaptic crossbars
mainly because of their robustness and their integration capa-
bility [32]. ReRAM technology combines the features of
high-speed Static Random-Access Memory (SRAM) perfor-
mance with the non-volatile properties of flash memories
by implementing them at low power consumption. Metal
oxide-based ReRAM comprises a transition-metal-oxide
layer sandwiched between two metal electrodes so that when
voltage pulses are applied to the electrodes the device shows
a change in resistance.

Of all the different transition materials (HfO2, NiO, Al2O3,
Nb2O5, SrTiO3, Pr0.7Ca0.3MnO3, CuO2, Ag2S, AgGeSe,
etc.), HfO2-based devices are known for their high endurance,
high switching speed, and low-switching energy [33]–[38].
In this work, OxRAM devices (the TiN-Ti-HfO2-TiN struc-
ture) with a series-connected MOSFET selector (creating
the so-called ‘1T1R’ structure), are used as synapses, as

illustrated in Fig. 1(a). By applying a controlled voltage
through the terminals of the 1T1R structure, the resistance
of the device can be dynamically switched between Low
Resistive State (LRS) and High Resistive State (HRS) [39],
[40]. LRS is typically in the order of k�, and HRS is in the
order of hundreds of k� to M�. Fig. 1(b) shows a layout
view of the 1T1R synapse in the MAD200 technology The
MAD200 hybrid fab-process involves: 1) a 130nm CMOS
Standard Foundry Wafer with four Cu Metal layers M1, M2,
M3, and M4, 2) TiN bottom electrode definition, 3) memory
stack (HfO2 10nm/Ti 10nm/TiN) deposition, 4) φ 300 nm
MESA1 patterning, 5) placing of vias and 6) M5 layer depo-
sition. Fig. 1(c) shows a microscopic cross-section view of
the monolithically integrated hybrid CMOS and OxRAM
MAD200 technology used here [41].

A thick oxide NMOS with W = 6.7µ m and L = 0.5µ m
was used as the MOSFET selector. The OxRAMs were
initially in a Pristine Resistive State (PRS) and their filaments
were formed by applying a bias VTS = 4V with 10µ s pulse
width and a gate bias VGS = 1V, to limit the current to a rec-
ommended compliance of about 30µA. For a RESET (Erase)
operation, a bias of VST = 3V with 100ns pulse duration was
applied by keeping the gate fully ON (VGT = VDD = 4.8V).
For a SET (Write) operation, a bias of VTS = 2.4V with
100ns pulse duration was applied along with the gate bias
of VGS = 1.5V. For a read operation, a read voltage of VTS =

VRead = 0.3V was applied with a gate bias of VGS = 4.8V.
Table 1 shows the bias conditions for the different OxRAM
operations. Since here the maximum voltage required for
proper memristor operation was 4.8V, for convenience we
used thick-oxide transistors for all our CMOS circuits with a
common power supply of VDD = 4.8V.

TABLE 1. Bias conditions for different OxRAM operations.

B. MEMRISTIVE CROSSBAR AND SNEAK-PATH
CURRENTS
The term ‘crossbar switch’ dates from 1913, when
J. N. Reynolds from Western Electric thought of using a
cross-point or a coordinate array to operate a large number
of relay contacts with only a small number of magnets [42].
In the early 2000s, many crossbar-based architectures were
proposed, using two-terminal devices for memory, logic, and
neuromorphic applications [43]–[48]. The crossbar-based
neuromorphic circuits shown in Fig. 2 (a) comprise two layers
of parallel lines that are perpendicular to each other andwhich
act as word-lines (W1,2,3,4) and bit-lines (B1,2,3,4). They are

1Manufacturing Execution System Application (MESA) patterning is
using a thick photoresist pattern. In a MESA-process, it is done after doping
of impurities and before etching polysilicon.
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FIGURE 1. (a) 1T1R structure, (b) Layout preview of 1T1R in MAD200 PDK, (c) Microscopic view of the monolithic integrated hybrid CMOS
and OxRAM [41].

FIGURE 2. (a) A 4 × 4 memristive crossbar, (b) Read current and sneak-path current in a 4 × 4 memristive crossbar.

arranged in a two-dimensional array with a synaptic element
at each intersection or cross-point. The synaptic elements can
be programmed to ‘LRS’ or ‘HRS’, representing logic ‘1’ or
‘0’, respectively, when appropriate voltages are applied to the
word-lines and bit-lines.

One big drawback of selector-less memristive crossbars
is the sneak-path current. Sneak-path currents are currents
which pass through the unselected path of word-lines and
bit-lines and which may aggravate the crossbar’s read and
write operation performance, thereby limiting its scalability
[49]. When a particular synaptic device is targeted in a cross-
bar and its current is read by applying a read voltage Vread ,
along with the desired read current, sneak-path currents also
appear across the inference bit-line, as shown in Fig. 2 (b).
Sneak paths can cause the state of the synaptic device to
be misread or unintentionally changed. They are relevant
when crossbars are used as digital memories, but are not
critical when crossbars are used for analog vector-matrix
multiplications.

Several architectures, synaptic devices and read/write
procedures have been proposed to mitigate the effect of
sneak path currents in crossbars. Synaptic devices like two
anti-serial memristors [50] and architectures like unfolded
crossbars with 1D1M devices [51] have been researched with
the same objective. Studies have also been carried out into
read techniques such as multiport read-out with mathematical
cancellation of sneak-path currents [52], a threshold-based
read-out system [53], a two-step read process based on
‘‘open-column’’ semantics [54], and a three-step read (or
multistage read) process for determining the state of themem-
ristor in the presence of sneak paths [55]. Write bias schemes
with V/2 and V/3 have shown low write energy and high read
margins, thereby minimizing the effect of sneak-path cur-
rents [56]–[58]. Another interesting approach for eliminating
sneak-path currents is to use demultiplexer circuits based on
encoded nanowire doping [59]. Sneak-path currents also can
be avoided using 1T1R synapses [60]. This can limit scala-
bility, but greater crossbar density and smaller area overhead
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can be achieved by fabricating the memristor fabric on top
of the CMOS layer using sub-CMOS-feature-size nanowires
with different fabrication processes. This can be done using
spatially-distributed interface pins to connect the top-level
CMOS metal layer to the nanowire crossbars [61], [62]. In
the MAD200 technology used in this work, 1T1R synapses
are mandatory because the 1T MOSFET selector is required
to impose proper compliance currents for ‘form’ and ‘write’
operations. This way, if the calibrated crossbar is used as plain
memory, there will be no issue with sneak-paths.

C. STDP LEARNING RULE AND ITS APPLICATIONS
STDP (Spike Timing Dependent Plasticity) is a family of
computational neuroscience learning rules for spike-based
neural systems. STDP dates back to 1993, when Gerstner
first reported a simple variant [63]. Surprisingly, many neuro-
science researchers only observed its experimental existence
in biology later [64]–[71], and its underlying molecular and
electrochemical principles are still under debate [72].

Fig. 3 shows a preview of a synaptic junction, where
pre-synaptic and post-synaptic neurons connect. The
pre-synaptic neuron sends an action potential Vmem−pre to the
synapse, which cumulatively generates a post-synaptic action
potential Vmem−pos at the membrane of the post-synaptic
neuron. tpre is the time at which the pre-synaptic spike occurs
and tpos is the time at which the post-synaptic spike occurs.
The pre-synaptic action potential causes neurotransmitters to
be released into the synaptic cleft. Each synapse or synaptic
junction is characterized by synaptic weight (or strength) w,
which determines the efficacy of the pre-synaptic spike in
contributing to the cumulative action in post-synaptic neu-
rons. According to STDP, the change in synaptic weight is a
function of the time difference between the pre-synaptic spike
and the post-synaptic spike. A causal relationship (pre- spike
shortly before the post- spike) produces a weight increase,
while an anti-causal relationship (post- spike shortly after the
pre- spike) produces a weight decrease. Hence the change in

FIGURE 3. A synaptic junction that connecting a pre-synaptic and a
post-synaptic neuron.

synaptic weight
a
w = ξ (

a
T), where

a
T = tpos − tpre. For

positive
a

T, synaptic weight is potentiated (i.e.
a
w > 0) and

for negative
a

T, synaptic weight is depressed (i.e.
a
w < 0).

STDP takes into account the spikes’ relative time [73]. The
machine learning and computational neuroscience commu-
nity have been using STDP for applications like pattern
learning and object or pattern recognition since the early
2000s [74]–[82].

D. LOW-POWER INFERENCE WITH OFFSET CALIBRATED
OPAMPS
The objective of our work was to use tiny read pulses for
functional applications such as pattern recognition to make
the system low-power during inference. Typically, such read
pulses have amplitudes of 100mV, 50mV, or even less, but
they are further limited by DC offset voltages and noise. The
amplitudes of the read pulses determine themaximum current
the crossbar line drivers need to provide. This driving capa-
bility scales with crossbar size. Consequently, reducing the
maximum driving currents can reduce the overall operation
current (and power consumption) by over one order of mag-
nitude. Experimental results of the bulk-based, three-stage
calibration approach to calibrate the DC offset voltages of
opamps have already been reported [83]. Our proposal in this
work was to experimentally demonstrate template matching
and more sophisticated pattern recognition through STDP
learning using the tiniest possible read inference pulses with
opamps with calibrated offset voltages. Before presenting
these results, we also present the results of the synapse char-
acterization and simple template matching.

II. A 4 × 4 MEMRISTIVE CROSSBAR SYSTEM WITH
ON-CHIP OFFSET CALIBRATION
This section describes the demonstration system setup used
in our study, which included a 4 × 4 memristive cross-
bar for pattern recognition. Fig. 4 shows a conceptual dia-
gram mainly comprising pre-synaptic drivers, post-synaptic
drivers, synapses (W11,12,13,14,21,...44), and the three-stage
calibration scheme. Vpre{1,2,3,4} are the pre-synaptic lines,
Vpost{1,2,3,4} are the post-synaptic lines and Vg{1,2,3,4} are
the gate lines. A dedicated PCB was designed that facilitated
testing of the chip in different experiments, such as OxRAM
characterization, template matching, and pattern recognition
using STDP learning.

The access principle of the 4 × 4 memristive crossbar
system was to apply ‘active’ biases to one pre-synaptic line,
one gate line, and one post-synaptic line. The rest of the
pre-synaptic lines, gate lines, and post-synaptic lines were
applied with ‘default’ biases. In this way, we could target
one specific synaptic device in the crossbar and execute a
desired OxRAM operation such as ‘form’, ‘erase’, ‘write’,
or ‘read’. The other synapses in the crossbar were undisturbed
by applying ‘default’ biases across their terminals. We also
used an ‘idle’ state in which all terminals were connected to
0V. Table 2 shows the ‘active’ and ‘default’ biases used for the
different OxRAM operations when synapse Wij was targeted
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FIGURE 4. Conceptual diagram of the 4 × 4 memristive crossbar with on-chip calibration and read pulses applied across pre-synaptic lines during
inference.

TABLE 2. ‘Active’ and ‘default’ biases applied across crossbar terminals
for different OxRAM operations when synapse, Wij is targeted in the
crossbar shown in Fig. 4.

(see Fig. 4). During inference operation in template matching
or pattern recognition tasks, a sequence of read pulses were
applied in parallel to all pre-synaptic lines (rows), according
to the corresponding input pattern.

A. PRE-SYNAPTIC DRIVERS
Each pre-synaptic driver was made up of a digital pulse shap-
ing block and an offset calibrated opamp, as show in Fig. 5.
This gave three possible analog values to be applied to
each pre-synaptic line of the crossbar for different OxRAM
operations. The opamps’ DC offset voltages were calibrated
before setting a low-amplitude inference pulse in the read-out
pre-synaptic line path and the opamps were biased with inde-
pendent digitally-controlled current bias circuits, which we
call I-pots, each providing an individual ibias current [84].
Each pre-synaptic driver had its own calibration circuit. One
of the bulk terminals of the differential pair of MOSFETs of

FIGURE 5. Schematic view of the pre-synaptic driver across a
pre-synaptic line, Vprei.

the opamp, ‘Out_calibi’, was driven by the calibration circuit
for offset calibration. Bias ‘Calibref’ was common for all
opamps, while ‘Out_calibi’ was provided by the calibration
circuit of each opamp.

A three-stage bulk-based calibration scheme was imple-
mented to finely tune the bulk voltage ‘Out_calibi’ of each
opamp, as shown in Fig. 6 [83]. It consisted of cascaded
resistor ladders of high ohmic unsalicided N+ polysilicon
resistors with 16 levels in each stage. As we planned to
calibrate DC offset via bulk of PMOS differential pairs,
the reference voltage Vref was set near to the supply voltage
(4.8 - 0.3 = 4.5V). The first stack of resistors was connected
to reference voltages Vref + Vd and Vref - Vd , which were
set to choose a coarse (stage 1) voltage range, which was in
turn used to pick finer (stage 2 and stage 3) ranges in the next
stacks. Here, Vd is half the tuning voltage range, and Vref is
the reference voltage. The output of the calibration scheme
‘Out_calibi’ connected to one of the opamp differential pair
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FIGURE 6. Schematic view of the three-stage calibration scheme with
decoders to control the switches.

transistor bulk terminals (shown in Fig. 5), while the other
bulk terminal (Calibref ) was biased at Vref = 4.5V.

B. POST-SYNAPTIC DRIVERS
Each post-synaptic line was followed by a post-synaptic
driver. The scheme, shown in Fig. 7, mainly comprised
opamps, switches, and decoders. Control lines B1,2 selected
the different feedback elements of read opamp Aj1 for differ-
ent operations—‘form’, ‘erase’, ‘write’, ‘read’—by keeping
appropriate biases across all the Vpostj lines. The objec-
tive was to keep the required virtual ground voltage of the
inverting terminal of opamp Aj1 or the Vpostj line for the
different OxRAM operations. During inference, opamp Aj1
was used as an integrator, the output of which was compared
with a reference Vcomp by a comparator (using opamp Aj2).
Here, the Rread feedback path was selected during synapse
characterization and the Cinteg feedback path was selected
during inference for integration. The values of Rread and
Cinteg were tunable, depending on the resistance range of
interest, the inference pulse amplitude, and the pulse-width.
Sj was chosen by a decoder (not shown in Fig. 7). When line
Vpostj was chosen as the active post-synaptic line, signal Sj
was kept ‘ON’. This connected line Vpostj to ‘active column
bias’. Alternatively, when line Vpostj was chosen as a default
post-synaptic line, signal Sj was kept ‘OFF’. This connected
the post-synaptic line Vpostj to ‘default column bias’. Both
‘active column bias’ and ‘default column bias’ for different
OxRAM operations were established through switches and
decoders in such a way that at any given instant one of the
post-synaptic lines was kept as active while the others were
left to default.

C. DIGITAL CONTROL AND AUXILIARY CIRCUITRY
An on-chip, edge-triggered D flip-flop-based 104-bit shift
register was used to load the control-bits for the input of the
I-pots’ and opamps’ input offset calibration circuits. A PCB

FIGURE 7. Scheme of a post-synaptic driver coupled to a post-synaptic
line of the crossbar.

was designed to facilitate the testing of the memristive cross-
bar in different experiments, such as synapse characteriza-
tion, learning patterns, etc. Fig. 8 shows a functional block
diagram of the test platform, including the ASIC (Applica-
tion Specific Integrated Circuit). The main functional blocks
in the platform were the opamps, switches, level-shifters,
decoders, and a custom SPARTANr-6 FPGA board, also
known as an AER-node2 board [85]. The nomenclatures used
for the functional blocks were ‘OA’ for Operational Ampli-
fiers’ and ‘Sw’ for switches. The pre-synaptic drivers were
embedded within the chip, while the post-synaptic drivers
were made available on the PCB.

Line datain is a simple serial line for loading the 104-bit
control-word used for programming the digital inputs to the
calibration schemes and I-pots in all the pre-synaptic drivers.
It was initially loaded into the on-chip shift-register using
the clock signal. Once datain had been fed in, clock was
stopped, and the latch signal was turned ‘ON’ to hold the
digital inputs. Opamps were used to keep the desired biases
for Vref + Vd , Vref - Vd , va, vrest, vb, Vcomp, and Calibref.
Opamps were also used to set optimal values of ‘active’
and ‘default’ biases for the gate lines and post-synaptic lines
for the different OxRAM operations. The pre-synaptic line
biases for different OxRAM operations were directly applied
across terminals va, vrest and vb (see Fig. 5), which were
digitally controlled through the ‘control’ bus. For gate lines
(Vg{1,2,3,4}) and post-synaptic lines (Vpost{1,2,3,4}), the biases
for different OxRAM operations were applied via switches
that were selectively chosen using decoders (see around
Fig. 7 for Vpost{1,2,3,4}). Fig. 9 shows the scheme for dig-
itally setting ‘default’ and ‘active’ biases across gate line
terminals in the 4 × 4 memristive crossbar for different
OxRAM operations. Here, ‘F_act’, ‘E_act’, ‘W_act’, ‘I_act’,

2AER stands for Address Event Representation.

38048 VOLUME 9, 2021



C. Mohan et al.: Neuromorphic Low-Power Inference on Memristive Crossbars With On-Chip Offset Calibration

FIGURE 8. Functional block diagram of the test platform used to test the chip.

and ‘R_act’ are the ‘active’ biases for different OxRAM
operations such as ‘Form’, ‘Erase’, ‘Write’, ‘Idle’ and ‘Read’.
Similarly, ‘F_def’, ‘E_def’, ‘W_def’, ‘I_def’, and ‘R_def’
are the ‘default’ biases for different OxRAM operations.

Two different arrangements of switches ‘Sw{1,2}’ were
used. A dedicated 3-bit line (A, B, C) was used to con-
trol the switches in ‘Sw1’, which targeted different OxRAM
operations. The values for this 3-bit control line are shown
in Table 3. Here, ‘ON’ indicates 4.8V (VDD or Supply volt-
age), and ‘OFF’ indicates 0V. Another 3-bit group (gcola,
gcolb and en_dec_gate) was used to control the switches in
‘Sw2’, which selected the ‘active’ and ‘default’ gate lines.
A 6-bit control bus was used for the gate terminals, for
targeting a synapse and providing the gate biases required for
the desired OxRAM operation. Post-synaptic lines were also
controlled by the 6-bit (A, B, C, cola, colb and en_dec_post)
control bus, while a 2-bit control line, B1,2, was used to

choose the feedback path in opamp Aj1 (shown in Fig. 7)
for different OxRAM operations. A 7-bit control line was
used for the post-synaptic terminals, for targeting a synapse
and providing the post-synaptic line biases required for the
desired OxRAM operation.

A bi-directional voltage level conversion between 4.8V and
3.3V was used for the FPGA driver to control the overall
testing of the chip. A Spartanr-6 FPGA board was used
to program and digitally control the PCB (with the test-
circuits) and the ASIC part. The outputs of the post-synaptic
drivers, Vout{1,2,3,4}, were fed to the driver by algorithms
like pattern recognition. In addition to the PCB, two aux-
iliary boards—a button board and a resistor plug-&-play
board—were also made. The button-board provided addi-
tional push-buttons, since this was one of the limitations in
the SPARTANr-6 driver board [85]. The button-board also
had additional digital nodes with control-bits that could be
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FIGURE 9. Scheme for digitally setting ‘default’ and ‘active’ biases across
gate line terminals in the 4 × 4 memristive crossbar for different OxRAM
operations.

TABLE 3. Control-bit for performing different OxRAM operations in the
targeted 1T1R device in the crossbar, with pre-synaptic lines calibrated
for DC offset voltage.

set manually. The resistor plug-&-play board helped test the
PCB before moving on with the chip and also facilitated the
testing of the crossbar terminals.

III. EXPERIMENTAL RESULTS
Fig. 10 shows the experimental setup of the memristive cross-
bar for pattern recognition using offset calibrated low-power
amplifiers. It mainly comprises the test-PCB incorporating
the chip under test, a SPARTANr-6 driver board, the aux-
iliary boards (a button-board and a resistor plug-and-play
board), a Mixed Signal Oscilloscope (MSO), and its dig-
ital pod. The chip, designed using MAD200 technology
(CEA-LETI OxRAM ST130nm CMOS), was assembled into
a PGA100 package, different previews of which are shown
in Fig. 11. The 4× 4 1T1R crossbar circuit with on-chip offset
calibration is highlighted in these figures with dashed red
lines. The test-PCB was controlled through the SPARTANr-
6 driver board. The button-board had dedicated buttons to
performOxRAMoperations like ‘Form_Idle_Read’, ‘Weight
update’, ‘Erase_Idle_Read’, ‘Write_Idle_Read’, and ‘Read’
in sequence. The buttons on the button-board corresponding
to these tasks or operations are highlighted in Fig. 10. The
chip, the PCB, the SPARTANr-6 driver board, the auxiliary
boards, and the MSO facilitated the following experiments:

(i) Synapse characterization, (ii) DC offset voltage calibra-
tion, (iii) Template matching, and (iv) Pattern recognition by
STDP learning.

A Finite State Machine (FSM) was programmed in the
FPGA to define the functions of each button on the button-
board. Different states were made in the FSM in such a way
that the push-buttons on the button-board were programmed
to establish different OxRAM operations in a sequence on
the targeted 1T1R device. One of the push-buttons was pro-
grammed to carry out the ‘Form_Idle_Read’ tasks, while
another was programmed for the ‘Erase_Idle_Read’ tasks.
Other buttons were programmed exclusively to carry out
‘Write_Idle_Read’ tasks and a separate ‘Read’ operation, and
to perform offset calibration during that ‘Read’ operation.
A push-button was also programmed for the ‘Weight update’
task, which was later used in the template matching and
pattern recognition experiments.

A. OPERATION AND CHARACTERIZATION OF INDIVIDUAL
1T1R SYNAPSES
The main idea used to characterize a 1T1R synapse in a
crossbar was to target a device by picking the corresponding
active pre-synaptic line, post-synaptic line, and gate. ‘Active’
biases for these pre-synaptic lines, post-synaptic lines, and
gate terminals were applied for different OxRAM operations,
as discussed in Section I-A. The rest of the pre-synaptic lines,
post-synaptic lines, and gates were connected to ‘default
biases’ (as shown in Table 2), where the biases across the
top and bottom terminals of the device were similar and the
gate biases were set at 0V. In this way, the states of the other
devices remained unchanged. Read opamp, Aj1 (as shown
in Fig. 7) with Rread = 26.71k� was used to find the state of
the synapse during ‘read’. Synapses were characterised in the
following three steps: (a) set active and default voltages using
opamps for different OxRAMoperations, (b) target a synaptic
1T1R device in the crossbar, (c) load the control-word using
the shift register to perform the required OxRAM operation
through a 3-bit control signal, F(A, B, C), as shown in Table 3.

All OxRAMswere carefully formed and switched between
LRS and HRS for characterization. Fig. 12(a) shows the
active pre-synaptic i=2 line (Vpre2) bias, the post-synaptic
j=3 line (Vpost3) bias, the gate line (Vg3) biases, the output
voltage Vout3 of read opamp A31, and the digital signals when
the ‘ERASE_IDLE_READ’ operation was carried out (see
Fig. 7). Fig. 12(b) shows the active pre-synaptic line (Vpre2)
bias, the post-synaptic line (Vpost3) bias, the gate line (Vg3)
biases, the output voltage Vout3 of read opamp A31, and the
digital signals when the ‘WRITE_IDLE_READ’ operation
was carried out.

The ‘data-loading’ part was originally programmed for
52.5ms. This is the control-word that was loaded to the
on-chip shift register. Only the last region of the ‘data-
loading’ part is shown in Fig. 12. This was followed by
‘Idle’, ‘Erase’, ‘Idle’, ‘read’, and ‘Idle’. During ‘Idle’, both
the top and bottom terminals of the targeted 1T1R device
were biased at 0V and the gate was turned ‘OFF’. During
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FIGURE 10. Experimental set-up of the memristive crossbar for pattern recognition using offset calibrated
low-power amplifiers.

FIGURE 11. (a) Zoom preview of the top of the chip, (b) Top view of the chip packed in the PGA100 package, (c) Layout view of the chip in MAD200 PDK
with labelled pads.

‘read’, the active pre-synaptic line and post-synaptic line
were initially switched to the required ‘read’ biases and the
active gate line was turned ‘ON’ once 15ms had elapsed. The
values of control signals A, B, and C for different OxRAM
operations were digitally set based on Table 3. The LRS
and HRS resistance values of the OxRAM were calculated
from Fig. 12. A feedback resistor with a resistance value
of 26.71k� was used at the read opamp A31. The ‘Read’
voltage was 2.4V - 2.27V = 0.13V. The output of the read
opamp A31 went to 2.246V during a ‘Read’ after ‘Erase’
when the active gate was turned ‘ON’. Similarly, the output
of the inference opamp went to 0.436V during a ‘Read’ after
‘Write’ when the active gate was turned ‘ON’. The LRS and
HRS values were calculated as follows

LRS = (
26.71k�

2.27V− 0.436V
)× 0.13V = 1.89k� (1)

HRS = (
26.71k�

2.27V− 2.246V
)× 0.13V = 144.68k� (2)

Fig. 13 shows the measured LRS and HRS OxRAM values
of synapses in the 4 × 4 crossbar. Here, the maximum and
minimum HRS values were 315.28k� and 16.5k�, respec-
tively. The maximum andminimumLRS values were 2.92k�
and 1.66k�, respectively. Fig. 14 shows the LRS and HRS
values for 10 switching cycles of an OxRAM in the 4 × 4
memristive crossbar. Here, the maximum HRS was 385.8k�
and the minimum HRS was 120k�. The maximum LRS was
1.95k� and the minimum LRS was 1.87k�. Fig. 15 shows
the LRS and HRS values for 400 switching cycles of an
OxRAM of a synapse. The plot shows high variability in the
distribution of HRS. Here, the maximum HRS was 1.19M�
and the minimum HRS was 5.9k�. The maximum LRS was
3.82k� and the minimum LRS was 2.53k�.

B. CALIBRATION OF DC OFFSET IN OPAMPS
DC offset voltages need to be calibrated when minimum read
pulses are used for inference. Calibration of DC offset during
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FIGURE 12. Active pre-synaptic line i=2 (Vpre2) bias, post-synaptic j=3 line (Vpost3) bias, gate line (Vg3) biases, output voltage Vo3 of read opamp A31 and,
digital signals applied in the form of pulses, (a) showing a read operation after an erase operation, (b) showing a read operation after a write operation.

FIGURE 13. LRS and HRS OxRAM values of all 16 synapses in the 4 × 4
crossbar.

inference involves the following steps: (a) set active and
default voltages for OxRAM operations, such as ‘read’ and
‘idle’ or ‘global’, (b) set Calibref = 4.5V, Vref = 4.5V and
Vd = 15mV, (c) set the 12-bit control input for the calibration
scheme, (d) target a synaptic 1T1R device by selecting its
active pre-synaptic line as the active line in the crossbar, and
(e) load the control-word using the shift register and then
hold it with the latch signal to calibrate the DC offset during
a ‘read’ operation. The residual DC offset is determined by
observing the difference between the input and the output of
the corresponding pre-synaptic driver.

Fig. 16(a) compares the experimental and simulation
results when pre-synaptic line Vpre1 of the crossbar was
calibrated for DC offset voltage during coarse (or stage 1) cal-
ibration. The zero-crossing region in Fig. 16 (a) was targeted
and DC offset voltages were calibrated during fine (or stage
2) and finer (or stage 3) calibration, the results of which are
shown in Fig. 16 (b) and Fig. 16 (c). These results were
obtained by averaging 100 million samples in order to filter

FIGURE 14. LRS and HRS values for 10 switching cycles of an OxRAM of
the 4 × 4 memristive crossbar.

FIGURE 15. Switching of a synapse’s OxRAM resistance between HRS and
LRS for 400 cycles.

out noise, with standard deviation of about 200µ V. Experi-
mental results of the three-stage calibration scheme have been
discussed in detail elsewhere [83]. The pre-synaptic lines
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FIGURE 16. Comparison of experimental and simulation results of DC offset voltage calibration across one pre-synaptic line. (a) For coarse
(or stage 1) calibration, (b) for fine (or stage 2) calibration, and (c) for finer (or stage 3) calibration.

FIGURE 17. Calibrated pre-synaptic lines (Vpre{1,2,3,4}) and digital signals
(A, B, C, clock and datain) during an inference.

were calibrated in such a manner that they aligned in the
same level with the lowest possible mismatch. Fig. 17 shows
the calibrated pre-synaptic lines (Vpre{1,2,3,4}), together with
digital signals (A, B, C, clock and datain) during infer-
ences. Pattern{1,2,3,4} are the input pulses fed across the
pre-synaptic lines of the crossbar. These details are discussed
briefly in Section III-C. Here, the ‘active’ pre-synaptic lines
were biased with 2.3998V and the ‘default’ pre-synaptic
lines were biased with 2.3899V (9.9mV difference). We can
therefore appreciate the alignment of calibrated pre-synaptic
lines when the difference between the ‘active’ and ‘default’
biases is kept at around 10mV.

To determine how the DC offset voltage drifts, calibration
was performed every 3 secs for 50 minutes (1000 measure-
ments). Fig. 18 shows the offset variation with respect to
time. Here, both the observed and the moving average offset
(mean recorded offset in 5 minutes) values were recorded.
We can see how the offset voltage (which was initially cali-
brated at around 1mV) drifted slowly and crossed ‘zero’ after
30 mins. Later, the offset moved towards negative values.
We see a noise envelope of about 4mV around themean value.
The difference between the maximum and minimum peaks
was about 8mV during this time frame. Due to this drifting of
the offset, attempts were made after calibration to finish the
experiments (as described in Section III-C and Section III-D)

FIGURE 18. Measured drift of DC offset with time over a 50-minute
period. One thousand offset measurements were taken during this time.
The running average over 100 consecutive measurements is shown as a
thick continuous line.

FIGURE 19. Patterns used for recognition-task using 4 × 4 crossbar:
(a) Pattern1, (b) Pattern2, (c) Pattern3, (d) Pattern4.

in a short period of time. In practical applications with
minimum read pulses down to just a few mV, re-calibration
should be performed frequently.

C. TEMPLATE MATCHING USING MINIMUM INFERENCE
PULSES ON OFFSET CALIBRATED MEMRISTIVE CROSSBAR
Our goal was to use the minimum possible ‘inference’ pulses
after offset-calibration of the opamps for inference computa-
tions. To do this, we initially considered a template matching
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FIGURE 20. Conceptual block diagram showing patterns fed as read
pulses across the pre-synaptic lines (or rows) of the calibrated crossbar
with synaptic weights switched to learned values.

experiment in which we programmed the crossbar with given
weights and then performed inference. The patterns (Pattern1,
Pattern2, Pattern3, and Pattern4) in our experiment are shown
in Fig. 19. Fig. 20 shows a conceptual block diagram of how
patterns were fed in as ‘input’ pulses across the pre-synaptic
lines of the crossbar, the synapses of which were programmed
with patterns 1 to 4 in Fig. 19. The FPGA was programmed
in such a way that clicking the ‘Weight update’ push-button
would update all weights and this would be followed by
inference. The weights were updated to set the synapses to
the desired weights, as shown in Fig. 20.
Initially, the OxRAMs in the 4 × 4.1T1R crossbar were

formed one-by-one and set to weights as shown in the cross-
bar of Fig. 20. The pre-synaptic opamps were then calibrated
for DC offset compensation as explained in Section III-B.
Following this, an inference was carried out for the patterns
(shown in Fig. 19) in the sequence: Pattern1, Pattern2, Pat-
tern3, Pattern4. This was done by applying input pulses at
the pre-synaptic lines in the sequences needed for the planned
patterns.

Let us first consider Pattern1. This pattern had binary
inputs in the sequence ‘1’, ‘1’, ‘0’, ‘0’, so two minimum
‘inference’ pulses were applied during its inference: one at
Vpre1 and another at Vpre2. The remaining pre-synaptic lines,
Vpre{3,4}, remained fixed at their reference levels. With refer-
ence to Fig. 7, for the applied inference pulses there would be
current flowing through the post-synaptic lines Vpostj, which
would be integrated at opamps Aj1 (with Cinteg = 908nF),
resulting in corresponding voltage decrements at nodes Voj.
These output voltages were then compared with the reference
voltage Vcomp = 1.7V using opamp Aj2, resulting in output
voltage Voutj (or its digital inverted version Vout_invj). For Pat-
tern1, as the contributing synapses W{11,21} of post-synaptic
line Vpost1 had net strong weights (LRS) in comparison with
synapsesW{12,22}, which contributed to Vpost2, with synapses
W{13,23}, which contributed to Vpost3, or with synapses
W{14,24}, which contributed to Vpost4, the output of the com-
parator opamp (A12) Vout1 ramped down faster and spiked
earlier than the rest. Consequently, Vout_inv1 would result

FIGURE 21. Output (Vo{1,2,3,4}) of opamp (A{1,2,3,4}1) and digital signals
(A, B, C, clock , datain and Vout_inv{1,2,3,4}) for template-matching using
read voltage of 14mV.

in the shortest pulse-width in comparison with the others.
Inference for the other patterns occurred in a similar way.

Fig. 21 shows the outputs Voj of integrating opamps
A{1,2,3,4}1 for each of the four applied input patterns. For visu-
alization purposes, each input pattern is applied four times
in sequence, with only one Voj being displayed each time.
Between each input pattern application, all four integrators
were reset. The output voltage Voj that reached comparison
level Vcomp = 1.7V the fastest indicated that post-synaptic
node j was the closest match to the applied input pattern.
The slopes at nodes Voj ramped down for 15ms, which is
the time interval the gate lines were activated. Fig. 21 also
shows digital control signals A, B, C, clock, and datain, which
loaded the calibration and configuration bits and set the signal
sequence for input pattern application. Also shown in Fig. 21
are the digital post-synaptic outputs Vout_invj. The duration of
each of these is annotated for each input pattern. The shortest
duration is marked in red, indicating it was the best match
to the applied input pattern: for Pattern1, output Vout_inv1
provided the shortest duration of 24.55ms; for Pattern2,
output Vout_inv2 provided the shortest duration of 27.14ms;
for Pattern3, output Vout_inv3 provided the shortest duration
of 25.68ms; and for Pattern4, output Vout_inv4 provided the
shortest duration of 27.85ms, as expected according to the
synaptic values stored.

In order to find the smallest read pulses for inference,
the ‘read’ amplitude was reduced in steps, starting from
0.13V, by increasing the ‘virtual ground’ (the lower-level
voltage of the read pulses). The initial value of this ‘virtual
ground’ or active post-synaptic line voltage during ‘read’
was 2.27V and is shown in Fig. 12 in Section III-A. Fig. 22
shows the results when the read voltages were reduced to the
smallest values we could adjust them to while still operating
properly (down to around 2 mV). The same figure shows
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FIGURE 22. Applying tiny input pulses (for Pattern2) across calibrated pre-synaptic lines. (a) Zoom preview of the pre-synaptic lines, (Vpre{1,2,3,4}),
(b) Zoom preview of the post-synaptic lines (Vpost{1,2,3,4}). (c) Zoom preview of the pre-synaptic and post-synaptic lines that constitute the two
read pulses (Vpre3 - Vpost2) and (Vpre4 - Vpost2). (d) Output (Vo2) of opamp (A21) during inference. (e) Statistical spread of read voltage for read
pulse (Vpre3 - Vpost2) when gate is ‘ON’. (f) Statistical spread of read voltage for read pulse (Vpre4 - Vpost2) when gate is ‘ON’.

the input pulses applied for ‘Pattern2’ and the inference
output for Vpost2. Here, Cinteg= 104nFwas used. Fig. 22(a, b)
show the details of all pre-synaptic and post-synaptic lines
during inference. Fig. 22(c) shows the pre-synaptic and
post-synaptic lines that constituted the two active read pulses
for Pattern2 (Vpre3 - Vpost2) and (Vpre4 - Vpost2). Fig. 22(d)
shows the output (Vo2) of opamp (A21) during inference.
As can be seen, significant noise was present at the read
pulses. Fig. 22(e, f) show the noise data histograms of read
amplitudes for the two read pulses (Vpre3 - Vpost2) and
(Vpre4 - Vpost2) during the time the gate was ‘ON’. The
first read pulse had a mean value of 1.7mV, while the
standard deviation of the measured data points was 2.5mV,
meaning that the instantaneous measured read amplitude
became negative for a considerable part of the total time. The
mean amplitude for the second read pulse was 2.1mV, while
noise standard deviation was also 2.5mV, again resulting in

some negative instantaneous read pulse amplitudes. However,
as the read pulses were integrated over a much longer period,
only their average values contributed to the final integral,
while the high frequency voltage noise (of σ = 2.5mV or
amplitude ≈ 6σ = 15mV) passed through. This can be
seen in Fig. 22(d), where the integration slope is shown with
a superimposed noise in the range of about

√
2×15mV =

20mV amplitude.
The question remains of whether the noise we mea-

sured came mainly from the chip or from the experimen-
tal setup and oscilloscope, and what ratio each element
was contributing. From our noise transient simulations of
the in-chip circuitry, we obtained intrinsic noise histograms
with standard deviations of about 120 µ V. We therefore
suspect that the dominant noise we measured was pro-
duced by off-chip elements, such as PCB components or the
instruments.

VOLUME 9, 2021 38055



C. Mohan et al.: Neuromorphic Low-Power Inference on Memristive Crossbars With On-Chip Offset Calibration

FIGURE 23. Flowchart for inference and STDP learning on offset
calibrated 4 × 4 1T1R crossbar for pattern recognition.

D. PATTERN RECOGNITION BY STDP LEARNING
The second experiment we considered was pattern recog-
nition using STDP learning. Here, weight updates were
performed based on the time of occurrence of pre-synaptic
and post-synaptic pulses. When the post-synaptic pulse
spiked after the pre-synaptic pulse, the weight of the corre-
sponding synapse was strengthened by decreasing the resis-
tance. In contrast, when the pre-synaptic pulse spiked after the
post-synaptic pulse or when there was no pre-synaptic pulse,

FIGURE 24. Output (Vo{1,2,3,4}) of opamp (A{1,2,3,4}1) and digital signals
(A, B, C, clock , datain and Vout_inv{1,2,3,4}) during 1st weight-update.

FIGURE 25. Output (Vo{1,2,3,4}) of opamp (A{1,2,3,4}1) and digital signals
(A, B, C, clock , datain and Vout_inv{1,2,3,4}) during 2nd weight-update.

the weight of the corresponding synapse was weakened by
increasing the resistance. A condition (prioritisation of the
minimum index of the post-synaptic line with contributed
synapses that had not previously been subject to weight
updates) was used when two or more post-synaptic pulses
spiked at the same time. Initially, the weights were kept
random.

The FPGA driver board was programmed in such a way
that the user could initially calibrate DC offset as explained
in Section III-B and then proceed to the pattern recognition
task. Achieving minimum pulse-width at the output of a
post-synaptic driver during inference for an input pattern is
an indication of minimum distance or maximum similarity
between that driver’s applied and stored patterns. In this case
the contributing weights were strengthened (resistance was
lowered).

Fig. 23 shows the flowchart used for inference and STDP
learning. The procedure was as follows: (a) DC offset
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FIGURE 26. Output (Vo{1,2,3,4}) of opamp (A{1,2,3,4}1) and digital signals
(A, B, C, clock , datain and Vout_inv{1,2,3,4}) during 3rd weight-update.

calibration of pre-synaptic line amplifiers as explained in
Section III-B. (b) An inference was then performed for
the first Pattern. The resulting pulse-widths of the out-
puts (Vout_invj) of the post-synaptic drivers were measured.
(c) The STDP weight update was performed on the synapses
that contributed minimum pulse-width at the output of the
post-synaptic driver, whereas the rest of the weights were kept
untouched. When two or more pulse-widths were similar and
minimum, priority was given to the one that had the minimum
index number and to those contributing synapses that had not
undergone weight updates earlier. (d) The trained patterns
and their index numbers were both stored in a register, which
was later used to learn future patterns for checking whether
synapses had undergone weight updates earlier when two or
more pulse-widths became minimum and similar. (e) The
process was iterated for all patterns one-by-one and ended
when all patterns had been learned.

Fig. 24 shows the outputs (Voj) of opamps (Aj1) and digital
signals (A, B, C, clock , datain andVout_invj) during 1st weight-
update, where Vout_inv3 resulted in the least pulse-width for
‘Pattern1’ and ‘Patterns4’. This is indicated by two blue
dashed circles. Vout_inv1 resulted in the least pulse-width for
‘Pattern2’ and ‘Patterns3’. This is indicated by two yellow
dashed circles. Fig. 25 shows the output (Voj) of opamp
(Aj1) and digital signals (A, B, C, clock , datain and Vout_invj)
during 2nd weight-update, where Vout_inv3 resulted in the
least pulse-width for ‘Pattern1’ and ‘Pattern4’. Here, Vout_inv1
resulted in the least pulse-width for ‘Pattern2’ and Vout_inv4
resulted in the least pulse-width for ‘Pattern3’. These are
indicated by yellow and green dashed circles, respectively.
Fig. 26 shows the output (Voj) of opamp (Aj1) and digital
signals (A, B, C, clock , datain and Vout_invj) during 3rd

weight-update, where the synapses had almost learned the
weights. Here, Vout_inv1 resulted in the least pulse-width
for ‘Pattern2’, Vout_inv2 resulted in the least pulse-width
for ‘Pattern4’, Vout_inv3 resulted in the least pulse-width for

‘Pattern1’, and Vout_inv4 resulted in the least pulse-width for
‘Pattern3’. Fig. 26 is the only one to have four different colors
of dashed circles, indicating the occurrence of learning.

IV. CONCLUSION AND FUTURE OUTLOOK
Present day OxRAM devices present resistance values as
low as just a few kiloohms. Instantaneous read and inference
currents through each device can therefore be in the range
of many micro-amps or even mili-amps, thus hindering the
implementation of large-scale crossbars for vector-matrix
multiplication in typical neural computing applications due to
excessive power dissipation. Here we explored the viability
of using minimum amplitude inference stimulation pulses,
as low as a fewmV, to reduce power dissipation at the crossbar
as much as possible, while at the same time relaxing the driv-
ing capability of the stimulation and integration circuits. One
limitation in reducing input stimuli voltage amplitudes is the
offset voltage mismatch of the driver circuits. To overcome
this, in this workwe explored the viability of using bulk-based
calibration of differential pairs to minimize their input offset
voltages. This was done by using minimum amplitude infer-
ence pulses for applications such as template matching and
pattern recognition with STDP learning. Demonstrating these
applications on a small-scale memristor crossbar, we verified
satisfactory inference with minimum read pulses of about
2mV. This paves the way for low-power inference to increase
scalability.

In the presented setup, post-synaptic drivers were imple-
mented off-chip with commercial ultra-low offset voltages.
This was required here as we wanted to be able to use
memristor currents in the range of up to hundreds of µA (for
non-minimum inference pulses). Consequently, integrating
capacitors in the range of hundreds of nF were required,
making the implementation of on-chip post-synaptic drivers
inviable. In order to make it possible to implement the
post-synaptic drivers on-chip, one solution is to downscale
the memristor currents by several orders of magnitude before
integrating them. This can be done by using multi-decade
current down-scaling circuits, which we have investigated
before [86]. In that case, offset voltage calibration should be
applied both at the pre-synaptic lines and at the post-synaptic
lines of the memristor crossbar. Another alternative, which
avoids multi-decade current down-scaling, is to perform
ultra-fast inference through stimulation pulses in the range
of nano-seconds. However, this imposes the careful design of
very high speed pre- and post-synaptic drivers, which would
again require high power consumption. In the long term,
the best solution would most probably be the combination of
low amplitude and fast inference pulses together with new
memristor devices with much larger ON resistance values.
Another factor worthy of careful consideration is the impact
of noise, which will limit very high-speed integration, as one
requires to average it out. Finally, offset drift is also rele-
vant when it becomes comparable to the read amplitude and
should be taken into account, for example through frequent
re-calibration.
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