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ABSTRACT The remaining useful life (RUL) prediction of industrial cyber-physical system components
demands the use of reliable prognostics parameters and frameworks. Against the traditional use of a single
measure of degradation, data from multiple sensors provide abundant characteristic information for model-
ing, assessing, and extracting useful parameters via appropriate signal processing and sensor fusion methods.
This study introduces a multi-sensor prognostics approach which merges highly prognosible statistical
features from vibrational and pressure sensor measurements after a multi-level wavelet decomposition
of the signals. The prognostic algorithm presented in this work for solenoid pump RUL prediction is a
multi-objective genetic algorithm-optimized long short-term memory (MOGA-LSTM) which accepts the
fused sensor features as input and returns the RUL of the pump as output. The framework was tested
on a run-to-failure experiment on a VSC63A5 Solenoid pump following a significant pump malfunction
caused by a clogged suction filter after the test. Using standard prognostic performance evaluation metrics,
the performance of the prognostics framework was compared with other reliable state-of-the-art methods
with a remarkable comparative advantage in addition to better automation potentials for real-time condition
monitoring and RUL prediction.

INDEX TERMS Sensor fusion, remaining useful life prediction, electromagnetic pumps, MOGA-LSTM,
wavelet decomposition.

I. INTRODUCTION
Reliability studies on industrial cyber-physical systems
(ICPSs) have become one of the central research focus in
academia owing to the fast-growing industry 4.0 revolution.
Being a multidisciplinary topic, studies on ICPSs are cur-
rently receiving vast patronage and research interests cov-
ering vast modules ranging from industrial design technolo-
gies, manufacturing, smart control, robotics, engineering,
etc.; nevertheless, regardless of the domain of interest, system
reliability, safety, and maintainability are some of the key
concerns which have motivated the on-going shift from tradi-
tional corrective (and routine-based maintenance) to the more
effective condition-based maintenance(CBM) with prognos-
tics and health management (PHM) at its core [1].
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The economic, ethical and environmental impacts of unex-
pected equipment failure can be overwhelming and often
result to unplanned maintenance (or repair) while produc-
tion activities are delayed, or sometimes brought to a halt.
Although deliberate attempts are being made to prevent
occurrence of these undesired outcomes, absolute failure
prevention and control seems unachievable with the major
causes emanating from uncertainties, environmental factors,
human errors, and equipment fatigue. These uncertainties
and many past recorded accidents only validate the need for
reliable process monitoring, fault diagnosis and prognostics
system design schemes that can be applied to large-scale
processes [2], [3].

PHM as a predictive maintenance approach enables
real-time health assessment and future state estimation
based on available information from sensing technologies,
physics-of-failure(POF), modern statistics and reliability
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engineering concepts [4]. Traditionally, the model-based
approaches rely on a system model with known structures
and parameters, and are well developed in the framework of
state observers; despite that, their performance is based on
costly assumptions and take no recognition of uncertainties
and unexpected nonlinearities. On the other hand, data-driven
methods are structured on transforming monitoring/historical
data into befitting models for better health assessments and
RUL prediction without knowledge of the system’s failure
mechanism [4], [5]. Current research trends aim at hybrid
methods (a combination of model-based and data-driven
methods); regardless, whether model-based, data-driven or
hybrid, prognostics algorithms could be of three types:
reliability-based (where historical failure time data is uti-
lized), stressor-based (where environmental conditions are
utilized) or degradation-based (where measured/inferred sys-
tem condition are utilized) [6]. On a different note, the use of
multiple degradation measurements for prognostics is usually
more reliable and with appropriate fusion techniques, these
measurements– extracted features and/or sensor data can
be combined to develop a single health indicator(HI) using
dimensionality reduction techniques like principal compo-
nent analysis(PCA), independent component analysis(ICA),
self organising maps(SOM), etc. [7]–[9]; however, not all
measurements are prognosible measurements. The choice of
prognosible measurements has been one of the open areas
of on-going research studies; nevertheless, characteristics
such as trendability, monotonicity and prognosibility provide
reliable paradigm for selection of prognosible measurements
[6], [10]. By computing and assessing these metrics on fea-
tures, the high-ranking features can be selected to reduce
computational load on the optimization scheme while ensur-
ing overall computational advantage and accurate prognostics
performance by a bio-inspired predictor like the LSTM– a
popular recurrent neural network (RNN)with Bayesian archi-
tecture for time-series forecasting.

In compensation for the growing complexity of recent
times technological advancement, state-of-the-art prognos-
tics schemes demand the use of highly reliable predic-
tive models of which, deep learning (DL) methods pro-
vide strong paradigms. Particularly, RNNs have strong pre-
dictive capabilities beyond PHM to stock forecasting [31],
weather forecasting [32], text generation [33], etc. due
to its feedback–enabled architecture and its use of gates
for long–range memorization for accurate posterior esti-
mation; nonetheless, deliberate efforts need to be made
for automatically identifying its parameters based on avail-
able data characteristics, failure mechanisms and operat-
ing conditions. Although the LSTM has these remarkable
efficiencies, there are still some drawbacks associated
with its optimal use including a highly complex computa-
tional process, hyper-parameter dependence, and over-fitting
tendencies. Consequently, this study aims at developing
a reliable automatic parameter selection framework for
solving this problem by capturing prognosible charac-
teristics of a population of measured data (sensor data

and/or features). The Genetic algorithm (GA)— a global
meta-heuristic global search algorithm is efficient for this
purpose (against the limitations of other evolutionary and
/or meta-heuristic search algorithms like the particle swarm
optimization, ant colony optimization, firefly algorithm,
etc.) [14]–[16].

The rest of the paper is structured thus: Section II presents
the motivation and related works to solenoid pump prognos-
tics while Section III describes the theoretical background
of multi-sensor data fusion, ICA- based HI construction,
and GA. Section IV presents the proposed multi-objective
GA-LSTM (MOGA-LSTM) prognostics model while the
experimental validation is presented in section V. Section VI
concludes the paper.

II. MOTIVATION AND RELATED WORKS
Electromagnetic pumps, like other types of pumps are
usually operated for long periods which expose them to
diverse failure modes from sources ranging from unfavor-
able environmental conditions, fluid contamination, electrical
and/or mechanical stress, fatigue, uncertainty, filter clogging,
overuse/underuse, etc. [26], [34]. It is on these grounds that
the need for real-time condition monitoring (and assessment)
becomes crucial for accurate predictive maintenance of these
pumps. Interestingly, solenoid pump and valves are identi-
cal in their mode of operation— solenoid magnetization by
electrical current through the coil which causes the electro-
magnetic core to move against a spring to slide a diaphragm
into the discharge position. Although solenoid valves have
witnessed a reasonable number of research studies on FDI
and prognostics, unfortunately, only a few exist for solenoid
pumps out of which, a majority cover only the design and
fault diagnosis [5], [26], [34].

A. SIGNAL DE-NOISING
Raw vibrational and pressure sensor data are non-stationary
in nature, contain background noise, and usually provide little
information for direct use for most prognostics problems,
including the one presented in this work [17]. This has
essentially prompted the need for several signal process-
ing techniques for reliable feature extraction. Particularly,
choosing a safe threshold for signal de-noising depends on
the targeted system’s dynamics, engineer/analyst’s level of
expertise, and/or familiarity in the domain; nevertheless,
by separating useful signals from background noise, a more
reliable health assessment for accurate prognostics can be
achieved [17], [18].

Several approaches to signal de-noising and decompo-
sition have been presented including but not limited to
the sparsity–based models, empirical mode decomposi-
tion (EMD) whose functionality is based on the Hilbert
Huang transform (HHT), discrete wavelet transform (DWT),
Bayesian-filter-based methods, etc. [19], [20]. Of these tech-
niques, the EMD and DWT are the most popular due to their
robustness for noise reduction/elimination; however, studies
show that the wavelet decomposition has better de-noising
capabilities and this has motivated its usage in this study [20].

VOLUME 9, 2021 38921



U. E. Akpudo, H. Jang-Wook: Automated Sensor Fusion Approach for the RUL Prediction of Electromagnetic Pumps

B. MULTI-SOURCE DATA FUSION
Reliable PHM schemes usually demand the use of multi-
ple sensors(data sources) or extracted features for providing
abundant useful information for RUL estimation; however,
some of these data sources may be insignificant and this
creates a need– to choose from a multitude of sensors, which
one(s) are useful and more importantly, to combine these use-
ful sensor data/features in the most comprehensive and effi-
cient manner [21]. Although the insignificance of a sensor(s)
or extracted feature for prognostics does not imply absolute
insignificance for other purposes, it is important to ensure that
redundant sensors/features are eliminated for accurate and
cost–efficient prognostics results. Furthermore, the abundant
partial information contained in these sensor data/features
can be fused using appropriate fusion techniques to create a
comprehensive health indicator (HI) for easier system repre-
sentation and degradation assessment [7], [11], [22].

Although every fusion technique have their respective pros
and cons, the choice of a technique usually depend on the
kind of problem at hand. For instance, PCA’s performance
is greatly limited on normally distributed data while LLE is
affected by the choice of nearest neighbours. On the other
hand, the ICA is especially robust in cases of non–Gaussian
input distributions that are statistically independent; just as
the case study presented is this study [8], [23]. To ensure
dependable safety–critical systems using multiple on–chip
embedded instruments (EIs), Bagheriye et al. [23] compared
the ICA and the auto-encoder (AE) for synchronous data
capture of different IJTAG compatible EIs and a ML-based
system–level model for determining the end of life (EOL).
Results show that the ICA–based EI fusion approach is com-
paratively more effective in capturing the latent variables as
new representation of inputs for EOL prognostics. For opti-
mal human brain diagnosis, the authors in [24] employed the
ICA for merging the functional magnetic resonance images
(fMRI), structural magnetic resonance images (sMRI) and
electroencephalogram (EEG) signals with results validating
the usefulness of joint brain imaging data for revealing unique
information that cannot be evaluated from a single modal-
ity. For pump fault diagnostics, J. Weidong [25] proposed a
novel ICA based compound neural network– FastICA whose
functionality is based on feature extraction of multi-channel
vibration measurements.

C. CHOICE OF PROGNOSTICS ALGORITHM AND
PARAMETER OPTIMIZATION
The choice of prognostics algorithm(s) is one of the key fac-
tors worth considering for every PHM scheme [6], [12]. With
the dominance and vast applicability of artificial intelligence
(AI), machine learning (ML), andDL algorithms provide reli-
able learning and predictive capabilities against purely math-
ematical/probabilistic models whose effectiveness are limited
on complex few data measurements; however, for optimal
usage, deliberate attempts are required for assessing, choos-
ing and validating the ML/DL algorithm for prognostics and

RUL prediction [12]. Quite remarkably, the choice of these
prognostics algorithms depend on their predictive robustness
which rely hugely on their individual constituent parame-
ters. The deeper the architecture of the predictor, the more
effective it is for accurate modelling for posterior estimation;
however, this often leads to an increase in the number of
parameters required for optimum prognostics results. Conse-
quently, the need for optimal parameter selection arises [10],
[13]. Traditionally, such selection depend on the analyst’s
intuition. This is unreliable considering human errors. In con-
trast, meta-heuristic algorithms provide reliable (and auto-
mated) solutions to optimal parameter selection [27]–[30].

Meta-heuristic algorithms like the GA, particle swarm
optimization, Ant Colony Optimization, fruit fly optimiza-
tion, and a host of hybrid methods have been reported (and
compared) in many studies for several optimization prob-
lems including but not limited to feature selection [26],
fault detection and identification [15], structural optimiza-
tion of predictive algorithms [27], [28], and functional pro-
cess/system control [29]. Particularly for multi-objective
probelms, the MOGA has proven its superiority over the
multi-objective PSO (MOPSO) as verified in [30] and has
also shown reliable efficiencies for global parameterization
of time-series predictors [27], [28]. Consequently, this paper
makes the following contributions:
• Proposal of an ICA–based HI construction of highly
prognosible features from the de-noised signals for accu-
rate RUL prediction. This was achieved by evaluating
the statistical features extracted from each level of DWT
decomposition stage based on monotonicity, prognosi-
bility, and trendability scores.

• Design of a computationally efficient (and automated)
DL-based prognostics scheme which combines vibra-
tion and pressure measurements for capturing diver-
sified solenoid pump dynamics for accurate solenoid
pump RUL prediction

• Proposal and validation of the MOGA-LSTM predic-
tor which automatically selects the appropriate LSTM
parameters.

III. BACKGROUND OF STUDY
This section provides the theoretical background of the key
components which the proposed study relies on. This include
DWT de-noising/decomposition, ICA–based HI construc-
tion, and the proposed MOGA-LSTM RUL predictor

A. DWT DE-NOISING/DECOMPOSITION
The wavelet transform represents a signal in the form of
wavelet series– a representation of a square–integrable (real
or complex–valued) function by a certain orthogonal series
generated by a wavelet [17], [18]. Similar to discrtete Fourier
transform (DFT) and short-time Fourier transform (STFT),
wavelet transform can be viewed as the projection of a signal
into a set of basis functions called wavelets. Such basis
functions offer localization in the frequency domain. The
major difference is: Fourier transform decomposes the signal
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FIGURE 1. Linear model of FastICA.

into sines and cosines whereas the wavelet transform uses
functions (wavelets) that are localized in both the real and
Fourier space, thereby providing more intuitive information
in a signal.

Generally, a wavelet transform is defined as:

WT (a, b) =
1
√
a

∫
∞

−∞

x(t)ψ(t)∗
(
t − b
a

)
dt (1)

where ψ(t)∗ is the complex conjugate of the single function
ψa,b(t) obtained by translation and dilation of the mother
wavelet ψ(t) as shown in (2).

ψa,b(t) =
1
√
a
ψ

(
t − b
a

)
(2)

where a is the scaling parameter (a > 0) is the localization
parameter (b ∈ R) and 1

√
a
is a normalization factor for energy

preservation.
Realistically, the Wavelet transform is an infinite set of

various transforms, depending on the merit function used
for its computation. Based on this, one can use orthogonal
wavelets for DWT development and non − orthogonal
wavelets for continuous wavelet transform (CWT) develop-
ment. For decomposition/de-noising purposes (as intended in
this work), the DWT is very effective and has been employed
for many diagnostics and prognostics purposes.

B. ICA–BASED HI CONSTRUCTION
Originally, ICA was a tool designed for solving blind source
separation problems in image and audio processing with a
primary goal– to extract a set of statistically independent
components from the observed signal; however, its use for
dimensionality reduction (feature fusion) purposes has moti-
vated the development of the FastICA [35]. The mutual infor-
mation between multiple features is usually hidden in the
high–order statistic characteristics, and FastICA is effective
for reducing the high–order correlation while maintaining the
mutual independence between them.

As illustrated in Fig. 4, from an observed vector
x = [x1, x2, · · · , xL)]T composed of linear combinations
of sources si, the matrix A- a transform kernel calculated
by the FastICA represents the mixed mode of independent
non-Gaussian sources s = [s1, s2, · · · , sL]T with the compo-
nents si’s mutually independent such that:

x = As (3)

FIGURE 2. An LSTM block.

The independent signals extracted from x by the FastICA
are y = [y1, y2, · · · , yl]T where l ≤ L. Basically, the goal
of the FastICA technology is to discover a linear mappingW
such that the output signal y can approximate the independent
source signals s1, s2, · · · , sL with the minimum reconstruc-
tion error.

For HI construction, the goal is to generate a single com-
prehensive feature index y (where l = 1) by fusing the set of
highly prognosible features.

C. LSTM NEURAL NETWORK
As shown in Fig. 2, a conventional LSTM block contains
memory cell and three multiplicative gates– input gate, for-
get gate, and output gate whose functions are for regulat-
ing sequential information transfer for acquiring more accu-
rate long–range dependencies. The recurrent connections
between the cells and each gate provide steady operations for
the cells. While each cell does the job of transporting state
values over time steps, each gate conducts the write, read,
and reset operations for the cells [40].

At each time step, the first layer considers a previous output
and current input for determiningwhat information to transfer
from the previous state where the input value can only be
preserved in the state of the cell if the input gate permits
it. Eqs. (4), (5) and (6) present the definitions for the forget,
input and output gates respectively.

f t = σ
(
uf x t + wf ht−1 + bf

)
(4)

I t = σ
(
uix t + wiht−1 + bi

)
(5)

Ot = σ
(
uox t + woht−1

)
+ bo

)
(6)

where u, w, and b are the weight matrices and bias for the
respective gates while σ is a sigmoid activation function.
The current cell memory C t is generated from C t∗ and

an element-wise multiplication of the previous memory C t−1

and f t where C t∗ is is the weighted sum of the prior output
ht−t and bias. This is expressed in (7) while C t is expressed
in (8)

C t∗
= tanh

(
wcht−1 + ucx t + bc

)
(7)

C t
= f t � C t−1

+ I t � C t∗
)

(8)

Finally, the LSTM output ht is a dot product of the output
layer value and the tanh-activated function of C t and is
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FIGURE 3. Genetic algorithm optimization flowchart.

expressed in (9).

ht = Ot � tanh
(
C t) (9)

To further improve the effectiveness of the LSTM, several
LSTM cells could be stacked to form a series of deep archi-
tecture network whereby the output of one LSTM cell- ht

and C t is propagated through time and becomes the input for
the succeeding LSTM cell and so forth. Subsequently, for l
number of LSTMcells (layers), the averaged sumover time as
shown in (10) further ensures prior information for posterior
estimations are well captured and/or modelled.

H =
l∑
i=1

htl
l

(10)

D. GENETIC ALGORITHM (GA)
Like other optimizers, the goal of aGA is to search for the best
solution from a set of initial parameter values following some
update rule. GA optimizations mimics the evolution process
by assessing a random population of initial parameter values
with the goal of optimizing them. More often, the GA may
skip a local minima while searching for global minimum and
this is one of its unique attributes.

As shown in Fig. 3, the GA optimization steps consist of
the six core stages– initialization, fitness evaluation, termi-
nation criteria assessment, selection, and mutation/mating.
The initialization stage is the process of global search by
the GA by defining a chromosome– an N–dimensional vec-
tor containing possible solutions to the problem. For each
chromosome is an associated fitness value and is calculated
with the predefined fitness function– a mathematical func-
tion used to numerically encode a chromosome’s perfor-
mance. Once the fitness function has been defined, the GA
employs three genetic operators— reproduction/selection,
crossover/mating, and mutation to generate new optimal

solution chromosomes (see Fig. 3). The selection process
reflects the Darwin’s theory of survival of the fittest which
ensures that the best fitness costs are retained (or improved)
between successive generations. The crossover/mating pro-
cess entails creating new offsprings of chromosomes from
selected ones. This process creates a random binary vector
commonly referred to as the mask , from which an offspring
is produced by accepting the genes of the first parent at amask
value of 1. Also, at a mask value of 0, genes of the second par-
ent are selected. After crossover , comes themutation process
wherein a random alteration of a set of variables in the list
of chromosomes takes place in each generation. This mimics
the typical evolutionary process in biology and serves the
purpose of introducing diversity and novelty into the solution
pool by arbitrarily interchanging/alternating solutions.

IV. PROPOSED PROGNOSTICS SCHEME
In this study, we propose a hybrid approach to the RUL
prediction of electromagnetic pumps. The scheme consists
of a FastICA-based HI construction from highly prognosi-
ble vibrational and pressure signals (following a multi-level
DWT decomposition, feature extraction and selection) and
a MOGA-optimized LSTM predictor. Fig. 4 shows the
proposed prognostics scheme.

A. DE-NOISING AND FEATURE EXTRACTION
As shown in Fig. 4, from the raw vibrational and pressure
signals, a multi-level decomposition of the signals is imple-
mented for de-noising. From these levels, the statistical fea-
tures defined in Table 1 are extracted. The DWT returns a data
vector of the same length as the input signal by decomposing
it into a set of wavelets (functions) that are orthogonal to
its translations and scaling. By so doing, same or lower
number of the wavelet coefficient spectrum decomposition
outputs can be obtained; however, the choice of wavelet has
been a major challenge for DWT decomposition. In practical
applications, wavelet Shannon entropy provides a reliable
paradigm for solving this problem.

Because the wavelet transform measures the similarity
between a signal and scaled version of a base wavelet,
the level of similarity between them is directly propor-
tional to the wavelet decomposition coefficient and the
corresponding energy concentration. Therefore, a befitting
wavelet is expected to extract the maximum amount of
energy while minimizing the Shannon entropy of the cor-
responding wavelet coefficients [18]. Eq. 11 computes the
energy-Shannon entropy ratio (E-SER).

E-SER(j) =
E(j)

Sentropy(j)
(11)

where E(j) are the energy wavelet coefficients at jth scale and
is obtained using (12) below:

E(j) =
K∑
k=1

|wt(j, k)|2 (12)
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FIGURE 4. system model.

where K is the total number of wavelet coefficients, and
wt(j, k) is the k-th wavelet coefficient of j scale.

The Sentropy(j) represents the Shannon entropy at jth scale
and is obtained using (13) below:

Sentropy(j) = −
K∑
k=1

pk loga pk (13)

where pk is the energy probability distribution of wavelet
coefficients.

B. FEATURE SELECTION AND HI CONSTRUCTION
Practically, not all extracted features are prognosible parame-
ters Although visual inspection and engineer/analyst’s expe-
rience may be useful, such a biased approach is unreliable.
As proposed in [36], the choice of a prognostics param-
eter depends on its characteristics— monotonicity (Mon),
prognosability (Prog), and trendability (Trend) defined

respectively in Eq. (14) - (16)

Mon = mean
(∣∣∣∣# pos d/dx

n− 1
−

#neg d/dx
n− 1

∣∣∣∣) (14)

where n is the number of observations in a particular history.

Prog = exp
(
−

std(fail values)
mean(| fail value− start value |)

)
(15)

Trend = min
(
| corrcoefij

)
| (16)

These key metrics each return values between 0 and 1
whereby a value of 1 indicates a very high score while a value
of 0 implies otherwise. Ideally, a threshold is required for
selection; above which, any feature with a score equal to or
higher than the threshold value is selected, while the rest are
ignored. Automating the selection process can be achieved by
defining a fitness function– Z as a weighted sum of the three
metrics using Eq. (17).

Z = wm Mon + wpProg+ wtTrend (17)
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TABLE 1. Multi-domain features and definitions.

Subsequently, the FastICA algorithm is employed for fus-
ing the highly prognosible features to form a single compre-
hensive HI for prognostics.

C. MOGA-LSTM FOR RUL PREDICTION
For prognostics, several evaluation metrics abound for explo-
ration with each metric unique to its its pros and cons [37];
however, most research studies on these metrics assess prog-
nostics algorithms based on algorithm’s prediction accuracy,
speed/cost of computation, and economy-centered metrics.
In this study, the metrics of interest are those which assess
prediction accuracy of the model and this prompts the need
for multiple objective functions for the MOGA algorithm for
finding a solutionwhich satisfies these criteria. Consequently,
theMOGA algorithm aims to discover the best LSTM param-
eters that return the:
• Minimum root mean square error (RMSE) of the RUL
prediction using Eq. (18).

• Maximum relative accuracy (RA) of the RUL prediction
using Eq. (19).

RMSE =

√
1
n

∑(
xi − x∗i

)2 (18)

where xi and x∗i are the actual and predicted index values
respectively.

RAlλ = 1−

∣∣r l∗ (iλ)− 〈r l (iλ)〉∣∣
r l∗ (iλ)

(19)

where:
λ is the time window modifier such that

tλ = tP + λ (tEoL − tP)
l is the l th index for unit under test (UUT),
r∗(iλ) is the ground truth RUL at time index iλ〈
r l (iλ)

〉
is an appropriate central tendency point estimate of

the predicted RUL distribution at time index iλ
As proposed by Bentley and Wakefield [38], the sum of

weighted objectives (SWO) is a very effective technique for
multi–objective optimization problems whereby each objec-
tive is weighted to specify its relative importance; the fitness
SWO fitness function is then produced by summing the mul-
tiple objectives using Eq. (20)

fitness =
∑

wifi (20)

where fi is the fitness function for the ith objective.
Fig. 5 illustrates the optimization process of the MOGA

for a 3–layer LSTM network using a set of training data (HI
from start to time–to–start–prediction (TSP)) for discovering
the best solution to a problem. The update process of the
MOGA is bounded by the red dotted lines. If the best solution
is met, the test data is used for performance evaluation (RUL
prediction) in an unsupervised manner. In practice, choosing
the appropriate weight values can be an uphill task (especially
when there are many objectives); however, for dual–objective
cases like the one presented in this study— minimum RMSE
and maximum RA, an equal weighting is most ideal.

V. EXPERIMENTAL VALIDATION
This section presents the experimental validation of the pro-
posed RUL prediction framework on a run-to-failure test on
an electromagnetic pump.

A. EXPERIMENTAL SETUP AND DATA ACQUISITION
No past data-driven prognostics methodology had been
reported for VSC63A5 electromagnetic Pumps nor any other
solenoid pumps. This work, being the first attempt, aims
at exploring vibrational and pressure signals for the RUL
prediction. Following earlier studies on failure causes in
pumps [34], [39], and failure diagnostics of electromagnetic
pumps in particular [26], filter clogging has shown to be
one of the most critical failure modes of solenoid pumps;
hence the motivation behind this work— to simulate a natural
operating condition of the pump under fluid contamination
till full filter clogging occurs.

Fig. 6 shows a picture of the actual test bed while Fig. 7
illustrates the experimental setup. The solenoid pump, after
being firmly mounted on a table vice, was connected to a con-
stant AC supply rated 220V, 60Hz from an automatic voltage
regulator. High sensitivity Piezoelectric accelerometers were
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FIGURE 5. Flowchart of MOGA-LSTM.

FIGURE 6. A picture of the actual testbed.

connected at the Z and X axes as shown in Fig. 7 to capture
vibrational signals through a NI 9234 module at 20KHz
sampling rate while twoWIKAA10 transmitters (powered by
a 20VDC adapter) were connected at the suction and delivery
points of the pump to capture pressure measurements in the
form of current signals (4 − 20mA) via an NI 9228 current
module at 20KHz. The temperature signals were captured at
a sampling rate of 1KHz with an RTD thermocouple affixed
to the pump’s solenoid casing via an NI 9214 module and
were only used for visual monitoring. The modules were con-
nected to a NI Compact DAQ 9178 data acquisition system
through which the digital signals were assessed on a LabView
environment and stored in ‘‘.csv’’ file format.

As illustrated in Fig. 7, the mode of operation starts with
a suction process via a flexible pipe inserted into the reser-
voir which contains 5 Litres of diesel and 10 grams of
Iron(III) oxide (Fe2O3) which is constantly stirred. As the
pump operates, the plunger oscillates vertically as a result of
magnetization of the solenoids and this results in the pumping

process— fluid delivery through the delivery port and return
to the reservoir by a 1.0 GPH nozzle.

B. EXPERIMENTAL RESULTS
Following a daily operation of approximately 8 hours each
day, the whole experiment lasted for 2,448 hours (102 days)
with a significant decline in the delivery pressure and
increased vibration caused by a clogged suction filter as
shown in Fig. 8.
From the commencement of the experiment to about

1100 hours (first 46 days), a healthy suction−delivery process
was observed with little sedimentation on the filter without
any noticeable variation in the pressure sensors outputs (refer
to Fig. 8(b)). This implies that even though the little filter
clogging may be in place, the amount of clogging wasn’t
enough to cause any deviation from the normal operation
of the pump. From the 46th day however, cavitation was
observed along the transparent delivery pipe with a fluc-
tuation in the pressure signals. This signals a fault in the
pump (a decline in the performance of the pump) and as
shown in Fig. 8(c), the partial clogging must have caused the
cavitation. This continued till the last day, when there was
no more fuel delivery from the pump as a result of full filter
clogging as shown in Fig. 8(d).

Fig. 9 and Fig. 10 show the vibrational and pressure signals
for the whole run-to-failure time of the experiment.

C. DWT DECOMPOSITION, FEATURE ENGINEERING AND
HI CONSTRUCTION
As a pre-processing step to capture both dependent and inde-
pendent characteristics from the sensors, the signals were
standardized and an ensemble–averaged output was com-
puted for the respective sensor measurements. In addition to
the four sensor signals, an ensemble–averaged (X and Z)–axis
vibrational signal and an ensemble–averaged (suction and
delivery)–axis pressure signal were computed. From these
signals, DWT decomposition was conducted up to the 4th

level (sym5 wavelet returned the maximum E-SER). From the
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FIGURE 7. Experimental setup with illustrations for sensor placement.

FIGURE 8. Pictures of the suction filter at different life stages (a) before
experiment, (b) initial healthy running condition, (c) partial clogging
resulting to cavitation, and (d) filter clogging failure at end of experiment.

respective levels, the statistical features defined in Table 1
were extracted, smoothed, and tested for monotonicity, trend-
ability, and prognosibility. Fig. 11 shows the the feature
ranking results based on Z scores of vibrational and pressure
signal features respectively.

Coble [6], prescribed a threshold of (Z ≥ 0.3); as a result,
highly prognosible features were selected accordingly and
using the FastICA algorithm, the HI was constructed. See
Fig. 12.

D. TSP/ALARM POINT DETERMINATION
From a prognostics viewpoint, early fault detection is
necessary since most times, it may be too late to

FIGURE 9. Vibrational signals for the run-to-failure test (a) X-axis,
(b) Z-axis.

FIGURE 10. Pressure signals for the run-to-failure test (a) Suction,
(b) Delivery.

schedule maintenance. This is because the remaining time
available before a complete failure could be short. This is
where the need for an early initial degradation/fault detection
approach arises.

Although the FastICA (and other dimensionality reduction
methods) are effective for reliable HI construction, identify-
ing degradation stages and TSP/alarm point from the newly
constructed HI can be difficult since the new feature space
dimension is dependent on (1) the number of constituent
features, (2) the characteristics (variance) of constituent fea-
tures, and (3) the structure/theoretical nature of the fusion
algorithm; nevertheless, several approaches for TSP/alarm
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FIGURE 11. Ranking of features based on Z score (a) features from Vibrational signals, (b) features from pressure signals.

FIGURE 12. FastICA-generated HI for the whole run-to-failure time, STD
of HI over time, and TSP/alarm point at 5σ .

point detection have been proposed including the use of clus-
tering algorithms like the K-Means, fuzzy c-means, etc. for
unsupervised partitioning of a HI based on cluster points [10],
[41], [42], artificial neural networks, and intuition/experience
of the engineer/analyst; however, from a statistical viewpoint
for real-time monitoring (as is intended in this study), these

approaches are quite limited in performance. interestingly,
initial fault detection can be achieved in real-time by mon-
itoring the standard deviation (STD) of the HI in real-time.
As proposed by [43], a statistical alarm (or TSP) could be set
at a window of 5 times the standard deviation of the healthy
state, i.e. 5σ .

Fig. 12 shows the normalised HI in blue while the
STD (a window of 30 samples) is shown in green dots.
As shown, the HI reflects the time–dependent properties—
healthy region, partial clogging (fault region), and full clog-
ging (failure region). As shown, the STD spiked above
the mean STD at healthy condition (0.003) at around the
46th day when cavitation was actually observed, thus very
reliable.

E. RUL PREDICTION
With the HI ready for prognostics with a monotonically
decreasing trend, the failure threshold is set at the minimum
(HI = 0) which indicates the the EOL. Fig. 13 shows the
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FIGURE 13. HI illustrating the TSP, EOL and Failure threshold.

TABLE 2. Parameters used in the experiment.

HI with the TSP and failure threshold at day 46 and 102
respectively.

1) MOGA-LSTM INITIALIZATION AND PARAMETERIZATION
For the RUL prediction using DL methods like the
MOGA-LSTM predictor requires model training and param-
eter initialization. In this work, only healthy data (HI until
the 46th day) were used for training a 3–layer LSTM network
with the parameters summarised in Table 2. A 3–layer LSTM
with ReLu activation function between hidden layers and a
linear activation function in the output layer (with adam
optimization) has high predictive efficiencies. The ReLu acti-
vation function is quite popular for regression problems con-
sidering their comparative advantage over other activation
functions— sigmoid , tanh, softmax for avoiding vanishing
gradient problems and sparsity, and with the MOGA inte-
grated for parameter optimization, minimal estimation errors
can be achieved. Also, choosing a reasonable amount of
iteration times for the LSTM (and the GA) algorithm ensures
that an exhaustive search for optimal hyper-parameters is
achieved.

Consequently, a one–step–ahead regression technique was
employed for a supervised training process using the training
data (1248 training examples) with the weighted sum of the
RMSE and RA between the predicted future index values and
the actual index values serving as the fitness function of the
MOGA. Fig. 14 shows the training process of the model over

FIGURE 14. Training process of GA-LSTM over 50 iterations.

FIGURE 15. RUL prediction results by MOGA-LSTM at TSP (46th day).

50 iterations. Usually, monitoring the iteration process for
convergence after training provides insight on the predictive
capability of the model since a convergence of the validation
error towards zero indicates accurate learning— mapping
of input variables to the output; however, it is worthy to
note that convergence does not imply model perfection since
there could be possibilities of under–fitting or over–fitting;
therefore, predictive performance can only be ascertained by
its performance on test data.

2) RESULTS
Using the trained model, the one–step ahead prediction is
done at TSP followed by the RUL prediction. The RUL
prediction is achieved by first computing the ground truth
(the actual RUL) and with the trained model, the RUL from
TSP to EOL is estimated. The RUL prediction results by the
MOGA-LSTM predictor at TSP is shown in Fig. 15 while
Fig. 16(a) shows the one-step ahead prediction.

As shown, the proposed method is suitable for learning the
complex dynamic behaviour of the HI as the predicted trend
follows with great similarity, the actual test data (test HI).

3) PERFORMANCE EVALUATION
As achieved in the previous subsection, the MOGA-LSTM
predictor has shown highly reliable prognostic capabilities
at TSP; however, this section aims to further assess its
performance by making predictions on the 65th, 75th, and
85th days respectively and comparing its results using stan-
dard prognostics performance metrics— RMSE, MAE, and
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FIGURE 16. One-step ahead prediction results at TSP point (46th day) by (a) GA-LSTM, (b) LSTM, (c) DBN, and (D) MLP.

FIGURE 17. One-step ahead prediction results on 65th day) by (a) GA-LSTM, (b) LSTM, (c) DBN, and (D) MLP.

FIGURE 18. One-step ahead prediction results on 75th day) by (a) GA-LSTM, (b) LSTM, (c) DBN, and (D) MLP.

FIGURE 19. One-step ahead prediction results on 85th day) by (a) GA-LSTM, (b) LSTM, (c) DBN, and (D) MLP.

MAPE [37] with other standard predictors— a single–layer
LSTM predictor, a 3–layer deep belief network (DBN)
predictor, and a 3–layer perceptron (MLP) neural network
predictor were used for comparison.

Figs. 16–19 show the show the one-step ahead pre-
diction results of the methods at TSP point (46th day),
65th, 75th, and 85th days respectively. In all the prediction
points, the MOGA-LSTM’s predictive prowess is compar-
atively more reliable as it learns the test data better than
the other predictors. This is obviously associated with the
following:
• Compared with the shallow single LSTM predictor,
a multi-layer LSTM predictors are more likely to

effectively capture characteristic information and learn
the dynamic relationships hidden in the HI.

• With continuous-valued stochastic units, the MOGA-
LSTM illustrates superior efficiencies in handling
the input variables (HI) with complex non-linear
characteristics.

• The integration of the MOGA further enhances predic-
tive efficiencies of the deep LSTM model by finding
optimal parameters for a minimal false alarm rate in
RUL prediction.

Although the other algorithms also made reliable predic-
tions as shown in Figs. 16–19, as also shown in Fig. 20,
the proposed method outperforms the other competitors with
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FIGURE 20. RUL prediction performance comparison of predictors
(a) RMSE, (b) MAE, and (c) MAPE.

the least RMSE, MAPE, and MAE at the various prediction
points.

VI. CONCLUDING REMARKS
As the first attempt on a data-driven approach to prognostics
of electromagnetic pumps, this paper proposed a DL–based
prognostics framework for solenoid pump prognostics by
employing a sensor fusion technique. From vibrational and
pressure signals, statistical features were extracted after
a multi–level wavelet decomposition process from which,
highly prognosible features/parameters were selected fol-
lowing prognosibility, monotonicity and trendability tests.
The feature fusion technique—FastICA provides an effective
method for fusing highly prognosible parameters/features for

generating a comprehensive HI. This serves as input for the
proposed MGA-LSTM prognostics model whose prowess
for automated search for optimal hyper-parameters (by the
MOGA) ensures a highly reliable prognostics performance
by the LSTM model.

The proposedmodel was validated on aVSC63A5Solenoid
pump manufactured by Korea Control Limited under nor-
mal running conditions with an Fe2O3–contaminated diesel
as the working fluid and its performance compared with
other standard RUL prediction methods. The results show
that the proposed method is more accurate and although
more computationally expensive due to the exhaustive search
by the MOGA, the proposed method better meets indus-
trial demands which include real-time predictive capability,
automation, accuracy, and mitigation of strenuous parameter
tuningwhich usually lead to over–fitting and/or under–fitting.
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