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ABSTRACT This paper is concerned with the optimal state estimation problem for linear discrete-time
systems with both multiplicative and cross-correlated noises. The measurement outputs for state estimation
are collected from multiple sensors whose sampling rates are different that provide asynchronous data.
In addition, the noises that affect the measurement information are correlated among different sensors
and also coupled with the process noises as well. The aim of the addressed problem is to propose an
optimal state estimation algorithm such that the estimation error is minimized in the mean-square sense
with the existence of asynchronous data, possible sensor faults and correlated noises. In order to mitigate the
impact of measurement missing, this paper utilizes neural networks to compensate the state estimation when
measurement packets are dropping. Then, a fault detection mechanism that utilizes normalized innovation
test is adopted to ensure that the abnormal data would be detected and removed. By resorting to the projection
theorem and mathematical induction approach, sufficient conditions are derived for the existence of the
desired optimal state estimator where the optimized estimation gains are formulated and can be computed
iteratively at each time step. The proposed theoretical results are demonstrated via an illustrative numerical
example.

INDEX TERMS Correlated noises, multiplicative noises, asynchronous data, multi-sensors, multi-rate
systems, neural networks.

I. INTRODUCTION
Sensors have been long playing an essential role in various
branches of science research and industrial engineering. With
the fast development of electronics technology, nowadays,
sensors have been widely applied and implemented in many
areas for the purpose of monitoring, surveillance, gathering
essential information, some of which even have abilities for
data processing [1]. In comparison to the adoption of single
sensor, the application where multiple sensors are deployed
for specific tasks via collaboration shows particular advan-
tages due to lower cost, better robustness and more flexible
configuration. Therefore, to date, systems with multiple sen-
sors have been widely appeared, ranging frommilitary infras-
tructures such as target tracking, integrated navigation to
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civilian applications like unmanned automobiles and indus-
trial robots, to name but a few [2], [3]. The merits of
multi-sensor application, aside from aforementioned ones, lie
mainly on the fact that multiple sensors, as a whole, could
provide rich yet complementary information of which we
can make full use via collaboration among sensors for better
performance.

The filtering or state estimation problem which aims to
extract state information from the measurements corrupted
by noises or disturbances [4]. So far, because of its practical
significance, the state estimation issue has been playing a piv-
otal role in a variety of areas and quite a lot of techniques have
been developed, see [5] for some recent advances. Among
the existing approaches, the Kalman filtering technique has
attracted special attention, thanks to its capability of provid-
ing an elegant yet convenient way to deal with estimation
problems for linear systems subject to Gaussian noises [6]
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and [7]. Note that traditional Kalman filtering technique is
only applicable for dealing with additive noises as well as
noises of independent distributions. However, in real-world
engineering especially in the context of networks, on one
hand, noises may probably affect systems in a multiplicative
way rather than in an additive form. Examples include but are
not limited to, the communications network [8], [9], image
process systems [10] and petroleum exploration systems. The
existence of multiplicative noises largely hinders the appli-
cation of Kalman filtering technique and its variants, and
there is an urgent demand toward novel paradigms for the
corresponding state estimation.

In association with the wide utilization of multi-sensor
configuration like wireless sensor networks, the corre-
sponding filteirng/estiamtion/fusion issues have gained
increasingly research attention within a multitudes of aca-
demic societies such as signal processing and integrated
navigation [11], [12]. It should be pointed out that one of the
primary challenges resulting from the application of multiple
sensors in a system is the phenomenon of asynchronous data
due to the different sampling rate of different sensors [13],
[14]. The asynchronous data cannot be directly used to
estimate the system state by simply employing the existing
approaches, which brings substantial difficulties for the state
estimation problem for systems with multiple sensors. So far,
there have been a rich body of research fruits available in the
literature concerning the multi-sensor filtering problems, see
e.g., [2], [15]–[18]. The communication transmission delays
are also commonly occurred in multi-sensor system and it is
not considered in this paper. In [19], [20], the predictive-based
estimation mechanism is proposed to handle the time-delays
and the mechanism can be adopted in this paper to counter
the communication delays.

In particular, a quintessential example that should be men-
tioned of the application of state estimation via multi-sensor
is the integrated navigation system. A typical representative
intergraded navigation system usually consists of two (or
more) subsystems including, but not limited to, inertial navi-
gation systems (INS) and global navigation satellite systems
(GNSS). The advantages of such a combination mainly lie
in the better usage of the inherently complementary informa-
tion provided by different sensors so as to achieve a better
performance on the estimation of the states and attitudes
of interest [21]. So far, the integrated systems have found
extensive applications and the associated multi-sensor-based
estimation/fusion issues have stirred considerable attention.
Some representative works can be summarized as follows.
For instance, [22] has developed a multi-sensor data fusion
methodology for INS/GPS/SAR integrated navigation sys-
tems. In [23], a new adaptive Kalman filter has studied for
multi-sensor integrated navigation system. Recently, a new
technique has been designed in [24] to handle unknown
noise statistical characteristics of system and outliers in the
measurement information.

Note that most of the aforementioned results have been
mainly focused on the additive noises or noises with

independent distributions. However, in the real-world engi-
neering, on one hand, the noises always appear in a
multiplicative form as mentioned before. On the other, in the
context of multi-sensors, the noises corrupting different sen-
sors would be cross-correlated due to the fact that the sensors
deployed in the similar environment would confront similar,
if not the same, external noises or disturbances. Moreover,
sometimes, the process and measurement noises would also
be correlated with each other. However, to the best of our
knowledge, neither multiplicative noises case nor correlated
noises case has been thoroughly investigated for the multi-
sensor state estimation problem. This gives rise to the first
motivation of our current study.

On the other hand, since in many practical engineering
such as the aforementioned integrated INS/GNSS navigation,
the sensors are always deployed in very harsh sometimes even
hostile environments (e.g., high speed, strong disturbance,
extreme overload, etc). In such cases, the phenomena of sen-
sor failures are inevitable which might yield abnormal data
and degrade the estimation performance. Accordingly, much
effort have been devoted to investigation of fault-tolerant
(also known as reliable) state estimation algorithms. Up to
now, various theories and techniques have been developed
with the hope of mitigating the effects on the estimation
perforce from possible abnormal data, see, e.g. [25]–[30].
Nevertheless, the relevant issue has not been adequately
studied for the case where the multiplicative and cross-
correlated noises are taken into simultaneous consideration,
which raises the second motivation of our current research.

In response to the above discussions, this paper tackles
the optimal state estimation problem for linear discrete-time
systems with both multiplicative and cross-correlated noises.
The main difficulties of the addressed problem can be iden-
tified as follows: i) How to unify the asynchronous measure-
ment data into a framework of identical time-scale and design
the corresponding recursive form of the optimal estimate
in the existence of both multiplicative and cross-correlated
noises? ii) How to design appropriate fault detection scheme
as well as missing measurement compensation mechanism,
to mitigate the effects from abnormal data on the estimation
performance?

To sum up, it is our objective in this paper to provide a sys-
tematic framework within which the fault-tolerant and packet
dropouts compensation state estimation algorithm can be ana-
lyzed and designed for the addressed multi-sensor systems
subject to both multiplicative and cross-correlated noises.
The main contributions of this paper lie twofold. 1) The
estimation issue is first studied for the multi-sensor systems
whose measurement outputs are asynchronous and subject
to both multiplicative and cross-correlated noises; and 2) a
reliable state estimation is proposed where a fault detection
mechanism and a packet dropouts compensation method are
implemented to prevent the abnormal data from deteriorating
the estimation performance and avoid the impact of packet
dropouts on the estimate accuracy. The paper is organized as
follows. In section II, the problem formulation is presented.
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In section III, the sequential estimation algorithm is proposed.
In section IV, a numerical example is provided that illustrates
the validity of our theoretical algorithm. SectionV gives some
discussions and conclusions.

II. PROBLEM FORMULATION
Consider a discrete-time linear system of the following
form [31]:

x(k + 1) =

(
8(k)+

n∑
m=1

Am(k)ηm(k)

)
x(k)+ w(k) (1)

zi (ki) = γi(ki) ((Ci(ki)+ Hi(ki)ζi(ki)) xi (ki)+ vi (ki))

(2)

where x(k) ∈ Rn is system state; zi(ki) ∈ Rp is the ki-th
measurement collected by sensor i at time ti(ki); ti(ki) ∈
(k−1, k] denotes the sampling time of sensor iwhich obtains
the measurement in (k − 1, k]; xi(ki) is the state observed
by zi(ki); w(k) ∈ Rn is the process noise and vi(ki) ∈ Rp is
the measurement noise; γi(ki) is a random sequence obeying
the Bernoulli distribution that describes the measurement loss
of sensor i; 8(k) ∈ Rn×n, Am(k) ∈ Rn×n, Ci(ki) ∈ Rp×n

and Hi(ki) ∈ Rp×n are known time-varying matrices of
compatible dimensions; the initial state x0 is random with
mean of x̄0. ηm(k) and ζi(ki) are zero mean Gaussian white
noise sequences.

The following assumptions are needed in the establishment
of our main results.
Assumption 1: It is assumed that the initial state x0 is

independent of w(k), vi(ki), ηm(k) and ζi(ki), whereas the
multiplicative noises ηm(k) and ζi(ki) are independent of the
process noise w(k) and measurement noise vi(ki). The signal
γi(ki) is independent with other parameters.
Assumption 2: The statistical properties of the noise

sequences w(k), vi(ki), ηm(k), ζi(ki) and x0 are as follows:{
E{w(k)} = 0
E{w(k)wT(l)} = Q(k)δ(k − l){
E{vi(ki)} = 0
E{w(k − 1)vTi (ki)} = 0i{
E{vi(ki)vTj (kj)} = Rij, if ti(ki), tj(kj) ∈ (k − 1, k]
E{vi(ki)vTj (kj)} = 0, otherwise{
E{x0} = x0
E{[x0 − x0][x0 − x0]T} = P0{
E{ηm(k)} = 0
E{ηm(k)ηTl (b)} = σmδ(m− l)δ(k − b){
E{ζi(ki)} = 0
E{ζi(ki)ζTj (lj)} = ρiδ(i− j)δ(ki − lj).

Here, the notation E{} denotes the mathematical exception
while δ(a− b) represents the Kronecker function

δ(a− b) =

{
1, if a = b
0, if a 6= b

From Assumption 2 we know that previous step process
noisew(k−1) is correlated with the measurement noise vi(ki),
and the measurement noises from different sensors are also
cross-correlated at the same time step.

For simplicity, denote Ri = Rii > 0, i = 1, 2, . . . ,N .
We assume the sampling of sensor 1 is uniform which has the
highest rate of all sensors and the sampling time of z1(k1) is k .
The relationship among different sampling rates is described
as follows:

ni = n1/li, i = 1, 2, . . . ,N (3)

where ni is the sampling rate of sensor i; the signal li is a
known positive integer; the total number of sensors is N .
Remark 1: In this paper, we assume that the sampling of

sensor 1 is uniform while the sampling of the rest of the
sensors are un-uniform but at specific time instants within
the pre-specified time intervals. The signal z1(k) is the k-th
measurement of sensor 1 which is gathered at time step k .
For sensor 2 to N , zi(ki) is the ki-th measurement of sensor i
in the interval (li(ki − 1), liki]. The sampling time of sensor
2 to N are also known in this paper and it is in the time
interval (li(ki − 1) + ji − 1, li(ki − 1) + ji]. The signal ji is
used to determine the specific unit time interval of sampling
and 1 < ji ≤ li. Therefore, we can establish the relationship
between k and ki and it is k = li(ki − 1)+ ji.

III. OPTIMAL FUSION ALGORITHM
A. ASYNCHRONOUS MULTI-RATE MODEL
In order to unify the asynchronous measurement data into
a framework of identical time-scale before state estimation,
the measurement equation is firstly reconstructed by employ-
ing the similar technique from [32], where the state observed
by zi(ki) (i.e., xi (ki)) is over the time interval (li(ki−1)+ ji−
1, li(ki − 1)+ ji], namely,

xi (ki) =
(
ai(ki)I + bi(ki)8−1 (li (ki − 1)+ ji − 1)

)
·x (li (ki − 1)+ ji) (4)

and

xi (ki) = (bi(ki)I + ai(ki)8(li (ki − 1)+ ji − 1))

·x (li (ki − 1)+ ji − 1) (5)

where

ai(ki) = ti(ki)− li(ki − 1)− ji + 1

bi(ki) = li(ki − 1)+ ji − ti(ki).

The following lemma provides a method to reconstruct
the system state x(k) in the measurement equation with the
purpose of transforming the asynchronous measurement data
into those with identical time scale, for the subsequent anal-
ysis and design.
Lemma 1: By means of (4), the original system model (1)

– (2) can be reconstructed as follows:

x(k + 1) =

(
8(k)+

n∑
m=1

Am(k)ηm(k)

)
x(k)+ w(k) (6)
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zi (ki) = γi(ki)
((
C̄i(k)+ H̄i(k)ζi(ki)

)
x(k)+ vi (ki)

)
. (7)

In above equations, we have

C̄i(k) = Ci(ki)8i (ki) (8)

H̄i(k) = Hi(ki)8i (ki) (9)

where

8i (ki)=
(
ai(ki)I + bi(ki)8−1 (li (ki − 1)+ji − 1)

)
. (10)

Proof: Substituting (4) into measurement equation (2)
yields

zi (ki) = γi (ki) ((Ci(ki)+ Hi(ki)ζi(ki))

·8i (ki) x (li (ki − 1)+ ji)+ vi (ki))

= γi (ki) ((Ci(ki)8i (ki)+ Hi(ki)8i (ki) ζi(ki))

·x (li (ki − 1)+ ji)+ vi (ki)) (11)

where ji = k − li(ki − 1).
The equation (11) can be rewritten as follows:

zi (ki) = γi(ki)
((
C̄i(k)+ H̄i(k)ζi(ki)

)
x(k)+ vi (ki)

)
. (12)

The proof of the lemma is complete now.

B. OPTIMAL ESTIMATION ALGORITHM
Lemma 2: (Orthogonal Projection Theorem [34]): Given

three random vectors X ,Z1,Z2 with second moments. Defin-

ing Z =
[
Z1
Z2

]
, the following equality holds:

Ê[X/Z ]

= Ê [X/Z1]+ Ê
[
X̃/Z̃2

]
= Ê dX/Z1]+ E

[
X̃ Z̃T

2

] [
E
[
Z̃2Z̃T

2

]]−1
Z̃2 (13)

where Ê[ ] denotes orthogonal projection and

X̃ = X − Ê [X/Z1] , Z̃2 = Z2 − Ê [Z2/Z1] . (14)

If the stochastic processes above are gaussian, then
orthogonal projection is actually identical with conditional
expectation [35].
Lemma 3: If sensor i does not obtain the measurement in

time interval (k − 1, k], we have{
x̂i(k|k) = x̂i−1(k|k)
Pi(k|k) = Pi−1(k|k).

(15)

If the measurement of sensor i is lost, we use the neural
network to obtain x̂i(k|k) − x̂i−1(k|k) and let Pi(k|k) =
Pi−1(k|k).
Theorem 1: For the reconstructed system (6)-(7), we

assume that the optimal state estimate x̂i−1(k|k) and its esti-
mation error covariance Pi−1(k|k) are known. Given γi(ki) ≡
1 and the initial values x0,P(0), S(0).

For i = 0, x̂0(k|k) denotes the one-step prediction of x̂(k−
1|k − 1) and P0(k|k) denotes the prediction error covariance

P(k − 1|k − 1). The state x̂0(k|k) and its error covariance
P0(k|k) are given by

x̂0(k|k) = 8(k − 1)x̂(k − 1|k − 1)
P0(k|k) = 8(k − 1)P(k − 1|k − 1)8T(k − 1)

+

n∑
m=1

σmAm(k − 1)S(k − 1)ATm(k − 1)

+Q(k − 1)

(16)

When zi(ki) is obtained in (k−1, k], the recurrence formu-
las of sequential data fusion are given by

Bji(k) =
(
I − Kj(k)C̄j(k)

)
B(j−1)i(k)

+Kj(k)C̄j(k)0i + Kj(k)Rji
z̃i (ki) = zi (ki)− C̄i(k)x̂i−1(k|k)
S(k) = 8(k − 1)S(k − 1)8T(k − 1)

+

n∑
m=1

σmAm(k − 1)S(k − 1)ATm(k − 1)

+Q(k − 1)
Ki(k) = [Pi−1(k|k)C̄T

i (k)+ 0i − B(i−1)i(k)]
[
C̄i(k)

·Pi−1(k|k)C̄T
i (k)+ ρiH̄i(k)S(k)H̄

T
i (k)

+Ri + C̄i(k)
(
0i − B(i−1)i(k)

)
+
(
0T
i − B

T
(i−1)i(k)

)
C̄T
i (k)]

−1

x̂i(k|k) = x̂i−1(k|k)+ Ki(k)z̃i (ki)
Pi(k|k) = Pi−1(k|k)− Ki(k)

·[C̄i(k)PTi−1(k|k)+ 0
T
i − B

T
(i−1)i(k)]

(17)

where the optimal estimate x̂i(k|k) is obtained by using the
measurements of sensor 1− i at time k , Pi(k|k) is the covari-
ance of x̃i(k|k), Ki(k) is the gain of sensor i, S(k) is the
covariance of x(k), and z̃(ki) is the innovation.

The optimal state estimate x̂(k|k) = x̂N (k|k) and the
estimation error covariance P(k|k) = PN (k|k).

Proof: By using the orthogonal projection theorem
(Lemma 2) in combination with the mathematical induc-
tion approach, the proof of the theorem is given as follows.
For convenience of derivation, we first give the following
notations.

x̂(k|k − 1) = E
(
x(k)|Zk−1,N

)
x̃(k|k − 1) = x(k)− x̂(k|k − 1)

P(k|k − 1) = E
[
x̃(k|k − 1)x̃T(k|k − 1)

]
x̂i(k|k) = E

[
x(k)|Zk−1,N ,Zkk−1(i)

]
x̃i(k|k) = x(k)− x̂i(k|k)

Pi(k|k) = E
[
x̃i(k|k)x̃Ti (k|k)

]
x̂(k|k) = E

[
x(k)|Zk,N

]
P(k|k) = E

{
[x(k)− x̂(k|k)][x(k)− x̂(k|k)]T

}
S(k) = E

[
x(k)xT(k)

]
Bji(k) = E[x̂j(k|k)vTi (ki)]
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For i = 1, 2, . . . ,N , we further denote

Zki = {zi(ki), 0 < ti(ki) ≤ k}

Zk,i = {zg(kg), 0 < tg(kg) ≤ k; g = 1, 2, · · · , i}

Zkk−1(i) = {zg(kg), k − 1 < tg(kg) ≤ k; g = 1, 2, · · · , i}

where Zki represents the measurements of sensor i at time k
and before. Zk,i represents the measurements of sensor 1− i
at time k and before. Zkk−1(i) represents the measurements of
sensor 1− i which are in time interval (k − 1, k].
Firstly, the optimal one-step prediction is computed by

x̂(k|k − 1)

= E[x(k)|Zk−1,N ]
= E

[
8(k − 1)x(k − 1)|Zk−1,N

]
+E

[
n∑

m=1

Am(k − 1)ηm(k − 1)x(k − 1)|Zk−1,N
]

+E[w(k − 1)|Zk−1,N ]
= 8(k − 1)x̂(k − 1|k − 1). (18)

Since x̃(k−1|k−1) is independent ofw(k−1), the covariance
of x̃(k|k − 1) and x(k) are calculated as follows:

P(k|k − 1)

= E{[x̃(k|k − 1)x̃T(k|k − 1)]}

= E
{[

(8(k − 1)+
n∑

m=1

Am(k − 1)ηm(k − 1))

·x(k − 1)+ w(k − 1)−8(k − 1)x̂(k − 1|k − 1)
]

·

[
(8(k − 1)+

n∑
m=1

Am(k − 1)ηm(k − 1))x(k − 1)

+w(k − 1)−8(k − 1)x̂(k − 1|k − 1)
]T}

= 8(k − 1)P(k − 1|k − 1)8T(k − 1)

+

n∑
m=1

σmAm(k − 1)S(k − 1)ATm(k − 1)

+Q(k−1)+8(k−1)E
{
x̃(k−1 | k−1)w(k−1)T

}
+E

{
w(k − 1)x̃T(k − 1 | k − 1)

}
8T(k − 1)

= 8(k − 1)P(k − 1|k − 1)8T(k − 1)

+

n∑
m=1

σmAm(k − 1)S(k − 1)ATm(k − 1)

+Q(k − 1) (19)

and

S(k) = E
[
x(k)xT(k)

]
= E

{[
(8(k − 1)+

n∑
m=1

Am(k − 1)ηm(k − 1))

·x(k−1)+ w(k−1)
][

(8(k−1)+
n∑

m=1

Am(k−1)

·ηm(k − 1))x(k − 1)+ w(k − 1)
]T}

= 8(k − 1)S(k − 1)8T(k − 1)

+

n∑
m=1

σmAm(k − 1)S(k − 1)ATm(k − 1)

+Q(k − 1). (20)

Secondly, the optimal state estimation of sensor i at time k
can be deduced by Lemma 2:

x̂i(k|k) = E
[
x(k)|Zk−1,N ,Zkk−1(i− 1), zi (ki)

]
= E

[
x(k)|Zk−1,N ,Zkk−1(i− 1)

]
+ Ki(k)

·

(
zi (ki)− E

[
zi(ki)|Zk−1,N ,Zkk−1(i− 1)

)]
= x̂i−1(k|k)+ Ki(k)z̃i (ki) (21)

where

Ki(k) = E{
[
x(k)−x̂i−1(k|k)

]
·
[
zi (ki)−C̄i(k)x̂i−1(k|k)

]T
}

·(E{[zi(ki)−C̄i(k)x̂i−1(k|k)]

·[zi(ki)− C̄i(k)x̂i−1(k|k)]T})−1

= E
[
x̃i−1(k|k)z̃Ti (ki)

]
(E
[
z̃i (ki) z̃Ti (ki)

]
)−1. (22)

From (17), we can deduce

z̃i (ki) = zi (ki)− C̄i(k)x̂i−1(k|k)

=
(
C̄i(k)+ H̄i(k)ζi(ki)

)
x(k)+ vi (ki)

− C̄i(k)x̂i−1(k|k)

= C̄i(k)x̃i−1(k|k)+ H̄i(k)ζi(ki)x(k)+ vi (ki) . (23)

Therefore,

E
[
z̃i (ki) z̃Ti (ki)

]
= E{[C̄i(k)x̃i−1(k|k)+ H̄i(k)ζi(ki)x(k)+ vi(ki)]

·[C̄i(k)x̃i−1(k|k)+ H̄i(k)ζi(ki)x(k)+ vi(ki)]T}

= C̄i(k)Pi−1(k|k)C̄T
i (k)+ ρiH̄i(k)S(k)H̄

T
i (k)

+Ri + E
[
C̄i(k)x̃i−1(k|k)vTi (ki)

]
+E

[
vi (ki) x̃Ti−1(k|k)C̄i(k)

T
]

= C̄i(k)Pi−1(k|k)C̄T
i (k)+ ρiH̄i(k)S(k)H̄

T
i (k)

+Ri + C̄i(k)(0i − B(i−1)i(k))

+(0T
i − B

T
(i−1)i(k))C̄

T
i (k) (24)

where

E
[
C̄i(k)x̃i−1(k|k)vTi (ki)

]
= E

[
C̄i(k)

(
x(k)− x̂i−1(k|k)

)
vTi (ki)

]
= C̄i(k)

(
E
[
x(k)vTi (ki)

]
− E

[
x̂i−1(k|k)vTi (ki)

])
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= C̄i(k)
(
E
[((

8(k−1)+
n∑

m=1

Am(k−1)ηm(k−1)
)

·x(k − 1)+ w(k − 1)
)
vTi (ki)

]
−E

[
x̂i−1(k|k)vTi (ki)

])
= C̄i(k)(0i − B(i−1)i(k)). (25)

From the notation Bji(k) = E[x̂j(k|k)vTi (ki)], Bji(k) can be
deduced,where j < i.

E
[
x̂j(k|k)vTi (ki)

]
= E[(x̂j−1(k|k)+ Kj(k)(zj(kj)

−C̄j(k)x̂j−1(k|k)))vTi (ki)]

= (I − Kj(k)C̄j(k))E[x̂j−1(k|k)vTi (ki)]

+Kj(k)C̄j(k)0i + Kj(k)Rji. (26)

For j = 0,

B0i(k) = E
[
x̂(k|k − 1)vTi (ki)

]
= E

[
8(k − 1)x̂(k − 1|k − 1)vTi (ki)

]
= 0. (27)

For j > 0,

Bji(k) =
(
I − Kj(k)C̄j(k)

)
B(j−1)i(k)

+Kj(k)C̄j(k)0i + Kj(k)Rji. (28)

For E
[
x̃i−1(k|k)z̃Ti (ki)

]
, we get

E
[
x̃i−1(k|k)z̃Ti (ki)

]
= E{x̃i−1(k|k)[zi(ki)− C̄i(k)x̂i−1(k|k)]T}

= E{x̃i−1(k|k)[(C̄i(k)+ H̄i(k)ζi(ki))x(k)+ vi(ki)

−C̄i(k)x̂i−1(k|k)]T}

= E{x̃i−1(k|k)[C̄i(k)x̃i−1(k|k)+ H̄i(k)ζi(ki)x(k)

+vi(ki)]T}

= Pi−1(k|k)C̄T
i (k)+ 0i − B(i−1)i(k) (29)

where

E
[
x̃i−1(k|k)vTi (ki)

]
= E

{[
x(k)− x̂i−1(k|k)

]
vTi (ki)

}
= E

[
x(k)vTi (ki)

]
− E

[
x̂i−1(k|k)vTi (ki)

]
= 0i − B(i−1)i(k). (30)

Substituting (24) and (29) to (22) results in

Ki(k) = E
[
x̃i−1(k|k)z̃Ti (ki)

]
(E
[
z̃i (ki) z̃Ti (ki)

]
)−1

= [Pi−1(k|k)C̄T
i (k)+ 0i − B(i−1)i(k)][C̄i(k)

·Pi−1(k|k)C̄T
i (k)+ ρiH̄i(k)S(k)H̄

T
i (k)

+Ri + C̄i(k) · (0i − B(i−1)i(k))

+ (0T
i − B

T
(i−1)i(k))C̄

T
i (k)]

−1. (31)

Finally, we can get the covariance of estimation error
x̃i(k|k) as follows:

Pi(k|k)

= E
[
x̃i(k|k)x̃Ti (k|k)

]
= E{

[
x(k)− x̂i(k|k)

] [
x(k)− x̂i(k|k)

]T
}

= E{
[
x̃i−1(k|k)− Ki(k)z̃i (ki(k))

]
·
[
x̃i−1(k|k)− Ki(k)z̃i (ki)

]T
}

= Pi−1(k|k)−E
[
x̃i−1(k|k)z̃Ti (ki(k))

]
KT
i (k)−Ki(k)

·E
[
z̃i (ki) x̃Ti−1(k|k)

]
+Ki(k)E

[
z̃i (ki) z̃Ti (ki)

]
KT
i (k)

= Pi−1(k|k)− E
[
x̃i−1(k|k)z̃Ti (ki)

]
·(E

[
z̃i (ki) z̃Ti (ki)

]
)−1E

[
z̃i (ki) x̃Ti−1(k|k)

]
= Pi−1(k|k)−Ki(k)[C̄i(k)PTi−1(k|k)+0

T
i −B

T
(i−1)i(k)].

(32)

Therefore, the proof is completed now.
Remark 2: In the estimation algorithm proposed in

theorem 1, since z1(k1) will be obtained at any time k ,
the measurement z1(k1) is used for state estimation at first and
the measurement matrix of sensor 1 meets C1(k1) = C̄1(k).
Then, state estimation is performed by using the measure-
ments with sampling rates from high to low at time k . If sensor
i does not obtain the measurement in time interval (k − 1, k],
x̂i(k|k) and Pi(k|k) are given by (15). The equations (15)
mean the estimate will not be updated when zi(ki) is not
observed in (k−1, k]. On the other hand, if zi(ki) is available
but zi−1(ki−1) is not available in (k − 1, k], we use B(i−2)i(k)
instead of B(i−1)i(k) in (17).

C. PACKET DROPOUTS COMPENSATION
The loss of measurement often occurs in practical engineer-
ing, which will inevitably affect the accuracy of state esti-
mation. In order to reduce the influence of measurement loss
in the system, here, we use a neural network to compensate
the estimate by borrowing its strong capability in approxi-
mating nonlinear relationships [33]. The neural network will
be trained when the measurement is normal, and when the
measurement is missing, it will be working in prediction
mode to generate desired output for compensation.
Specifically, a generalized regression neural network

(GRNN) is used for packet dropouts compensation in this
paper. GRNN is an improved version of radial basis function
neural network(RBFNN), which has good nonlinear mapping
ability and fast learning speed. In our proposed framework,
the GRNN has a structure shown in Fig. 1.
In the proposed structure of GRNN, the number of neurons

in the input layer is equal to the dimension of the input vector
and the number of neurons in the output layer is equal to the
dimension of the output vector. The number of neurons in the
pattern layer is equal to the number of samples. In this paper,
the input vector of GRNN is x̂i−1(k|k) and the output vector

37528 VOLUME 9, 2021



Y. Ma et al.: Asynchronous Multi-Sensor State Estimation for Systems Subject to Multiplicative and Cross-Correlated Noises

FIGURE 1. Generalized regression neural network topology architecture.

is x̂i(k|k) − x̂i−1(k|k). Therefore, the number of neurons in
input layer and output layer is n. The activation function of
pattern layer neuron is Gaussian function as follows:

Fg = exp(−
(X − Xg)T(X − Xg)

2%2
) g = 1, 2 . . . ,L (33)

where X is the input vector; Xg is the input vector of sample
g; % is a scale and L is the number of samples.

The summation layer neuron is a weighted sum of the
output of the pattern layer as follows:

Sj =
L∑
g=1

YjgFg j = 1, 2, . . . , n (34)

SD =
L∑
g=1

Fg (35)

where Yjg is the j-th element in output vector of sample g and
n is the dimension of output vector.

Finally, the value of neuron in the output layer is

yj =
Sj
SD
=

∑L
g=1 YjgFg∑L
g=1 Fg

j = 1, 2, . . . , n. (36)

The Fig 2(a) and Fig 2(b) show the process of packet dropouts
compensation.
Remark 3: It is worth mentioning that, most of the existing

literature concerning the estimation issue subject to measure-
ment missing phenomenon are mainly applying the stochastic
analysis and design methods. That is, based on the stochas-
tic assumption on the measurement dropping, algorithms
are developed to achieve the desired specifications that are
raised in a probabilistic sense. Consequently, the obtained
approaches can only satisfy the requirements in a statistical
meaning, and sometimes show poor performance in practice.
In view of this, we here utilize the GRNN, by virtual of its
capability of modeling complex nonlinear models, to com-
pensate the missing measurements, thereby mitigating the
effects from random loss of data. It will be shown in the sim-
ulation part that such a scheme is of help to improve the
estimation performance.

D. FAULT DETECTION
The innovation vector z̃i(ki) is defined in (17) and z̃i(ki) obeys
zero-mean Gaussian distribution when sensors work in good

FIGURE 2. The process of packet dropouts compensation.

condition. However, in practical engineering, due to various
reasons, the senors might confront many kinds of faults,
which probably makes the mean of z̃i(ki) non-zero. In these
cases, the mean of z̃i(ki) can be used to determine the working
status of sensors.

Since the innovation vector z̃i(ki) obeys zero-mean Gaus-
sian distribution, we can obtain from (24) that

6i(k) = C̄i(k)Pi−1(k|k)C̄T
i (k)+ ρiH̄i(k)S(k)H̄

T
i (k)

+Ri + C̄i(k)
(
0i − B(i−1)i(k)

)
+
(
0T
i − B

T
(i−1)i(k)

)
C̄T
i (k). (37)

Since Ri is a real symmetric matrix, it is not difficult to
observe that 6i(k) = 6T

i (k), which indicates that 6i(k) is
a normal matrix. Consequently, there exists a unitary matrix
Ui(k) such that

U−1i (k)6i(k)Ui(k) = 3i(k) (38)

where3i(k) is a diagonal matrix consisting of the eigenvalues
of 6i(k).
By using Mahalanobis transform, we have

ψi(k) = 3
−

1
2

i (k)U−1i (k)z̃i(ki)

ψi(k) = [d1,i(k), d2,i(k), · · · , dp,i(k)]T (39)

where ψi(k) is normalized innovation and dκ,i(k) (κ =
1, 2, . . . , p) is a random variable that obeys standard normal
distribution.

The test statistic is dκ,i(k) in this Hypothesis Testing.The
null hypothesis is H0 : E{dκ,i(k)} = 0 and the alternative
hypothesis is H1 : E{dκ,i(k)} 6= 0 which will be accepted
when the null hypothesis is rejected. Therefore, we have

H0 : E{dκ,i(k)} = 0 versus H1 : E{dκ,i(k)} 6= 0.

The significance of Hypothesis Testing is τ and the rejec-
tion region of null hypothesis H0 is |dκ,i(k)| > θτ . In addi-
tion, the rejection region of alternative hypothesis H1 is
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FIGURE 3. Algorithm flow diagram.

|dκ,i(k)| < θτ . When alternative hypothesis is accepted for
any dκ,i(k) (κ = 1, 2, . . . , p), we believe that sensor i is
abnormal. Otherwise, we believe that sensor i works well.
Therefore, we define the fault detection function as follows:

�i(k) =

{
0, for κ,∀

∣∣dκ,i(k)∣∣ ≤ θτ
1, for κ, ∃

∣∣dκ,i(k)∣∣ > θτ
(40)

where θτ is the threshold of fault detection regulating the sen-
sitivity of fault detection. When any dκ,i(k) exceeds threshold
θτ , system determines that the sensor i is faulty, and then the
measurement of faulty sensor will be removed from the data
fusion at time k . In such cases, state estimate and estimation
error covariance are given by (15). The value of θτ can be
found in standard normal distribution table and it meets the
equation ∫

∞

θτ

1
√
2π

exp
(
−
t2

2

)
dt =

τ

2
(41)

which indicates the null hypothesis will be rejected with a
certain probability τ .

The fault detection procedure is shown in Fig 3.
Remark 4: In this paper, fault detection algorithm is per-

formed in order from sensor 1 toN . If sensor zi(ki) is obtained
in (k − 1, k], z̃i(ki) is used for fault detection of sensor i.

IV. NUMERICAL SIMULATION
A numerical example is given to illustrate the performance of
the fusion algorithm.

Given a system containing two sensors, whose dynamics
are described by (1) and (2). The sampling rate of sensor 1 is
higher than sensor 2, and the sampling of sensor 1 is uniform
while the sampling of sensor 2 is non-uniform. The sampling
rate of sensor 2 is n2 and meets the equation n1 = 2n2. The
system parameters are as follows [36]:

8(k) =
[
0 −0.5
1 1

]
,

A1(k) = A2(k) =
[
0.1 0
0 0.1

]
,

Ci(ki) =
[
1 0
0 1

]
, Hi(ki) =

[
0.2 0
0 0.2

]
.

TABLE 1. Average of mean square error.

The noisesw(k), ηm(k), ζ1(k1) and ζ2(k2) are zeromeanGaus-
sian white noise sequences with the following coefficients.

Q(k) =
[
0.4 0
0 0.4

]
,

σ1 = 2 , σ2 = 2 , ρ1 = 4 , ρ2 = 4.

Assume zero mean cross-correlated noises m1(k), m2(k)
and n(k) are selected as follows:

v1(k) = 0.8w(k − 1)+ m1(k)+ n(k),

v2(k) = 0.6w(k − 1)+ m2(k)+ 0.6n(k),

E[m1(k)mT
1 (k)] =

[
4 0
0 4

]
,

E[m2(k)mT
2 (k)] =

[
1 0
0 1

]
,

E[n(k)nT(k)] =
[
5 0
0 5

]
.

The initial values are chosen as

x0 = [1, 0]T,P(0) =
[
100 0
0 100

]
, S(0) =

[
100 0
0 100

]
.

The numerical simulation are performed in the following
four cases: 1) Case 1, the algorithm in this paper is performed
only with sensor 1; 2) Case 2, the algorithm in this paper
is performed with sensors 1 and 2; 3) Case 3, the multi-rate
multi-sensor data fusion algorithm in [37] is combined with
asynchronous model (4) and the algorithm is performed with
sensors 1 and 2; 4) Case 4, the algorithm in [38] is performed
with sensors 1 and 2.

The average of mean square error of different algorithms
are shown in the Table 1.
Remark 5: We took 300 sampling points. Results are

obtained from a 100 Monte Carlo simulation.
In Table 1, we can know the performance of the algorithm

proposed in this paper is better than other algorithms. From
Cases 1 and 2, we see that state estimation error will decrease
when the number of sensors increases. From Cases 2,3,4,
we learn that the algorithm proposed in this article shows
better performance in dealing with cross-correlated noises
and multiplicative noise than [37] and [38].

In order to show the effect of packet dropouts compensa-
tion, we set packet dropouts rate as 30% and themean of γi(ki)
is set as follows:

E {γ1(k1)} = E {γ2 (k2)} = 0.7.

In order to ensure adequate training of the neural networks,
we set the measurement not to be lost when k <= 40 and
the number of samples in train set is 40. When the training
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FIGURE 4. Compensation for with and without packet dropouts
compensation.

FIGURE 5. The value of normalized innovation and trigger line.

TABLE 2. Average of mean square error.

set is full, the old data are removed and the new data are
added in training set. The training steps of neural networks
are set to 200; the goal error is set to 0.01; spread of radial
basis functions is set to 5. By comparing the average of
mean square error of the algorithm with and without neural
networks compensation shown in Table 2, we see that the pro-
posed neural network compensation algorithm is effective.

Next, we are going to verify the effectiveness of fault
detection algorithm. For this purpose, we add abrupt faults
and ramp faults manually in the measurement data.

The abrupt fault is added to sensor 1 and sensor 2 in time
interval [50s, 55s] and time interval [110s, 120s], respec-
tively. The ramp fault is added to sensor 1 and sensor 2 in

FIGURE 6. The filter result of algorithm with Ma7 detection.

FIGURE 7. The filter result of algorithm without fault detection.

TABLE 3. Average of mean square error.

time interval [120s, 140s] and time interval [200s, 220s],
respectively. The fixed vector [14, 10]T is added to the
measurements of sensors to describe the abrupt fault. The
linear time-varying value is set to 0.5t to simulate ramp
fault where t is duration of sensor failure. The significant
of Hypothesis Testing in fault detection is set to 2.5%.
We can get the figure of maximum value in normalized
innovation vector ψi(k) and the trigger line of fault detection
in Fig. 5.

The comparison between algorithms with and without fault
detection is shown in Table 3.

The figures(Fig 5, 6 and 7) and Table 3 illustrate that the
fault detection algorithm can effectively isolate faulty sensors
and avoid the corruption of the state estimation.
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V. CONCLUSION
In this paper, the optimal estimation algorithm has been
proposed for asynchronous multi-rate multi-sensor dis-
crete linear dynamic systems with multiplicative and cross-
correlation noises. Packet dropouts compensation based on
neural networks have been designed to effectively reduce the
influence of packet dropouts on state estimation. The fault
detection algorithm has been proposed to avoid the degrada-
tion of estimation accuracy caused by sensor fault. Numerical
examples have been given showing the effectiveness of the
developed algorithms. The presented algorithms could be
applied to deal with practical problems in many fields such
as industrial robot and integrated navigation.
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