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ABSTRACT Authenticating a user in the right way is essential to IT systems, where the risks are becoming
more and more complex. Especially in the mobile world, banking applications are among the most delicate
systems requiring strict rules and regulations. Existing approaches often require point-of-entry authentication
accompanied by a one-time password as a second-factor authentication. However, this requires active
participation of the user and there is continuous authentication during a session. In this paper, we investigate
whether it is possible to continuously authenticate users via behavioral biometrics with a certain performance
on a mobile banking application. A currently used mobile banking application in Turkey is chosen as the
case, and we developed a continuous authentication scheme, named DAKOTA, on top of this application.
The DAKOTA system records data from the touch screen and the motion sensors on the phone to monitor and
model the user’s behavioral patterns. Forty-five participants completed the predefined banking transactions.
This data is used to train seven different classification algorithms. The results reveal that binary-SVM with
RBF kernel reaches the lowest error scores, 3.5% equal error rate (EER). Using the end-to-end DAKOTA
system, we investigate the performance in real-time, both in terms of authentication accuracy and resource
usage. We show that it does not bring extra overhead in terms of power and memory usage compared to the
original banking application and we can achieve a 90% true positive recognition rate, on average.

INDEX TERMS Behavioral biometrics, continuous authentication, mobile applications, mobile sensing,

sensor-based authentication, smartphone authentication.

I. INTRODUCTION

Authenticating a user on a mobile phone is an essential oper-
ation since users store critical information, such as personal
photos, contact details, call histories, private messages, login
details and application data. Personal Identification Num-
ber (PIN), passwords, graphical patterns, physical biomet-
rics (i.e., fingerprints) are the examples of active or explicit
authentication. Active authentication approaches are often
used when users launch the device and require the user’s
active participation. Users usually use simple, easily guessed
PINs and passwords, making it very easy for the imposters
to access the device contents [1]. In the case of graphical
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patterns, users often choose to use the same pattern and leave
oily residues on the screen [2], and one can easily repeat the
secret pattern.

Mobile banking applications are examples of applications
where authentication is of critical importance and strict rules
and regulations exist for providing it. Usually, a banking
application requires a password at login; however, there are
also examples of banking applications, which use physical
biometrics (i.e., iris or face recognition) as the authentica-
tion mechanism. These approaches often require one-time
or point-of-entry authentication. To complete several criti-
cal transactions (i.e., money transfer), a one-time password
(OTP) is often required as a second-factor authentication.
However, the user is still not continuously authenticated dur-
ing a session and these approaches are limited in offering
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implicit and transparent authentication [3]. If the user forgets
to logout and the phone is captured by someone else, attackers
may get access to his/her account and may even add their
fingerprint or face ID to the system settings and access the
application.

Considering the limitations of active or explicit authen-
tication schemes, continuous authentication, also known as
implicit, passive, or progressive authentication is emerging
as an alternative or complementary solution [1], [3]-[5]. It
is based on tracking the user’s interaction patterns with a
device and provides a continuous service. Continuous authen-
tication uses behavioral biometrics, which refer to a specific
behavioral pattern to a user [6]. In a continuous authentica-
tion scheme, the authentication process happens in real-time
during the entire interaction. By reducing the requirement of
explicit authentication, a more usable experience is provided
to the users [7].

This paper proposes a behavioral biometrics-based con-
tinuous authentication system named DAKOTA, which is
mainly designed for a mobile banking application. The appli-
cation is from a local bank in Turkey and 6.4 million users
actively use it. The DAKOTA! system is developed as a
research project and the aim is to provide a continuous
authentication scheme as an additional or complementary
solution, similar to OTP. The introduced research question in
this paper can be summarized as: ‘Can we continuously and
efficiently authenticate the users using behavioral biometrics,
so that we can remove OTP requirements in certain transac-
tions with low risk?’

We formulate the authentication process as a classification
problem, either the subject is the real user or not, i.e., the
imposter. For this purpose, the currently used mobile banking
application is modified to log data from the touch screen
and the motion sensors on the phone to monitor and model
the user’s behavioral patterns. The logger component collects
touch data, such as x-y coordinates on the screen, finger
pressure, and sensor data from accelerometer, gyroscope, and
magnetometer to capture the user’s hand movements. We
collected a dataset from 45 participants, considering different
usage scenarios, including different types of transactions, and
postures while sitting, standing, and keeping the phone on a
table. We designed several experiments to evaluate the impact
of different classifiers, feature transformation and feature
selection methods, sensor type, and posture on the authentica-
tion performance. According to the results of the experiments,
binary-SVM (support vector machine) with RBF kernel is
observed to reach the highest true positive recognition rate
(TPR), 99%, and the lowest error scores, 3.5% equal error
rate (EER).

We also implemented the end-to-end DAKOTA system,
where the trained models are stored on a server and the data
collected during a transaction is transferred to the server for
authentication based on the user’s biometric model. We tested

IThe acronym is in Turkish, meaning “‘authentication based on behavioral
patterns.”
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the performance both in terms of authentication accuracy
and resource usage. We initially obtained true recognition
rates in terms of authentication accuracy, ranging between
40% and 80%, with the SVM classifier. We observe that,
statistically, there are differences between the old training
data and new test data due to changes in user’s biometric
metrics, as reported in the literature [8]-[10]. As a solution,
we updated the models by adding new data and could achieve
true recognition rates ranging between 64% and 98%. These
results are obtained when each scroll is tested individually.
However, during a session/transaction, there are multiple
scroll events and some of them might be mis-classified and
reporting the result of each scroll to the user is not practical.
Hence, we also report each session’s performance by using
a threshold value for the minority class and show that we
can achieve higher accuracy and lower error rates. In terms
of resource consumption, we observed that the DAKOTA
system increases power consumption by 27% compared with
the original application; however, since the mobile banking
application is not continuously used, this does not signif-
icantly affect the battery life and user experience. Power
consumption and memory usage did not change significantly.
Contributions and highlights of the paper are summarized as
follows:

« Instead of using a dummy application, we modified a
mobile banking application, which is currently used by
many users, so that user behaviors are captured directly
on the real application. During data collection, the most
used transactions on the application are performed by
the users.

« Wetested the performance with a large set of parameters,
including nine different classifiers, a large set of fea-
tures, two different sampling algorithms, five different
usage scenarios, and three different postures.

o Most of the related studies focus on building the bio-
metrics models; however, the proposed systems do not
investigate the resource consumption on mobile devices.
We presented an end-to-end system and tested its per-
formance, both in terms of authentication and resource
consumption.

o The tests on the end-to-end system show that there can
be changes in biometric features, which might reduce the
predictive performance. In order to address this issue,
we focused on how to update the models. Moreover, we
discussed the performance with session-based authenti-
cation compared to authentication for each scroll.

This article also extends a preliminary study [11], in which

a smaller version of the dataset (only 20 users) was utilized,
and only one-class SVM algorithm was used in the analysis,
with fewer experiments and a less detailed discussion. The
rest of the paper is organized as follows: In Section II, we
present and compare the related studies. Section III includes
the details of the dataset along with the processing of the data.
In Section IV, we introduce our methodology, particularly
the details of the applied models, while in Section V, we
present the performance analysis of the classifiers and the
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results of real-time authentication. In Section VI, we discuss
the limitations and possible extension of the study, and in
Section VII, we draw the conclusions.

Il. RELATED WORK

Authentication is defined as the process or action of ver-
ifying the identity of a user or process. The authenti-
cation approaches for computer systems are categorized
into three main classes: (1) knowledge-based authentication
(e.g., password, PIN), (2) possession-based authentication
(e.g., memory card, smart card tokens), and (3) biometric-
based authentication (physiological or behavioral) [6]. The
knowledge-based authentication, the most commonly used
one on mobile devices, is based on unique and private infor-
mation, which is expected to be known only by the user. The
object-based/possesion-based authentication is based on pos-
session of a specific physical object. Behavioral biometrics
are based on users’ learned movements, such as hand-writing,
keystroke, touch screen, gait, signature, voice, and behavior
profiling [4]. All these approaches enable analyzing users’
interactions with the device and building a model, which
decides to authenticate the current user.

In related literature, there are four survey papers
[1], [3]-[5] that investigate the use of biometrics for con-
tinuous authentication on smartphones. The research in [5]
has examined Al-based continuous authentication solutions
proposed for IoT applications while the survey in [3] provides
a detailed analysis of the approaches that mainly utilize
embedded sensors in smartphones. The authors emphasized
that sensors, such as camera, microphone, can be used to col-
lect physical data, while components such as accelerometers,
gyroscopes, touch screens can be used to collect behavioral
biometric data, such as walking, screen touch gestures, and
hand gestures [1]. In another review paper [4], the literature
studies were examined in terms of the type and size of the
data collected, classifiers used in identification, and results
obtained. We should note that these papers also investigate the
use of physical biometrics for authentication. In this paper, we
specifically focus on studies using behavioral biometrics. In
Table 1,2 we present a summary of the comparison with the
related studies. We elaborate on the comparisons at the end
of this section. We should note that our aim is not to provide
a detailed survey, and we cannot cover all the related studies
in this paper, and there are several survey papers on the topic,
as mentioned. We included example studies that are highly
cited and mentioned in the survey papers and that are more
recently published in the last 3-4 years.

A. TOUCH-BASED AUTHENTICATION
Touch screens are used as input mediums on a great majority
of smartphones. By applying classification algorithms on the

2 Abbreviations used in Table 1 are as follows: FRR: False Rejection Rate,
FAR: False Acceptance Rate, EER: Equal Error Rate, TPR: True Positive
Rate, kNN: k-Nearest Neighbors, SVM: Support Vector Machine, MLP:
Multi-layer Perceptron, LDA: Linear Discriminant Analysis, RF: Random
Forest, NB: Naive Bayes, LSTM: Long-short Term Memory, ROC: Receiver
Operating Characteristic, Avg: Average
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data collected from users’ interactions with the touch screen
(micro-movements, pressure, finger movements, etc.), it is
possible to recognize authorized users. Several related works
examine password patterns [12], tapping behavior [13], or
touch gestures [14] to create a model to decide whether the
corresponding user is an authorized one or not.

An authentication scheme employing password, keystroke,
and swipe dynamics together for touch screen mobile devices
is proposed in [15]. Hence, the biometric-based authentica-
tion attributes are examined together with the knowledge-
based authentication attributes. For sensitive data, in [16],
an accurate and efficient continuous authentication method
is presented using touch-based behavioral biometrics to save
energy and protect user security. Users were asked to apply
some specific touch gestures on the screen without any
restriction or guideline to obtain more realistic raw data [17].
In SafeGuard [8], authors collect data from touch screen
inputs, such as sliding dynamics and pressure intensity.

A continuous touch-based user authentication system
that focuses on post-login user authentication is introduced
in [18]. They have used a digital glove to complement and
validate touch gesture data. A biometric-based system for
smartphones that use the owner’s finger movement patterns
is presented in [19]. Multiple types of touch data are used
to model a user by justifying their two properties: distinc-
tiveness and permanence [20]. They stated that it is promis-
ing to implement a continuous authentication mechanism
based only on the touch data collected during normal user
operations.

The authors investigate whether a classifier can continu-
ously authenticate users based on their interaction with the
touch screen of their smartphones [21]. The proposed method
is based on basic navigation movements, such as up-down and
left-right scrolling. They suggest a set of 30 touch features
extracted from raw data collected from the touch screen. They
incorporated biometric touch sensing, which notifies running
applications of 2D touch events and the user’s identity for
each touch [29]. Implementing the model, they use touch
devices called Bioamp, a watch prototype that complements
touch devices, senses biometric features, and conceptually
converts them into an electric signal that mobile devices can
detect upon touch.

B. SENSOR-BASED AUTHENTICATION

One of the examples of sensor-based authentication is pro-
posed in [23]. Authors aim to achieve authentication when an
intruder physically accesses the device and possesses the pass
codes to unlock it. A high-frequency deep learning-based
approach using built-in sensors (accelerometer, gyroscope,
and magnetometer) is examined in [25]. They have shown
that the proposed method can authenticate users with a high
Fl-score, and the best authentication performance scores
are achieved using all three sensors. The authors investi-
gate the reliability and applicability of using motion-sensor
behavior for active and continuous smartphone authentica-
tion. They use the accelerometer, gyroscope, orientation, and
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TABLE 1. A summary of comparison with related studies.

Ref. Input Sensors/Features # of Classifier/Method Performance Resource
type users usage
Pressure, Accuracy=77%
[12] Touch finger size, 31 Dynamic time wrapping FRR=19% -
x-y coordinate, time FAR=21%
Acceleration, Storage=11.195 MB
[13] Touch pressure, 80 One-class learning EER=3.65% Preprocessing time=
finger size, time 0.496 s
Swiping and typing Naive Bayes, kNN, CART, SVM, | Accuracy=89.67%
[15] Touch pattern features 31 L. . -
MLP, logistic regression, LDA F1 score=88.61%
(130 features)
. _ Storage=63 kB
(8] Touch Angle, distance, 60 SVM FAR=0.03 Avg training-+testing
pressure, intensity, time FRR=0.05 ?
time=3.1312 s
X-y coordinates,
[21] Touch pressure, finger size, 41 kNN, SVM with Rbf-kernel Median EER=0-4% -
time, orientation (30 features)
Proposed graphic touch
[14] Touch gesture features, time, 30 Distance-based method EER=2.62% -
x-y coordinates, pressure
[16] Touch x-y coordinates, angle, 45 One-class SVM, Accuracy=95.98% -
pressure, slope, velocity isolation forest
Touchscreen, x-y coordinates,
finger motion, Decision tree, . o
[18] Touch finger motion speed, 40 Random Forest, FAR: 4.66% -
. FRR: 0.13%
pressure, distance, BayesNET
sensor glow data (53 features)
Touchscreen, x-y coordinates,

[19] Touch pressure, ﬁpger- size, 75 SVM ACC: 79.74-95.78% Extracting features:
moving direction, 648 ms
distance, duration

Touchscreen, x-y coordinates, EER<10%
201 Touch pressure, finger size 32 SVM FAR, FRR, ROC B
Accelerometer, gyroscope, I\]il ?\}/,:glEZs True Acceptance
[22] Sensor magnetometer, gravity 85 SVMy ’ RateRF =99.35% -
(16 features) kNN J 48, RF AccuracyRF=98.98%
Accelerometer. One-clss SVM, FRR=6.85% Storage=2 MB
[23] Sensor 0SCODE tim;: 48 neural network, FAR=5.01% Avg consumption
gyroscope, nearest neighbor EER<12% per day=1.7%
.. EER<10%
Accelerometer, orientation, Markov-based decision FAR,HMM=3.98% Storage=5.6 MB
[24] Sensor 102 procedure using one-class Avg consumption
magnetometer, gyroscope learning, SVM, neural network | LRR-HMM=5.03% per day=4.5%
? ? EER,HMM=4.71% ’

Accelerometer, gyroscope EER=0.09%

[25] S magnetometer, ’sci}éer{ tOlI;Cf’l 84 Deep learning/ Fl score=98%

ensor R, ’ LSTM FAR= 0.96% .
FRR=8.08%
Accelerometer,
orientation, gravity, Naive Bayes, True Acceptance

(261 Sensor magnetometer, gyroscope, % Neural network, RF Rate=96% }

touch screen (142 features)
Accelerometer, gyroscope,
magnetometer, tap duration,
[27] Multimodal contact size, 100 One-class SVM EER=15.1% Overhead=6.2-20.5%
keystroke features,
x-y coordinates
Accelerometer, orientation sensor, .
u oda x-y coordinates, _ % sequential. FRR,NB=4.12%
. minimal optimization
pressure, finger size
SVM, KNN, Naive Bayes, .
MLP, Decision Tree, RF, FAR: 0.04% . .
Touchscreen, accelerometer, Ensemble 1 (SVM and MLP) FRR: 3.88% 27% INCrease I power,
DAKOTA | Multimodal ) ¥ ? 45 § . TPR: 96.12% similar CPU and
magnetometer, gyroscope Ensemble 2 (SVM Polynomial . °
ACC: 99.88% memory usage
kernel and SVM EER: 3.5 %
RBF kernel) o

magnetometer readings while users perform touch-tapping
and single-touch-sliding actions in three different scenarios,
which were based on device position and users’ activity
(hand-hold, table-hold, and hand-hold-walk) [24].
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In a different study, an authentication scheme is proposed
for smartwatches and smartphones based on activities of daily
living [30]. They focus on the movement patterns of these
activities and use an accelerometer and gyroscope. It is shown
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that the best performance is achieved when both smartphone
and smartwatch are used together, and also the accelerome-
ter is reported to be the best performing sensor. This study
does not focus on the interaction patterns of the users with
the devices. Similarly, in another study, the authors propose
a continuous authentication scheme for smart bands [31].
Instead of motion sensors, they use photoplethysmogram
sensors, which are used to extract heart rate variability (HRV)
features.

C. MULTIMODAL AUTHENTICATION

A detailed list of modalities and features used in behavioral
biometrics is given in [3]. The list includes 1) gestures, such
as hand-writing, touch gestures, ii) gait, iii) motion, such
as hand movement, iv) voice, v) keystroke dynamics. This
section includes the studies that only use a combination of
touch gestures and hand movements from touchscreen and
motion sensors. Considering the other modalities, text input,
or keystroke dynamics are limited in our target mobile bank-
ing application, and there is no voice or gait input.

In the HMOG study [27] (Hand Movement, Orientation
and Grasp), accelerometer, gyroscope, magnetometer read-
ings, and tap-based features, such as x-y coordinates, fin-
ger covered area/finger size, pressure, etc., are collected.
Besides the touchscreen-related data, the authors propose a
new set of features, derived from micro-movements obtained
from accelerometer, gyroscope, and magnetometer sensors
data generated while users interact with the device. We also
focused on the HMOG dataset in a previous study [32] and
investigated the authentication performance with deep net-
works using different combinations of input data, namely
only touchscreen data, sensor data, and their combination.

Another research [22] proposed a bi-modal behavioral
biometric-based solution for smartphone user authentication
by using an accelerometer, gyroscope, gravity, magnetome-
ter, and touch screen while the user performed sliding and
phone-lifting actions. They found that the Random Forest
classifier proved to be the most consistent and accurate.

The authors propose a new multimodal biometric authen-
tication model based on the features collected while the
user slide-unlocks the smartphone to answer a call [28]. The
features were populated by slide/swipe, arm movements of
the user answering a call (accelerometer, gyroscope, ori-
entation sensors), and voice recognition. Like our study,
Buriro et al. [26] focused on the continuous authentication of
a mobile banking application. The difference is that they only
used the login screen.

In this paper, the proposed continuous authentication is
opted for mobile banking, hence for generally sensitive data.
However, even in a mobile banking application, there can
be various non-sensitive transactions. We believe that con-
tinuous (passive) authentication in mobile devices through
behavioral biometrics can bring brand new authentication
systems to present devices. We follow a multimodal approach
by analyzing touch gestures and micro-movements for con-
tinuous authentication. Moreover, we investigate resource
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TABLE 2. Transactions and postures used in the data collection process.

Transactions

T1: Account and credit card balance control on the dashboard
T2: Account search on account list and balance control

T3: Money transfer from one account to another

T4: Foreign exchange buy operation

T5: Credit card debt payment

Postures

P1: Phone in hand and sitting

P2: Phone in hand and standing

P3: Phone on the table and sitting

consumption in comparison to the native mobile banking
application.

As mentioned in Table 1, we present a comparison with
the related studies. In the literature, we observe that practi-
cal behavioral biometrics applications, especially for mobile
banking, are not thoroughly explored. In related studies, data
from different numbers of users (ranging between 10 to 104)
is collected. Even our goal was higher; we could reach 45
users because of the Covid-19 pandemic social isolation
in 2020. Forty-five users appear to be an average number,
considering the works in Table 1. Since the studies were
performed on different datasets using different classification
algorithms and the results are reported in different metrics,
it is difficult to compare the performance. A benchmark
is needed to compare the exact performance. However, we
observe that we can achieve similar performance or in some
cases better performance than the related studies. For exam-
ple, similar FAR wvalues (0.03) were reported in [8] using
the same classifier, namely SVM. Again, similar FAR values
(0.96%) were reported in [25] using LSTM. However, these
two studies report better results in terms of FRR [8] and
EER [25]. In the literature, error values range between 0.1%
and 40% and we also achieve similar results both in the vali-
dation phase and also in real-time authentication experiments.
Most of the related studies focus on collecting the data and
on the performance of the biometric models but the impact
on resource consumption is not usually investigated, except a
few studies [23], [24], [27]. We also investigate the resource
usage and observe that DAKOTA does not bring extra over-
head in terms of power and memory usage compared to the
original banking application.

Ill. DATA COLLECTION AND PROCESSING
To collect data from participants, we modified the mobile
banking application on the Android platform by extending
it with a logger component. We directly modified the mobile
banking application version that is used for testing operations
in the bank by software testers. The logger collects data
from motion sensors, including accelerometer, gyroscope and
magnetometer, as well as touch screen data. Details of the raw
data are explained in Section III-B. We will share the dataset
with the researchers interested in working on it via e-mail.
According to an analysis performed on the usage patterns
of the current bank customers, the 5 most frequently used
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functions in the mobile application are identified. These 5
transactions are used to simulate the customer behavior, pre-
sented in Table 2. In 7'1, a user displays balance information
about all the accounts by scrolling between the accounts listed
on the dashboard and then displays the credit card balance
details in the same way. In the test application, users have
multiple accounts so that he/she scrolls between the accounts
and cards. In T2, a user clicks on the menu icon, then clicks
on ‘my accounts’, searches for a specific account with a given
number, and then checks the balance. In 73, again, a user
clicks on the menu icon, and then the money transfer icon
and performs the transfer action between two accounts. In
T4, a user selects the foreign exchange from the menu and
buys a specific amount of Euros/Dollars. In 7'5, a user clicks
on credit cards and pays a specific amount of debt to one of
his/her accounts. All the users followed the same patterns in
the data collection. However, there were small differences in
the accounts or cards selected since the test environment of
the banking application was dynamic.

Figure la shows the logger’s consent screen: the user
enters the ID, position, scenario number, and phone model
before starting to use the application. Examples of screen-
shots for other transactions are also presented in Figure 1.
As mentioned, T1-T'5 are identified to be the most common
operations on the mobile application and performing the same
actions makes it more challenging to classify/authenticate the
users compared to collecting the data while freely performing
the transactions.

A. DATA COLLECTION PROCESS

We also considered different usage postures to investigate
the effect of the phone or user position on authentication
performance. Each user has completed the transactions in
each of the postures shown in Table 2: P1, P2, and P3.
Although in related studies [8], [27], different postures, such
as walking, are also considered, other postures are not very
common in a mobile banking application. While the users
were holding the phone in hand, they were not instructed to
use a specific hand, single hand, or both hands. They used the
application in their ordinary usage of a smartphone. For the
last posture, P3, the phone was kept on the table, and they
were asked not to take the phone in hand, but to keep it on the
table until finishing the transactions.

For completing each transaction, a user first logged in,
performed the operations, and then logged out. Users usually
performed each transaction one after another. The data were
collected on different days when they did not have time to
complete all transactions in different postures for some users.
While collecting the data, an assistant/student was reading
the operation to be done, bank account number, credit card
number, etc., assisting the user.

The data is collected from 45 subjects, mainly consisting
of undergraduate/graduate students and bank employees. The
age range was between 18 and 42. All participants signed
a written informed consent before participating in the data
collection. Each subject followed the 5 transaction scenarios
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FIGURE 1. Screenshot examples of the transactions.

in 3 postures (given in Table 2), making 15 sessions per user.
Only one user has 13 sessions, who did not complete the
data collection for the last two transactions while the phone
was on the table. Data collection in each session was around
1.5 minutes. Hence, for each user completing the 5 sessions
in one posture took around 7.5 minutes. In total, 22.5 minutes
were spent by each user to complete in 3 postures. In terms
of the number of samples, raw data is around 50 MB per
user collected at 100Hz. The number of scroll gestures per
user is around 240 in total, including 3 positions and 5 ses-
sions. Hence, the number of scrolls per user per session was
around 16. In total, 1.9 GB of raw data is collected from
45 users.

Two different phone models are used for data collection:
i) Samsung Galaxy S9 ii) Xiaomi Mi8. Both devices have
an Android 8 operating system on an octa-core CPU and are
equipped with motion sensors (accelerometer, gyroscope, and
magnetometer). While the Galaxy S9 has a 5.8-inch display,
Xiaomi Mi8 has a 6.2-inch display. The rationale for using
two different phone models was to see the authentication
performance on different screen sizes. 24 users collected the
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TABLE 3. Attributes of raw data.

Accelerometer, Touch screen/
Gyroscope, Seroll
Magnetometer
Time Time
X-Axis Finger Pressure
Y-Axis X Coordinate
7Z-Axis Y Coordinate

Fragment Name Finger Size

X-Axis Velocity

Y-Axis Velocity
Direction

Fragment Name

data with Xiaomi and 21 users collected the data with the
Galaxy model. At the end of the data collection process, the
raw data was transferred to a PC for further analysis.

B. PROPERTIES OF THE RAW DATA

The collected data is of two types: One type is from the three
sensors (accelerometer, gyroscope and magnetometer), and
the other type is from the touch screen. Table 3 summarizes
the properties of the raw data. Both types of data are accompa-
nied by timestamp information. Sensor data includes x, y, and
z-axis reading for all sensors, whereas the touch data includes
finger pressure and size, x and y coordinates on the screen, as
well as x-Axis Velocity and y-Axis Velocity and direction of
a scroll. The fragment name mentioned in Table 3 is related
to the mobile banking application, and it identifies the screen
name while the data is collected.

The logger records the data from the sensors and touch
screen in four separate files on the phone. The accelerometer,
gyroscope, and magnetometer data were collected continu-
ously at a rate of 100 Hz during each transaction (actually, we
started to collect at 5 Hz, but then we considered that a high
rate would be better since we can perform under-sampling if
required, and changed to 100 Hz. To check this, we down-
sampled the data collected at 100 Hz to 5 Hz and recomputed
the features, and we did not observe significant differences).
Touch screen data was recorded when a gesture is detected
on the touch screen, such as a scroll, using Android API.
Figure 2 presents a graphical representation of the motion
data from three sensors for two different users, completing the
same transaction in the same posture. The x-axis corresponds
to the sample number. Although we collected data from all
touch gestures (double tap, long press, fling), we only used
the scroll data. Considering the mobile banking application
usage, the most common gesture was the scroll and the data
collected from other gestures was more limited in size com-
pared to scroll data.

C. DATA TRANSFORMATION AND FEATURE EXTRACTION
The raw data is formatted as time-series data, and we focus
on a classification problem. Since classification algorithms
require the data formatted as labeled examples, first, we need
to transform the raw data to the labeled instances, where
several features describe each instance.
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User 30- Sensors data (Acc, Gy, Mag)

(a); Sengor data for user 30 -T1 P2

User 70 Sensors data (Acc, Gy, Mag)

(b) Sensor data for user 70 - T'1, P2

FIGURE 2. Graphical plot of the motion sensors’ data from two different
users, transaction 1 (T1), phone in hand and standing (P2).

To create these instances/features, we preprocessed the
data to identify the beginning and the end of each scroll event
as follows: while collecting the data, we used the built-in
class called Gesture Detector in Android SDK. The gesture
detector is responsible for detecting gestures like a scroll,
fling, long press, show press, single tap down, single tap
up, and double-tap. Hence, when a scroll is detected in our
logger by the gesture detector, the touch screen data is stored.
However, sensor data is continuously stored. To compute fea-
tures from the sensors only during a gesture/scroll, we used
the timestamp information. Therefore, we used the sensor
data segments between the start and end time of a scroll for
extracting the features.

For each scroll gesture, we extracted 8 basic features from
the sensor data: i) mean, ii) standard deviation, iii) median,
iv) minimum, V) maximum, Vi) variance, vii) kurtosis,
viii) skewness. These 8 features are extracted from all three
axes of each motion sensor. We also computed the magnitude
value from the three axes, which is the square-root of the sums
of squares of the values in each axis. These 8 features are
also extracted for the magnitude values. Hence, in total, we
had 96 features from the sensor readings. These features are
easy to compute and give necessary information about hand
movements. Mean, standard deviation, and maximum were
also used in a related study [27]. One may argue that comput-
ing all these features may be unnecessary since some are rel-
evant to each other; however since we apply dimensionality
reduction and feature selection on the data, extracting many
features does not cause extra work. Moreover, we extracted
the following 30 features from the touch screen readings:

o Start_X_first and Start_Y _first: The x and Y coordi-

nates of each scroll event’s starting point.

o Current_X _last and Current_Y _last: The x and y coor-

dinates of the ending point for each scroll event.
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o Current_X_maxdev and Current_Y _maxdev: The max-
imum deviation of x coordinate from the mean among
all points for each scroll event.

o Current_X_dev20 and Current_Y _dev20: The 20t per-
centile of the deviation of x and y coordinates from the
mean among all points for each scroll event.

o Current_X_dev50 and Current_Y _dev50: The median
of the deviation of x and y coordinates from the mean
among all points for each scroll event.

o Current_X_dev80 and Current_Y _dev80: The 80t per-
centile of the deviation of x and Y coordinates from the
mean among all points for each scroll event.

o V_pairwise20, V_pairwise50, and V_pairwise80: The
20 percentile, the median, and 80™ percentile of the
velocity distribution among all points for each scroll
event. The velocity at a point is the displacement ratio
over the duration between the previous point and the
current point.

e A_pairwise20, A_pairwise50 and A_pairwise80: The
20" percentile, median, and the 80" percentile of
the acceleration distribution among all points for each
scroll event, respectively. The acceleration at a point
is the ratio of the velocity at the point over the
duration.

o V_medianVelocityLastThree: The median of the veloc-
ity of the last three points for each scroll event.

o A_averageAccFirstFive: The median of acceleration of
the first five points for each scroll event. If there are
less than five points in a scroll event, then the median
is calculated.

o PairwiseDisplacement_lengthOfTrajectory: The magni-
tude summation of displacement vectors at all points for
each scroll event.

o Current_Pressure_median: The median of finger pres-
sure among all points for each scroll event.

o Current_Size_median: The median of finger size among
all points for each scroll event.

o Distance: The Euclidean distance between the end-
ing point and the starting point for each scroll
event.

e DirectionOfEndtoEndLine: The signed angle in radians
of the vector formed by the starting point and the ending
point for each scroll event.

o Ratio: The ratio of the Distance over the Pairwise
Displacement_lengthOfTrajectory.

o Duration: The time difference between the occurrence
of the ending point and the starting point for each scroll
event.

o AverageVelocity: The ratio of the length of the trajectory
over the Duration.

o MeanResultantLength: The average complex exponen-
tial magnitude of the angle between displacement vector
pairs.

o AverageDirectionEnsemble: The average angle of dis-
placement vector pairs in radians.
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Most of these features were used in related studies [8], [21].
Together with the sensor features, in total, we extracted 126
features for each scroll event.

To improve authentication performance and reduce the
number of features, we performed feature transformation
with principal component analysis (PCA). One may argue
that a vector of 126 features is not considered a high-
dimensional vector; however, we wanted to eliminate the
redundant features and reduce the data size to be transmitted
from the phone to the server. In the current end to-end imple-
mentation, we transfer raw data; however, we plan to extract
the features on the phone and transfer them to the server
for classification to reduce the amount of data to be trans-
ferred. After applying PCA, 126 features are transformed
into 70 features in binary-classification and 30 to 70 features,
varying for each user in the one-class analysis. In the scikit-
learn tool [33], the number of components (i.e., reduced
number of features) can be given as a parameter. We varied
the value of this parameter and used a pipeline to search
for the best combination of PCA transformation with SVM
using grid-search. Before applying PCA, we also normalized
the features using min-max scaling since their ranges were
different from each other.

PCA is a feature transformation method that does not
consider the target class. On the other hand, feature selection
methods rank the input variables in terms of their usefulness
to predict the target. Therefore, we also applied feature selec-
tion to see each feature’s importance in the biometric model
of each user. We compare the results with the selected features
to the results when PCA is used to transform features. We
applied the sequential backward selection method. In this
method, first, the recognition score is computed for all n
features, then each feature is eliminated one by one. The score
is computed for all subsets containing n — 1 features, and the
worst-scoring feature is eliminated at each step. Using this
method, 18 features on the average per user are selected. We
also explore the impact of feature selection in the experiments
and present the results in Section V.

IV. METHODOLOGY FOR CONTINUOUS
AUTHENTICATION

In this section, the experiment methodology is described.
First, in Section IV-A, we present the classification algo-
rithms used to build the biometric classification models, and
in Section IV-B, we introduce the experiments’ details for
validating classifiers’ performance. Section IV-C describes
the experiments for authenticating the users in real-time while
using the mobile banking application.

A. CLASSIFICATION ALGORITHMS

We formulate the authentication process as a classification
problem, either the subject is the real user or not, or in
other words, the imposter. In literature, both one-class (unary)
and/or binary-class classification methods are used for bio-
metric authentication [4], [34]. In one-class classification, the
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training set contains only the examples of that class. This
seems to be practical for authentication since normally, we
have only the real user’s data on the phone. We can train a
model from user data, and imposters’ data can be regarded
as outliers. On the other hand, in binary classification, we
have the training data from both classes. Since we focus on
a mobile banking application, a bank can collect data from
different users and train models for each user with training
data, also including other users. Hence, we considered that
binary classification is not the only solution for our case.

We train the biometric models using both one-class and
binary-class algorithms to investigate their performances in
our experiments. We used six different classification algo-
rithms and also two ensemble learning algorithms:

o Support Vector Machine (SVM): SVM is commonly
used in authentication studies [1], [3], [4], and performs
well for binary classification problems. We use both
binary and one-class SVM in the experiments.

o K-Nearest Neighbor (kNN): The distance between a new
data point and the other training data points is computed
and the class is assigned according to the majority class
of the neighbors.

o Multilayer Perceptron (MLP) is an implementation of an
artificial neural network.

« Decision Tree uses a tree-shaped model.

o Random Forest (RF) builds multiple decision trees
during the training phase by randomly selecting the
attributes.

« Naive Bayes: The probability of belonging to each class
is calculated for an instance and the instance is classified
according to the highest probability.

« Ensemble Learning: Ensemble learning uses a combi-
nation of models, either using a different or the same
classification algorithm.

The parameters of these algorithms are explained in
Section V. One of the reasons for our decision on using
various classifiers was to compare the performance of dif-
ferent algorithms that are commonly used in authentication
problems in the related studies, as highlighted in Table 1. kNN
is a lazy learner and easy to update the training phase. SVM
is designed initially as a binary classifier and is commonly
used in authentication problems. Similarly, MLP is also a
standard method. The decision tree and the random forest
algorithms use entropy in classifying examples, and Naive
Bayes is easy to train. Ensemble methods combine differ-
ent classification algorithms with improving performance.
We used the implemented versions of these classifiers on
Python’s Scikit-learn tool, an open-source library for data
mining and analysis [33]. One-class SVM experiments, on
the other hand, were performed on the WEKA platform [35].

B. AUTHENTICATION EXPERIMENTS

In the binary-class approach, we label the data from a partic-
ular user as “‘user” and the data from other users, exclud-
ing this user, are labeled as ‘“‘non-user’”. However, in this

VOLUME 9, 2021

approach, the data becomes imbalanced, with a ratio of
approximately 1:44, since we have 45 users in total, but
the data size of all users is not the same. In this case,
the classification algorithm learns the non-user class very
well. On the other hand, the user class is not well classi-
fied since there are few examples of the minority class to
find the decision boundary. In order to overcome this prob-
lem, in imbalanced datasets, mostly under-sampling or over-
sampling approaches are followed [36] as a solution. We did
not use under-sampling because of the limited data. Instead,
we focused on two different over-sampling methods.

As a first approach, we used over-sampling for the
“user” class, utilizing the “‘synthetic minority oversampling
(SMOTE)” technique [37]. SMOTE randomly selects an
instance from the minority class and finds its k nearest
minority-class neighbors. A synthetic instance is then created
by randomly choosing one of the k nearest neighbors and
connecting the instance and the neighbor instance to form a
line segment [36]. We used k = 2 in our evaluations. SMOTE
is only applied to the training data, and accordingly, the two
classes in the training data have approximately the same
number of examples. The other approach was the random
sampling of non-user data to match with the size of each user
data. In this approach, we randomly picked scroll data from
other users. In this case, no synthetic data was used, and the
number of samples for the user and non-user classes are equal
or very close to each other. The exact numbers change per
user; however, it is in the range of 195-280 scrolls/instances
per class. On the other hand, one-class SVM is an unsuper-
vised learning algorithm that is trained only on the “user”
data. Instead of balancing the dataset, we predict the minority
user class using outlier detection. Hence, for one-class SVM,
we do not use a sampling method.

After sampling the data, a model is trained for each user.
Each classifier is evaluated using the 5-fold cross-validation
method. We used the K-Folds cross-validator (sklearn.model,
selection.KFold), and it provides train/test indices to split
data into train/test sets. It splits the dataset into k consecutive
folds, without shuffling by default. Similarly, for one-class
SVM evaluations, cross-validation is applied to collect the
true positive rate (TPR) and false rejection rate (FRR) results,
where all the users are tested one by one. However, for
collecting the False Acceptance Rate (FAR) results, we test
the one-class SVM models which were trained for each user,
with the data from other users except the genuine user.

In the experiments, first, we evaluated the performance
of different classifiers, including the impact of one-class or
binary classification. Each classification algorithm is trained
and tested accordingly. Then, we evaluated the performance
according to sensor types and posture types, including data
from a specific sensor or a posture in the training and testing.
As the performance metrics, accuracy (ACC, Equation 1) and
TPR (Equation 2) are used as the classical metrics used in
the classification studies. However, in authentication studies,
false acceptance rate (FAR), false rejection rate (FRR), and
equal error rate (EER) should also be reported. The formulas
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for FAR and FRR are given in Equations 3 and 4. In Equa-
tions 1 to 4, TP represents true positives (positive predictions
that are really positive, i.e., the user), FN represents the
false negatives (negative predictions, i.e., the imposter, that
are actually positive, i.e., the user), FP represents the false
positives (positive predictions that are actually negative) and
TN represents the true negatives (negative predictions that
are really negative). EER is a biometric security metric to
determine the thresholds for False Acceptance Rate (FAR)
and False Rejection Rate (FRR). When FAR and FRR are
equal, the common value is referred to as EER. Error rates
should be low, whereas TPR and accuracy values should be
high for a successful authentication system.

ACC = (TP +TN)/(TP + TN + FP+FN) (1)

TPR = TP/(TP + FN) )
FAR = FP/(FP +TN) 3)
FRR = FN /(FN + TP) @

C. REAL-TIME AUTHENTICATION EXPERIMENTS

After training the biometric models for each user, we imple-
mented an end-to-end authentication pipeline where we per-
formed real-time experiments when the users interacted with
the mobile banking application. For this system, we extended
the logger-added mobile banking application such that the
collected data is transmitted to a server. On the server,
we store the authentication model for each user. The data
received from the mobile banking application is tested on
the server with these models, which are deserialized. The
classification result, which reveals whether the user is valid
or not, is returned to the mobile application.

The data is transferred at the end of a usage session
after specific actions, such as opening a transaction approval
screen. The classification is performed for each gesture or
each scroll. Each session contains multiple gestures, and we
calculate the average of performance metrics considering all
gestures in a session. If the value is below a predefined
threshold, the system returns an exception for this session and
interrupts the use of the mobile banking application. During
real-time authentication tests, the users were not instructed
to follow the exact test scenarios (the same order, etc.) in
Table 2; however, they again performed similar transactions
in three postures.

End-to-end transmission of the data is SSL encrypted.
Thanks to the certificate pinning method, the server
certificate added to the client application prevents man-in-
the-middle attacks and data between client-server cannot be
monitored. The data was sent in raw form, not zipped. How-
ever, if this authentication scheme is started to be used as
part of the mobile application, it can be zipped to reduce data
usage overhead.

End-to-end authentication tests were performed by five
users who originally participated in the data collection. We
aimed to perform the tests with more users, but it was impos-
sible to reach other users due to the COVID-19 lockdown.
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The five users are user 3, 4, 30, 31, and 70 (there are 45 users,
but the user ids are not sequential in the dataset, and these are
the IDs used in the dataset).

We should note that these experiments were performed
months after the initial data collection when the biometric
models were trained. In a similar study [21], inter-week
authentication was investigated, which means that a model
for a user is trained during an enrollment phase, and then the
classifier must authenticate the user with the model trained
a week ago. It was reported that, as the temporal distance to
the training phase increases, the challenge of authentication
increases the error rate increases. It was mentioned that a
large number of outliers for the inter-week authentication
indicates higher error rates for some users. In a related
study [8], it was mentioned that “in practice, user’s biometric
metrics may vary with time.” Similarly, in [9], [10], authors
investigated the changes in biometric features, particularly
using accelerometer data and keystrokes. They also discuss
solutions for adapting the models to address these changes.
We also observed similar challenges in the real-time recogni-
tion tests.

In machine learning, this issue is defined as the ““‘concept
drift” or “covariate shift”” [38]. There are different solutions
to address the concept drift problem, such as periodically
updating the model with new data, learning the change with
ensemble methods, etc. Finding the best solution to this prob-
lem is out of the scope of this paper. However, we utilize the
update method by adding new data to the training model. We
use both the old data and also part of the new data to update
the model.

Besides the performance metrics related to authentication
accuracy, we collected other metrics related to system perfor-
mance, including delay, transferred data size, and resource
consumption, such as the battery. System performance tests
are performed on Samsung Note 3 (SM-N9000Q) with
Android OS version 5.0. We used a different phone model in
these tests since we used the PowerTutor [39] application, and
it is not supported above Android version 5.0. PowerTutor
is a monitoring application that predicts power consump-
tion based on CPU usage, developed by the University of
Michigan. For memory usage, we used the Simple System
Monitor application.? For network usage, we used the TCP/IP
monitoring tool on Eclipse IDE. While performing the system
tests, we used two different mobile application versions to
compare the performance and the original/unmodified ver-
sion of the mobile banking application..

V. EVALUATION AND RESULTS

In this section, we present the results of our experiments
and evaluations. Specifically, we aim to answer the following
research questions:

1) What is the performance of different classifiers
on authentication performance in terms of different

3 https://play.google.com/store/apps/details?id=com.dp.sysmonitor.app
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metrics, including FAR, FRR, EER, and accuracy and
TPR?

2) What is the impact of using feature transformation
with PCA or using feature selection with sequential
backward selection on the authentication performance?

3) Does knowing the usage posture and training a model
per posture improve the authentication performance?

4) Whatis the impact of using data from motion sensors or
data from touchscreen interaction on the authentication
rates?

5) How does the authentication performance change when
users are authenticated in real-time with an end-to-end
authentication pipeline?

6) What is the impact of performing real-time authentica-
tion in terms of resource usage on the phone?

We start by summarizing the experiment set up and discuss
the performance of classifiers in Section V-A. Then we focus
on the impact of usage in different postures (phone on a table,
sitting, and standing) in Section V-B and the impact of using
different sensors in Section V-C. All the evaluations are per-
formed on the Scikit Learn machine learning platform [33],
except the one-class SVM classifier tests, performed on the
Weka Platform [35], version 3.8.4. Finally, in Section V-D,
we present the results of online or real-time recognition.

A. PERFORMANCE OF CLASSIFIERS

In this section, we focus on the first and second questions
mentioned at the beginning of Section V. As mentioned,
we use six different classification algorithms, two ensemble
methods for binary classification, and we use one-class SVM
as an alternative method. We present the parameters of each
classifier for the repeatability of the experiments.

o SVM:We used Radial Basis Function (RBF) as the ker-
nel type and set the regularization parameter C to 10.

o kINN: We set the number of neighbors to 2.

o MLP: We set the hidden_layers_size parameter, repre-
senting the number of hidden layers and neurons in a
hidden layer, between (100, 10).

o Decision Tree: We used ‘entropy’ as a metric for impu-
rity.

« Random Forest: We chose the number of estimators,
representing the number of trees in the forest, specifi-
cally 30 for the random sampling method and 22 for the
SMOTE method.

o Naive Bayes: We used Gaussian Naive Bayes
(GaussianNB) with default parameters.

o Ensemble (SVM and MLP): We combined the SVM
and MLP classifiers mentioned above using the same
parameter values and specified the voting parameter as
‘hard’

« Ensemble (SVM Polynomial kernel and SVM RBF ker-
nel): We combined two different SVM classifiers with
RBF and polynomial kernel types. While the C parame-
ter is set to 10 for both, the voting parameter is specified
as ‘hard’.
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TABLE 4. Comparison of classifiers’ performance, average values.

Sampling | Classifier FAR FRR TPR ACC | EER
SVM 0.04 3.88 96.12 | 99.88 3.50

MLP 0.08 3.37 | 96.63 | 99.85 3.17

kNN 0.30 5.85 94.15 | 99.58 | 5.39

Random Forest 0.14 17.83 | 82.17 | 99.49 | 14.79

SMOTE Decision Tree 0.28 I1.13 | 88.87 | 99.49 | 9.61
Naive Bayes 8.63 15773 | 8427 | 91.23 | 1491

MLP-SVM 0.04 5.62 | 9438 | 99.85 5.17
SVM(RBF-POLY) | 0.07 6.67 93.33 [ 99.80 | 6.04

SVM 3.37 1.66 | 98.34 | 97.51 4.03

MLP 478 1.37 98.63 | 96.92 | 4.92

kNN 7.24 296 | 97.04 | 9488 | 7.49

Random Ran@‘m Forest 4.85 9.09 9091 | 92.97 9.58
s . Decision Tree 10.34 9.42 90.58 | 90.11 12.24
SRS Naive Bayes 19.59 | 15.72 | 84.28 | 82.33 | 2043
MLP-SVM 2.836 242 19758 | 9734 | 4.03
SVM(RBF-POLY) 2.93 2.18 97.82 | 97.45 3.96

One-class SVM 9.65 31.58 | 68.42 | 79.38 | 19.26

o One-class SVM: 1.0E-7 gamma value has the best per-
formance according to our experiments. Nu parameter
performs differently for each user. We examined all dif-
ferent values in the range of 0.01-0.99 for each user and
assigned the nu value according to the best performance.
Additionally, all the target attributes are normalized by
setting the normalized parameter to true.

Except for the mentioned ones, all other parameters
remained as default. Values for the parameters were tuned
using grid search on the Scikit Learn platform. The results
with different classifiers are presented in Table 4 with the
SMOTE method, and random sampling used in the train-
ing phase to balance the number of instances from the two
classes, as explained in Section IV-B, and PCA was applied
in the data preprocessing phase. These results are the average
results of the models trained individually for 45 users and
they are given in percentage format, hence vary between 0
and 100. When we analyze the SMOTE method results, FAR
values are noticed to be less than 1%, and accuracy values
are above 99% for all classifiers, except Naive Bayes. Naive
Bayes performs worse in terms of other metrics as well. TPR
values are less than ACC (accuracy) results, which means that
the negative class (not user) is predicted with a higher rate.
SVM and MLP exhibit the best results in terms of FRR and
EER. On the other hand, ensemble methods perform the same
and could not exceed the performance of SVM alone.

As mentioned, SMOTE creates synthetic examples in the
dataset to balance the number of samples in different classes.
As an alternative method, we evaluated the performance of
classifiers with a random sampling method (Table 4). With
random sampling, SVM and MLP are again the top two
classifiers. The number of random sampling instances is
around 500 scrolls (half user, half non-user classes). Similar
to the SMOTE method results, SVM and MLP are the best
performing classifiers: the error rates are less than 5%, and
TPR and ACC values are above 96%. Here, the ensemble
classifiers perform better in terms of FAR and EER; however,
the difference is around 1%. Naive Bayes exhibits the worst
performance again. kNN, decision tree, and random forest
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FIGURE 3. Error rates (in %) for all users (SVM, Random Sampling).

also exhibit TPR and ACC values above 90%, but they cannot
achieve SVM and MLP in terms of FRR and EER. SVM is
widely used in related studies, as shown in Table 1. SVM is
a binary classifier and hence suitable for an authentication
task. In Table 4, we present only the average results, but as an
example in Figure 3 (x-axis presents the error rates in % and
y-axis presents the user ID. In the original dataset, user IDs
are not sequential from 1 to 45, but here they are presented
sequentially for ease of presentation), error rates for SVM
with random sampling are presented: the minimum FAR
is 0.3% (user 95), while the maximum is 10.2% (user 88),
minimum FRR is 0% (user 56 and 90), and the maximum
is 6.6% (user 51), minimum EER is 0.5% (user 90) and the
maximum is 10.5% (user 99). TPR values vary between 92%
and 100%.

Compared to binary classification algorithms, the perfor-
mance of one-class SVM is lower in terms of TPR and ACC
and high in terms of error rates, FAR, FRR, EER. One-class
SVM is simply an outlier detection method, which learns the
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FIGURE 4. Comparison of PCA and feature selection in terms of error
rates.

boundaries of the training points that belong to the user’s data.
The nu parameter indicates the ratio of outliers to observe in
the data, which varies from user to user. Moreover, to compute
FAR, the model is tested with all other users’ data; hence there
is a 1:44 imbalance in the test. If there are similarities among
some users, then the model makes wrong predictions. FRR is
also larger, which is due to intra-class variation, we believe.
As presented in Section III-C, we also applied sequen-
tial backward feature selection, and in Figure 4, we intro-
duce the results achieved when the selected features are
used in the model training compared to using PCA as a
dimensionality reduction method. As mentioned, with feature
selection, 18 features on the average per user are selected.
On the other hand, after applying PCA, 126 features are
transformed into 70 features in binary classification. As we
see in the figure, we achieve lower error rates for models
trained after feature selection. As mentioned we initially
have 126 features, and some are not discriminating fea-
tures for some users and with feature selection, we could
achieve better models. Selected features differ among users;
however, features from the gyroscope sensor were the least
selected features. Since there is not too much rotation move-
ment while using a mobile application, this is expected.
Mean, max, min, and median values from the three axes
of accelerometer and magnetometer were among the most
selected features. When we look at the touch features,
Current _Size_median (median finger size), Current_X_last,
Current_X _last, AverageDirectionEnsemble and Direction
Of End to End Line were among the most selected ones.
Having a smaller number of features can also reduce the
amount of data transferred if the biometric models are kept
on a server. In our end-to-end implementation, we transferred
raw data and extracted the features on the server, but it is
always possible to perform feature extraction on the phone.
ROC curves are very useful in interpreting the results of
binary classification problems. On the other hand, in authen-
tication problems, using error rates (FAR, FRR, EER) is
more common, as we also observed in the related studies
(Section II). To compare with the results reported in similar
studies, we preferred using tables and figures that include
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FIGURE 5. ROC curves for two sampling methods.

TABLE 5. Confusion matrix for user 99, with SVM classifier.

Class/Predictions | user | non-user

user 175 20
SMOTE non-user 4 10387
Random user 186 9
Sampling | non-user 16 160

these error rates. However, as an example, we also included
ROC curves for comparing the results of applying PCA and
feature selection in Figure 5 with the two sampling methods.
With SMOTE, similar performance is observed for both PCA
and feature selection, whereas with random sampling selected
features exhibit a slightly better performance.

Table 5, offers example confusion matrices for a user
(user 99) using the SVM classifier, both for random sam-
pling and SMOTE. As mentioned, SMOTE is only applied
to training data. That is why we have fewer examples for the
user class in the confusion matrix. The lowest scores were
achieved for this user with SVM among all users. For ran-
dom sampling, the results were as follows: FAR 7.6%, FRR
6%, TPR: 93.9%, accuracy 93.5%, and EER 10.5% and for
SMOTE, FAR: 0.03%, FRR: 10.8%, TPR: 89.2%, Accuracy:
99.8% and EER 9.4%. Since we have more examples from
the non-user class, FRR and accuracy values are better with
SMOTE. Hence, the number of testing instances also affects
the performance results, shown in related studies [8], [21]. If
the bank uses the DAKOTA system, they can easily collect
data from customers and expand the dataset.

Coming back to the first question raised at the begin-
ning of Section V, we can summarize that SVM is the best
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FIGURE 6. Impact of posture with SMOTE and random sampling.

performing classifier both with the SMOTE and random sam-
pling methods in terms of error rates and accuracy values.
In the rest of the analysis, we present the results only with
the SVM classifier. Furthermore, about the second research
question, we observe that lower error rates are achieved for
models trained with the selected features compared to models
trained after feature transformation with PCA.

B. IMPACT OF POSTURE

In this section, we focus on the third question mentioned at
the beginning of Section V: “Does knowing the usage posture
and training a model per posture improve the authentication
performance?”” Every user completed the scenarios in each
of the following stances: sitting and phone in hand, standing
and phone in hand, sitting and phone on a table. In order to
examine the effect, we trained the SVM classifier with the
data only from a specific position. We investigate whether
knowing the usage position may improve the authentication
performance.

Figure 6 shows the results with the SVM classifier when
trained with data from a specific posture. Results are simi-
lar for each position. Compared to the SVM results, where
data from all positions were used (Table 4 and Figure 4),
results are very close. In Table 4, we observe that, with ran-
dom sampling, using SVM, we achieve: 3.37% FAR, 1.66%
FRR, 98.34% TPR, 97.51% accuracy, and 4.03% EER when
the data from all postures was trained and tested together.
EER increased for sitting in hand and standing in hand with
position-specific training. FRR also increased for these posi-
tions and slightly increased for the ““on table” position. One
may argue that when the phone is kept on the table, motion
sensors do not produce discriminating data. However, in this
case, the touch-features help to identify the users. These
results are obtained after feature selection on the data from a
specific position. Hence, redundant features were eliminated.
In Table 4, we observe that with SMOTE, we achieve: 0.04%
FAR, 3.88% FRR, 96.12% TPR, 99.88% accuracy and 3.50%
EER. Again, EER slightly increased for sitting in hand and
standing in hand when data from these positions are used in
training and testing, as shown in Figure 6. In the figure, FAR
values for SMOTE appear as if they were not presented, but
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FIGURE 7. Impact of sensor features with SMOTE and random sampling.

this is because they have minimal values, ranging between
0.01 and 0.02 for three positions.

This slight increase in error rates may be due to the
decrease in the number of testing instances. As mentioned,
we were interested in whether knowing the usage position
may improve the authentication performance, however as we
observe from the results, the error rates, TPR, and accuracy
values are similar when data from all positions are combined
or used separately.

C. IMPACT OF SENSORS
In this section, we focus on the fourth question mentioned at
the beginning of Section V: ‘“What is the impact of using data
from motion sensors or data from touchscreen interaction
on the authentication rates?” We analyze and compare the
impact of using only features from motion sensors and touch
screen features. Again, we use binary SVM in the analysis.
Figure 7 presents the results with the SMOTE and random
sampling methods. Using only features from motion sensors
exhibits better performance than touch screen features in
terms of all metrics. One of the reasons is that the number
of features extracted from motion sensors is much higher
than the touch screen features. Moreover, when we analyze
the feature selection results, we see that motion features
are better discriminators, particularly mean, max, min and
median values from accelerometer and magnetometer were
different for most of the users, and these were among the
most selected features. Here, in the analysis we used all the
features; however, features from the gyroscope sensor were
among the least selected features. Compared with the results
presented in Table 4, where all features were used together,
we observe worse performance: EER was 4.03% and here it is
more than 5% with random sampling. Therefore, using both
features from the sensors (accelerometer and magnetometer)
and those from the touch screen exhibit better performance.
It may be argued that the touch screen is kept on while
using a mobile application, but sampling the sensors at the
same time brings an extra overhead in terms of resource
consumption. However, with the touch screen features, EER
is higher, which is above 10%. Moreover, since a banking
application is not continuously used, sampling the sensors
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TABLE 6. Real-time authentication results with old and updated models.

OLD MODEL UPDATED MODEL
FAR | FRR | TPR | FAR | FRR | TPR
User 3 8.1 32.7 67.3 12.0 7.8 92.2

User 4 12.05 | 44.0 | 56.0 9.6 36.1 63.9
User 30 16.2 589 | 41.1 14.8 | 208 | 79.2
User 31 23.5 59.9 | 40.1 7.8 132 | 86.8
User 70 15.3 19.8 80.2 0 1.8 98.2
Average 15.0 43.1 56.9 8.8 159 | 84.1

simultaneously does not significantly affect the battery life
and user experience, as we discuss in Section V-D. Coming
back to the research question mentioned at the beginning
of this section, we can summarize that using only features
from motion sensors exhibit slightly better performance com-
pared to touch screen features, however using both sensors
(accelerometer and magnetometer) and touch screen exhibit
much better performance.

D. REAL-TIME RECOGNITION

1) AUTHENTICATION RESULTS

This section focuses on end-to-end authentication and
gives the results of the real-time recognition experiments
that were explained in Section IV-C. We investigate on
the fifth research question mentioned at the beginning of
Section V: “How does the performance change when users
are authenticated in real-time with an end-to-end authentica-
tion pipeline.”

The biometric models for the test users were trained with
the data collected with the scenarios in Table 2. For testing,
the participants used the mobile banking application and the
collected data is transferred to a server and are classified with
these trained models in real-time. Users did not follow the
same transactions but performed similar operations in three
postures using the mobile application. In these experiments,
we only used SVM models trained with random sampling per
user.

Table 6 presents the results in terms of FRR, TPR, and
FAR. The “‘old model” column shows the results of the mod-
els trained with the data of that user, given in Section V-A.
The results are presented per user. To compute FAR for a
user, we used the other users’ data as the test data. Error
rates and TPR values vary among the users. FAR value for
user 70 is 0%; however, for other users, the FAR value varies
between 8 and 23%, and FRR values are very high, up to 59%.
Compared to the results presented in Table 4 and Figure 4,
the error rates are also much higher. One of the reasons for
this difference and high error rates is that the training data
was collected months ago. In the related studies [8]-[10],
[21], it was mentioned that changes in biometric features may
reduce the predictive performance of the biometric systems.
As mentioned in Section IV-B, we decided on updating the
model with new data to address this challenge. For each user,
we added part of the new data and re-trained the models
together with the old data. The number of scrolls in the test
data was around 100 examples for each user.
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The results of the updated models are also shown in Table 6
under the “updated model” column. Error rates, both FRR
and FAR, decrease for all users and TPR values increase
when the model is updated with the new data. We tested
with a different number of new scrolls to be added: 15, 30,
and 45 scrolls. For users 3 and 70 adding 30 scrolls and for
other users, 45 scrolls achieved the best scores. Moreover, we
achieved better scores by adding new scroll data from each
posture instead of randomly adding new data.

The classifiers test each scroll individually and during a
session. Some of them might be misclassified and reporting
the result of each test to the user is not useful. Instead, once
a user finishes a transaction, we are interested in capturing
whether the user is the valid user by looking at the outcome
of multiple scroll events. To address this, we can decide on the
authentication outcome by looking at the number of predic-
tions and use the majority vote as the final decision. However,
the majority vote may be misleading particularly for a mobile
banking application. Instead, we decided to use a threshold
value, 25%. If the number of predictions for the other class is
below this threshold in a transaction, we label this transaction
as belonging to the majority class. For example, if there are
10 scroll events in a transaction, and there are 8 predictions
for the user class and 2 predictions for the non-user class, the
user is authenticated for this transaction. This threshold can
be changed concerning the requirements of the application.
Bundling several consecutive strokes was proposed in [21].
However, instead of correction after classification, they com-
bine the data from multiple strokes at an earlier stage. In our
approach, we combine the outcome of prediction for multiple
scroll events.

Table 7 presents the session-based results after applying the
threshold rule and correcting the misclassified scroll events
during a transaction. We computed the error and TPR values
per session. For example, for user 30, there were 22 test
sessions and 120 scrolls in the test sessions. As we see in
Table 6 under the Updated Column, the FRR score for this
user was 20.8% (25 scrolls were misclassified out of 120).
When we analyze the results per session, in two transactions,
2 scrolls were misclassified out of 8 scrolls, and in another
transaction 1 scroll was misclassified out of 5 scrolls. When
we classify and correct these sessions as “‘user’”, then in
19 sessions the classification was correct. Hence, the FRR
is computed as 13.6%. On the other hand, for user 31, the
session-based correction did not improve the results. FAR
increased for users 3 and 4 because there were 2-3 scrolls
in some of the transactions and session-based correction did
not improve the results and even increased the error rates.
Most of the misclassifications were among these two users.
As mentioned, this threshold can be changed with respect to
the requirements of the application or the threshold can be
dynamically updated according to the number of the scrolls
in a transaction.

To summarize or answer the research question mentioned
at the beginning of this section, we can say that we could
not directly use the models trained before but we need to
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TABLE 7. Results with session-based authentication.

FAR FRR TPR
(session-based) | (session-based) | (session-based)

User 3 19.3 0 100
User 4 13.1 20 80
User 30 14.8 13.6 86.4
User 31 7.8 13.2 86.8
User 70 0 0 100
Average 11.0 9.36 90.64

update the models with new data. Also, it is better to use
session-based authentication instead of testing each scroll
individually.

2) RESOURCE CONSUMPTION RESULTS

In addition to the authentication performance, we also present
the power consumption, memory usage, and network usage
results of the end-to-end Dakota system compared to the
original banking application. We answer the last research
question: “What is the impact of performing real-time
authentication in terms of resource usage on the phone?”

We present the results of four different versions of the
application for comparison in Table 8. The presented results
are the average of five tests. We see that the logger and
backend integration increase power consumption by 27%
compared to the original application. Since the usage peri-
ods in the mobile banking application are short (an average
session takes 150 seconds), we think that the effect of these
on battery life will be insignificant. As mentioned, we used
the PowerTutor [39] application for collecting the power
usage results. One may argue that PowerTutor is a relatively
old application and estimates the resource usage instead of
producing exact usage values. We should mention that we
aim to compare the resource usage of different versions of the
mobile application and all the results are relative. In future
work, exact power measurements can be performed, but as
we observe in the results, relative to the original applica-
tion Dakota modifications do not excessively increase the
resource usage.

The DAKOTA integration is not significantly different
from the original application in terms of memory usage. The
average memory is 214.33 MB and 215.63 MB for the origi-
nal and modified versions, respectively. The average network
usage is 362 bytes/s for the original banking application and
3705 bytes/s with the DAKOTA modifications. Since the
increase for an average session duration is 0.3 MB (each
session was around 1.5 minutes), there will be no significant
overhead for users. Hence as a response to the last research
question (What is the impact of performing real-time authen-
tication in terms of resource usage on the phone?), we can say
that in terms of resource usage, DAKOTA does not bring extra
overhead in terms of power and memory usage compared to
the original banking application.

V1. DISCUSSION
o Comparison with related studies: As we present in
Table 1, the performance in terms of authentication,
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TABLE 8. Resource consumption results.

Power Network usage | Memory
(mJ/sec) (bytes/s) (MB)
Original Banking 118 362 21433
Application ’
Original Banking
Application
+ Touch screen
+ ACC (5 Hz) 150 3705 215.63
+ GYR (5 Hz)
+ MAG (5 Hz)

including error rates and TPR values, is in line with
the findings of similar studies, particularly those that
utilize multimodal authentication. In the literature, error
values range between 0.1% and 40% and we also achieve
similar results both in the validation phase and the in
real-time authentication experiments.

o Are motion sensors useful for authentication?: Extract-
ing efficient features is one of the essential steps in the
classification phase. Touch screen features were used in
related studies [8], [21]. Features from the sensors were
eight basic features, and more sophisticated features
can also be extracted, such as the ones in the HMOG
study [27]. However, these basic features could also cap-
ture the phone’s basic movements or the basic statistical
properties of the sensor data. One may argue that if the
user does not move, the phone does not move, sensor
values will be useless. This could be the case when the
phone is kept on the table. In that case, touch features
can be used. When the phone is kept in hand, then basic
hand-movements and orientation patterns can be cap-
tured with the sensor data [27]. We should mention again
that features from the gyroscope sensor were among
the least selected features. This was because there is
not too much rotation movement while using a mobile
application. However, it can be useful for authentication
using body movements or for applications when using
on the go, such as fitness trackers and step counters.

o Error rates for a banking application: A FAR of 10%
may be acceptable for authentication on many appli-
cations, but not for others, like banking applications.
Moreover, strict rules and regulations exist for banking
applications and removal of a login-password scheme
may not be possible. However, continuous authentica-
tion can be used as an additional or complementary solu-
tion, similar to OTP, and it provides a continuous control
in comparison to one-time login. Our research question
was “Can we continuously authenticate the users of a
mobile banking application using behavioral biometrics
with a certain performance so that we can remove the
requirement of OTP in certain transactions with low
risk?””. Our findings show that, yes we can provide con-
tinuous authentication in real-time with 11% FAR and
9% FRR, on average, with session-based authentication
and without significantly increasing resource usage in
comparison to the original banking application.
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o Changes in behavioral profiles of users: The biomet-
ric models should be able to deal with changes in the
interaction patterns of a user. For example, the user’s
behavioral pattern may change suddenly, e.g., due to an
unexpected accident such as a sprained finger [8]. This
difference may be hard to recognize in the authentication
process. In such a case, other authentication mechanisms
should be used. In case of long-term changes in biomet-
ric features, we need mechanisms to regularly update the
biometric models [7], as we also show in Section V-D.

o Limitations and extensions: In the data collection phase,
we used two different phone models, which are rela-
tively new. However, the experiments should be repeated
with different models. We only used scroll data in the
analysis, but users also perform other gestures, such as
tap, fling. These can also be considered. In the real-
time experiments, we could only include 5 users due
to Covid-19 lockdown; however, we plan to extend this
number. For some users, FAR and FRR values were
observed to be high. Smoothing methods, such as major-
ity or quorum voting, can be incorporated to decrease
the error rates. We did not perform any experiments
where an attacker mimics a real user. However, since
the participants performed the same transactions in the
same postures, adversary imitation is partially taken into
account. The biometric diversity within the negative
class (the ‘non-user’) may impact the results. Here, data
from 44 other users are used to train the negative class,
but, the banking application currently has more than
6.4 million users and clearly training data can easily be
extended once the Dakota system is used as a product.

VIi. CONCLUSION

In this paper, we proposed the DAKOTA continuous authen-
tication scheme designed to work on a mobile application.
We aimed to develop a complementary solution to the strict
one-time authentication schemes used in banking applica-
tions. The DAKOTA system is built directly on a mobile
banking application and logs data from the touch screen
and the motion sensors, namely accelerometer, gyroscope
and magnetometer, to monitor usage/behavioral patterns and
build biometric models. In order to train the models, we col-
lected data from 45 users, while performing popular banking
transactions in three different postures, while sitting, standing
and keeping the phone on table. Seven different classifica-
tion algorithms, together with two ensemble algorithms, are
trained and tested and the results reveal that binary-SVM with
RBF kernel is observed to reach the highest true positive
recognition rate, 99%, and the lowest error scores, 3.5% equal
error rate (EER). We investigated the impact of sensors and
built models, only from the sensor data and touch screen data,
and showed that although models from sensor data provide a
better performance, touch screen data is also critically impor-
tant for some users. We also investigated whether knowing the
usage position may improve the authentication performance;
however the error rates and TPR values are similar when data
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from all positions are combined or used separately. Finally,
we tested the DAKOTA system as an end-to-end pipeline
to authenticate the users in real-time. In this pipeline, the
client application collects and sends touch and sensor data
to a backend, where the trained models are stored, and the
classification result is returned to the application. We investi-
gated the performance of the pipeline in terms of authentica-
tion accuracy and resource usage. In terms of authentication
accuracy, we initially obtained true recognition rates, ranging
between 40% and 80%; however after updating the model and
using a session-based authentication, we could achieve 90%
true positive recognition rate, on average. In terms of resource
usage, we show that DAKOTA does not bring extra overhead
in terms of power and memory usage compared to the original
banking application. As future work, we plan to extend the
dataset with the bank customers where we can perform the
tests without following a scenario and apply deep learning
algorithms in the classification phase on a larger dataset.
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