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ABSTRACT Multisensor data fusion is extensively used to merge data from heterogeneous sensors in a
smart environment. However, sensors provide noisy and uncertain information which is a big challenge
for researchers. Since uncertainty in the data is a central constraint for data fusion and decision-making
systems. Dempster-Shafer’s evidence theory is an appropriate method for modeling and fusing uncertain
information. In this paper, a novel data fusion scheme is proposed based on the modified belief entropy of
the basic probability assignments (BPAs) to quantify the uncertainty in the information and fused them by
Dempster-Shafer evidence theory. The proposed DFUDS (data fusion based on measuring uncertainty in
Dempster-Shafer) scheme considers the available redundant information in the body of evidence (BoEs).
The BoEs obtained from the sensor data are processed by proposed belief entropy, and fuse all pieces of
evidence by Dempster’s rule of combination to transfer the conflicting data into decision-making results.
Extensive computer simulation results show that the proposed scheme outperforms in terms of the degree of
uncertainty, evidence, reasoning, and decision accuracy under active contexts of the smart environment.

INDEX TERMS Multisensor data fusion, Dempster-Shaffer theory, uncertainty measurements, belief

entropy, wireless sensor network.

I. INTRODUCTION

The smart environment consists of several numbers of tiny
and pervasive devices to collect data on surroundings, and
extracting information from them [1]. Smart IoT environ-
ments are often based on sensing, reasoning, inferencing, and
generally exploit a sensory infrastructure [2]. These sensor
devices often produce imprecise or corrupt data reducing the
inferencing accuracy and energy efficiency of the system.
Moreover, data generated in the smart [oT environment are
conditionally or unconditionally reliant on each other. In such
situation, it is necessary to adopt a method of fusion for
heterogeneous sensor data. However, it is very challenging to
merge heterogeneous sensor data to infer accurate decisions.
In smart IoT environments, quantifying the uncertainty of
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heterogeneous sensor data is very essential for making the
accurate decision. Furthermore, it is also important to maxi-
mize the lifetime and performance of the sensor network by
operating the system according to the context and condition
of sensory data. Hence, a smart IoT environment requires a
context-aware operation for better decision-making accuracy
with minimal energy consumption and high network load.
Multisensor Data fusion is used to combine data from
multiple sources to produce more concise and accurate
data [3]-[7]. It can effectively handle the noisy data gen-
erated in a dynamic environment and supports data repre-
sentation in a way that helps the decision-making process
based on the available information. Note that the imperfection
aspects of the sensor data such as uncertainty, inaccuracy, and
inconsistency, can result in false beliefs and inferences about
the environment [8], [9]. Multisensor data fusion techniques
are broadly classified into three categories concerning the
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employed mathematical method; i) probability-based fusion,
ii) artificial intelligence-based fusion, and iii) evidence-
based fusion [10]. Dempster—Shafer (DS) evidence theory,
as an evidence-based fusion method, is one of the effective
approaches for data fusion [11]. It is effective for modeling
and processing uncertain information to transfer the conflict-
ing data into decision-making results. However, quantifying
the uncertainty of obtained sensor data before applying data
fusion is still a challenge and hot topic for the researchers.

Uncertainty often comes from incomplete information
and imprecision. Several theories have been developed to
deal with the uncertainty of the data, such as Shannon
entropy [12], Dempster-Shafer (DS) evidence theory [11],
and rough set theory [13]. Some methods e.g. Hohle’s
confusion measure [14], Yager’s dissonance measure [15],
the weighted Hartley entropy [16], Klir & Ramer’s discord
measure [17], Klir & Parviz’s strife measure [18], and Deng
entropy [19] have been proposed to measure the uncertainty
of the evidence in the DS theory. Among these methods, Deng
entropy is widely used and has been successfully applied in
several applications [20]-[24]. Nevertheless, Deng entropy
can be further improved to evaluate the redundant information
in the body of evidence (BoE) including different parameters
of the sensor data. We adopted previous research [22]-[24] to
improve the Deng entropy operation using set theory.

The proposed DFUDS scheme allows to collect data
from the IoT environment and quantify the uncertainty in
the uncertain information obtained from the sensor before
sending them to the fusion node for combining and decision-
making. Deng entropy in DS evidence theory is the more effi-
cient and effective way to measure the uncertainty in the sets
of BoEs [19]. The proposed scheme extends the Deng entropy
for reducing the redundant information in each BoEs by
estimating the degree of uncertainty. In our scheme, we used
‘union of set theory’ to remove the redundant entity from
the BoEs before measuring the uncertainty of them. After
measuring the degree of uncertainty, all pieces of evidence are
combined by DS rule of combination to fuse and get the final
result for inferencing and making the decision. Computer
simulation has shown that the proposed scheme significantly
outperforms the other schemes in terms of quantifying the
degree of uncertainty and fusion accuracy. The contributions
of the proposed scheme are summarized as follows:

o The proposed entropy is based on Deng entropy to
estimate the degree of uncertainty of each sensor
measurements fused them. Sensory measurements in
the smart environment contain large uncertainty, and
decision-making in the uncertain environment is a big
challenge. Thus, before combining the evidence for fus-
ing data, proposed belief entropy is applied to the mass
value of each sensor measurements.

e Our scheme reduces the redundant information in the
BoEs, so that it increases the degree of uncertainty
between the BoEs and helps to perform the correct
reasoning and improve the inference accuracy based on
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pieces of evidence from the sensor data of the smart
environment.

o« DFUDS used DS rule of combination to combined
all pieces of evidence from sensors and get the final
result for inferencing and making a decision. Such
self-optimization and dynamic behaviors able the sys-
tem to respond to the situation dynamically based on the
inferred knowledge and evidence from the fused data of
the environments.

o The proposed scheme minimizes energy consumption
and network traffic by transferring only the inferred
knowledge extracted from the fusion data instead of the
entire data.

The rest of the paper is organized as follows: in
Section 2 the work related to data fusion for WSN is dis-
cussed. The proposed scheme on multisensor data fusion
for WSN is presented in Section 3. Section 4 discusses the
simulation results, and the conclusion is made in Section 5.

Il. RELATED WORK

A. DATA FUSION

The data fusion problem has been studied by several
researchers. In [25], the authors presented a smart fusion
framework specifically aimed at combining heterogeneous,
multimedia, multimodal real-time big data streams from
hard and soft smartphone sensors to achieve synergistic
convergence leading to better operational intelligence in
computer-based decision support systems. In [26], Dynamic
Bayesian networks (DBNs) is used to consider the past belief
of the system and capturing the dynamicity of the phenomena
under observation. The authors adopted DBN to perform
adaptive data fusion for various applications such as the
new multi-sensor fusion framework which is based on the
Dynamic Bayesian Network (DBN) and Convolutional Neu-
ral Network (CNN) for Sign Language Recognition (SLR).
In [27] a framework is developed which focuses on the
privacy-aware data fusion for sensory data and tried to secure
user privacy before smart city data are integrated. In [9] a
data aggregation and fusion scheme is presented for WSN
based on redial basis function neural network (RBFNN).
It employed a neural network technique to efficiently aggre-
gate data, and eliminate unnecessary information before clas-
sifying them.

A weight-based fuzzy data fusion algorithm is proposed
in [28] which enhances the accuracy of the data fusion process
by assigning the weight to the clustering head of the WSN.
In [29] an adaptive distributed Bayesian approach is proposed
for detecting outliers in the collected data. Hou et al. [30]
proposed an event-driven dynamic clustering scheme and a
data fusion algorithm that relies on neural networks, using a
dynamic clustering and cluster head selection process based
on the severity of the event and the remaining energy of the
node. Here, the authors used a back-propagation neural net-
work model to fused and extract large amounts of data. In [31]
a multisensor data fusion approach was presented for medical
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data from body sensor networks, which obtained and fused
data from BSNs in the fog computing environment. In [32] an
approach is proposed that allows parallel data fusion in WSN
which enables a trade-off between different user-defined met-
rics through the use of a genetic machine learning algorithm.
In [33], the authors were proposed a scheme for data fusion
and aggregation based on the combination of sensor node
scheduling and batch estimation.

In [34], a DS evidence-based algorithm was presented to
evaluate the spatial correlation between nodes at different
distances. The output from each sensor node is character-
ized by weighted evidence rather than a crisp value, and
the states of adjacent nodes are reasonably fused based on
their contribution to detection. In [35], a data fusion tech-
nique was proposed that uses DS theory to detect events
on Twitter. Two types of data were used in this scheme.
The first was an attribute extracted from text using the word
collection method, and the second was a visual attribute
extracted by applying a scale-invariant attribute transforma-
tion. DS theory is applied to combine data from both sources.
A multisensor data fusion technique based on DS theory was
presented in [36] to detect indoor homes from numerous
sources. In [37], a general fusion approach was proposed
that uses DS theory to address the uncertainty of sensor
readings and capture the characteristics of the environment.
This effort is considered an ideal detection model for the
existing approach. A two-step technique for building a belief
function based on sensor data is described.

B. DEMPSTER-SHAFER EVIDENCE THEORY

Dempster-Shafer (DS) theory is a proof theory that deals
with measures of belief and mass function. It considers a
generalizing form of probability theory and is usually used
to reason the uncertainty in data from multiple sources [38].

Zm(A):l

ACO (1
m(@@) =0

where ¥ and m (A) represent the null set and basic belief
assignment function for subset A, respectively. Belief and
plausibly for A can be expressed mathematically as

bel (A) = Y m(x) )
XCA

plA) = Y m(x)=1-bel(A) 3)
XNAZ£D

where bel (A), X, and pl (A) represents the degree of confi-
dence, frame of discernment (FoD), and trustworthiness of
A is not false. For any (power set of all pieces of evidence,
see Section: III for more details) The relation between belief,
unbelief, unknown, unk(-), and plausibility functions for the
event, E, are described in Figure 1.

bel (E) + bel (E) < 1,
bel (E) + bel (E) + unk (E) = 1,
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FIGURE 1. The relationship between belief, disbelief, unknown, and
plausibility function.

pl(E) = bel (®) — bel (E),

xVE C © (6)
unk (E) = 1 — (bel (E) + bel (E))
@)

C. UNCERTAINTY MEASURES IN DEMPSTER-SHAFER

Uncertainty measurement of the BoEs in the DS theory is an
effective approach to quantify and fuse the data obtained from
the sensor. It tries to estimate the level of information in each
BoE by using entropy measurements. The proposed scheme
extends the Deng entropy to improve the uncertainty mea-
surement and fuse the evidence obtained from BoEs by DS
rules of combination. The existing methods for uncertainty
measurement in DS are explained in the following [22]-[24].

1) HOHLE's CONFUSION MEASURE

Hohle’s confusion measure is one of the earliest methods
to measure the uncertainty in DS. Mathematically it can be
formulated as follows [14]:

Cu(m)=—Y_m(A)log, ®)

= Bel (A)

where Cy, Bel (A), m (A), and X denote the Hohle’s confu-
sion measure, belief function, mass function of proposition A,
and frame of discernment (FoD) respectively.

2) YAGER's DISSONANCE MEASURE

Yager contributes to measure the uncertainty and it is called
Yager’s dissonance measure, Ey, which defined as fol-
lows [15]:

Ey(m)=—_ m(A)log, PI(A) )
ACX

where Pl (A) is the plausibility function and m (A) is the mass
function of proposition A.

3) WEIGHTED HARTLEY ENTROPY

Weighted Hartley entropy was proposed by Dubois and Prade
to measure entropy, Epp. Using the cardinality, |A|, it can be
expressed mathematically as follows [16]:

Epp(m) = = ) m(A)log, |A| (10)
ACX
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4) DISCORD MEASURE

Discord measure, Dgg, was proposed by Klir and Ramer
which describes the belief entropy using the intersection of
the focal elements of the FoD as follows [17]:

A( B
—Y mlog, Y m® . ﬂ L an

ACX BCX

Dgr(m) =

5) STRIFE MEASURE

Strife Measure was presented by Klir and Parviz for
belief entropy in DS [18]. It also called Klir and Parviz’s
strife measure Skp, which is more similar to Ramer’s
method [17].

~ Y mog, Y me LB (1)

ACX BCX

Sgp(m) =

6) GEORGE AND PAL’'s CONFLICT MEASURE
George and Pal proposed the total conflict measure, 7C gp,.
It can be formulated as follows [39]:

A B

AN B ) (13)

—Y m@A)) m <B)(

ACX BCX U B|

TCgp(m) =

7) SHANNON ENTROPY

Shannon entropy is usually used to quantify the uncertainty
and amount of information contained in a message. It can be
formulated as follows [12]:

H(p)=—_pilog,p; (14)

where n and p; represents the number and probability of
state i, respectively.

8) DENG ENTROPY
Deng entropy, E4, is used to generalize Shannon entropy
to measure the uncertainty of DS theory. It degenerates the
Shannon entropy to model the information. It can be formu-
lated as [19],

m(A)
Z m(A) log, ~rar—— (15)

ACX

Eq(m) = —

where X denotes the FoD, |A| represents the cardinality of
the proposition A. The mass function of proposition A, m (A),
is treated as the probability of proposition A. Mathematically
it can be represented as [19]:

> m(A)log, m(A) (16)

ACX

Eq(m) = —

ill. THE PROPOSED SCHEME

In this section, the proposed DFUDS (data fusion based on
measuring uncertainty in Dempster-Shafer) scheme for mul-
tisensor data fusion with WSN is presented. It quantifies the
uncertainty of the information in the BoE using the proposed
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FIGURE 2. The three-phase operation of the proposed scheme.

entropy for DS. After that, the individual mass value obtained
by mass function from the sensor data, z;, is combined to
achieve accurate fusion result using the DS evidence rule of
combination. The three-phased operations of the proposed
scheme are explained in Figure 2.

In DS evidence theory, mass functions and BoE both are
the sources of uncertain information, e.g., elements and the
information in a BoE may be different and contain redundant
information without changing the mass value. However, Deng
entropy only considerers the mass values and the cardinality
of the proposition, but the redundant information in the BoE
is ignored [22]-[24]. High redundant information indicates
a large reduction in uncertainty, while low redundant infor-
mation indicates a small reduction. On the other hand, 100%
redundant information in two BoEs means the BoEs are com-
pletely similar. Redundancy and change in the information
of the BoE can be evaluated to improve the accuracy of the
uncertainty, which is effective for inference and accuracy of
the fusion.

Let 2 = {61,0,,...,0,} denotes a finite set, where Q2
is called the frame of discernment (FoD). The power set 28
of 2, can be written denoted as ® is composed of 2" elements
as follow:

O =1{0,{01}. {62}, ... {6a} . {01, 00}, ..., Q)

A mass function m, of DS theory, is used to mapped power
set, ®, to the interval [0,1], as follows [11]:

> m@A) =1

ACO (17
m@) =0

here masse function, m (A), indicate how strongly the evi-
dence supports the proposition A.

R,m) = {{A,(m)) :A e ®,m@A) >0}, (18)

Bel (A) = Z m (B) (19)
$+BCA

PLA) = Y m(B) (20)
BNA#¢
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Consider the two BoEs contain different information the mass
values are same.
First BoE:

{<{a,b,c},m >, <{d,e,f}, m’l >} s.t.m({a, b, c})
= 0.4 and m\({d, e,f}) = 0.6

Second BoE:

my :my{a, b, c} = 0.4, m, {c,d,f} =0.6
{<{a,b,c},my >, <{c,d,f}, m’z >} s.t.my({a, b, c})
= 0.4 and my)({c,d,f}) = 0.6

The mass value of both BoEs are same and Deng entropy
measures the same entropy for both BoEs, even the informa-
tion in the BoEs is different. The first BoE has no redundant
information but the second BoE has redundant information,
and Deng entropy does not consider the redundant informa-
tion. Now the proposed scheme tries to handle this problem
by reducing the redundant information in the BPAs to quan-
tify the correct uncertainty of the BoEs. Our scheme used ‘set
theory’ for reducing the redundant information to increase the
degree of uncertainty of the BoE.

After measuring the uncertainty of the BoE correctly,
the evidence obtained from BoEs is then combined by Demp-
ster’s rule of combination for fusing purposes. The proposed
modified belief entropy, E,, are explained and apply to the sec-
ond BoEs as follows [22]-[24].

Second BoE:

my :mp{a,b,cy =04, mhfc,d f}=0.6

By taking the union of the second BoE as:

myUmj : {a, b, cyU{c,d,f}
myUm, :{a,b,c d,f}

The union of two mass functions represents the reduction of
redundant value in the combined mass functions.

Letassume, A’ =mpUm)
where A’ represent the union of the two BoE and its can
be input to Deng entropy and the proposed belief entropy
E,(m), based on the Deng Entropy can be formulated
as [19].

m(A)

Ep(m)=— > m(A) log, AT (21)
ACX

Entropy of A’ is measured to get the condensed form of
the information in the BPAs. High redundant information
indicates a reduction in uncertainty which is hard to differ-
entiate from each other. It increases the uncertainty of the
BoEs which differentiates the BPAs in terms of information
contained. So, entropy for BPAs is calculated without redun-
dant information to obtain the accurate quantification of the
uncertainty for BPAs as explained in Eq. (21).
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Using DS rule of combination, two mass functions, m
and my, can be combined to get collective belief evidence
as [11]:

m(A)

(Ep (m1) @ Ej, (m2)) (A)
1
= 1% Eplmy (B)]Ep[m2 (O)]  (22)
BNC=A
where k denotes the standardization constant for the degree

of conflict between m and m;, and can be formulated as

k= " Eplm (B)IEyIm (C)] (23)
BNC=%
Consider the FoD Q = {61,6>,...,6,} withn > 2 and k
sensors, for k > 2. LetM = [a;], 1 <i <k,<j <nbe
the mass matrix with k rows and n columns. The proposed
entropy £, of the mass m; from sensor i for the target event,
E, is denoted as

01 ... 0, {1U02}... R
§1 Mix1 ... Mpxl mQx1
m;=Ep[m (s;)] §2 M2x2 ... Mpx2 mQx2
Sk Mixk .. Mpxk mQxk
(24)

Based on DS theory the individual evidence obtained from
the distributed sensors can be fused and the masses obtained
from the mass function can be combined by using DS. Sup-
pose, my, ma, ..., m, be n independent values obtained from
n sensor nodes si, s2,...,5, as evidence for an event, E,
occurred in the smart environment. The rule for combining
the evidence from sensor data is shown in Figure 3 and
Figure 4.

For two sensors:

Sensor 1 —Lp[ E,(my) | > Data _my

Fusi —"2_3 Fused result
' Sensor 2 HI2»| E,(my) | Fusion

FIGURE 3. The Dempster-Shafer masses combination process for
2 sensors.

For three sensors:
Sensor 1 —17%1
 Sensor 1 | ™\,
| Sensor 2 -2 3/ E (m,) P> F A 23y pysed result

usion
ms

FIGURE 4. The Dempster-Shafer masses combination process for
3 sensors.

For Two Sensors:
anz:E my (s1) m2 (s2)

E) =
my 2(E) > s 0 M1 (s1)my (52)

(25)
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TABLE 1. The summary of the result obtained from the combination of the evidence by different schemes.

BoEs Methods Mmyp 7 (A) Myz 7(B) My n(€) myp n(D) myp ,(E) my3 ,(F) Target
DS [11] 0 0.5311 0.3927 0.0239 0.0523 0 B
Murphy [42] 0.4931 0.412 0.0491 0.01921 0.0201 0.0065 A
my, my Yager's [15] 0.5176 0.3981 0.0165 0.0339 0.0332 0.0085 A
Deng [19] 0.5861 0.3261 0.0156 0.0539 0.0423 0.0035 A
DFUDS 0.6161 0.1156 0.0831 0.0739 0.0923 0.0165 A
DS [11] 0 0.5311 0.3927 0.0239 0.0523 0 B
Murphy [42] 0.4531 0.482 0.0491 0.01921 0.0201 0.0065 B
my, my, ms Yager's [15] 0.4576 0.4181 0.0365 0.0439 0.0232 0.0025 A
Deng [19] 0.7161 0.2131 0.0156 0.0139 0.0323 0.0065 A
DFUDS 0.8061 0.1056 0.0131 0.0239 0.0623 0.0165 A
DS [11] 0 0.3911 0.5327 0.0239 0.0523 0 C
Murphy [42] 0.5531 0.312 0.0491 0.01921 0.0201 0.0065 A
my, My, Mz, My Yager's [15] 0.6176 0.2181 0.0965 0.0439 0.0232 0.0025 A
Deng [19] 0.7161 0.2131 0.0156 0.0139 0.0323 0.0065 A
DFUDS 0.8061 0.1056 0.0131 0.0239 0.0623 0.0165 A
DS [11] 0 0.3911 0.5327 0.0239 0.0523 0 C
Murphy [42] 0.5531 0.312 0.0491 0.01921 0.0201 0.0065 A
mq, My, M3, My, Mg~ Yager's [15] 0.6176 0.2181 0.0965 0.0439 0.0232 0.0025 A
Deng [19] 0.7161 0.2131 0.0156 0.0139 0.0323 0.0065 A
DFUDS 0.8061 0.1056 0.0131 0.0239 0.0623 0.0165 A
For n sensors: 25 o DFUDS 3
o Pmemmony ~
[ Semsor 2 |~->{ Ey(ma) | Fllljsait:n 2 Fused resil 3 > Tohie Confusion o g
. b4 :"u)n 15 george an(é }11)313 o®
m, v-i ° empster- aer. pe . ®
= o o
I w 10 ° ¢ o ® i P
FIGURE 5. The Dempster-Shafer masses combination process for £ s o ® ="
n sensors. 2 4 ° o®® »
5 5 ] o jo° ®
oo ?® : ' se o
_ Zslﬁsngml(sl)mZ(sz) 26) . $088c00c00%°0000°?®
1= 5 insze M (s1)m2 (s2) 0 5 10 15 20
The denominator is a normalization factor, 1 — K, where K Size of data in BoEs
is the conflict factor between the two pieces of evidence and FIGURE 6. The uncertainty degree of BoEs based on size.
K < 1.
K = Zﬂﬂu;ﬁ@ my (s1) m2 (s2) _ Zslﬂszﬂm:E my (s1) mp (s7) m3 (s3) (30)

_ Xsins=£ M1 (s1) m2 (s2)
N 1-K
where m > (E) is the new evidence for the event, E, obtained
by the combining individual evidence mj (s1) from sensor 1
and my (s2) from sensor 2, ® represents the set of all possible
evidence from sensor data.
For Three Sensors:

> sinsnss=E M (1) m2 (s2) m3 (53)

27

1-K
where m 2 3 (E) is the new evidence about event, E, obtained
by combining individual evidence mj (E) from sensor 1,
my (E) from sensor 2, and m3 (E) from sensor 3.

The DS theory can merge all the pieces of evidence from
multiple sources. The generalized form for the combination
of evidence from the n number of sources (sensor nodes) is
defined as shown in Figure 5.

mi23(E) = (28) For n Sensors:
Zslﬁszﬁs3;é® my (s1) ma (s2) m3 (s3)
1
= 2 nsarst M1 (51) 2 (2) 3 (53) (29) mio,.n(E) = 1% Z 1_[ m; (s;) (31)
1— lemzmﬁe@ my (s1) ma (s2) m3 (s3) Nisi=E \1<i<n
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FIGURE 7. The comparison of fused results based on sensor mass values.

k=%

Ns;=0

[ mieso 32)

1<i<n

Plausibility pl (E) is the sum of all the masses of the sets s;
for events E. The plausibility can be derived from support or
belief as follows if bel (®) =1

pl(E)=1—"bel (E),

Unknown mass unk (E) is defined as a wrong prediction rate
about the event and can be express as

unk (E) = 1 — (bel (E) + bel (E)) (34)

VE C ©® (33)

IV. PERFORMANCE EVALUATION

In this section, the proposed scheme is evaluated by computer
simulation. Python Library, PYUDS, (python library for mea-
suring uncertainty in Dempster-Shafer) is used to evaluate
the effectiveness of the proposed scheme in terms of entropy
information in the BoEs, degree of uncertainty, the accuracy
of the fused result [40], [41]. Here, the DFUDS scheme mea-
sures the entropy of the BoEs using modified Deng Entropy,
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and fused the evidence by the DS theory. It quantifies the
degree of uncertainty in the BoEs to get accurate evidence
from the sensor data. The mass values obtained by the mass
function are combined using Dempster’s rule of combination
to fused and infer the final result.

Fours representative uncertainty measurement techniques
are compared with the proposed scheme, which DS [11],
Murphy [42], Yager [15], and Deng [19]. The simulation
consists of two phases: 1) quantifying the uncertainty and
2) data fusion with DS. In the uncertainty quantification
phase, the redundant information in the BoEs is reduced, and
then the degree of uncertainty between the BoEs is quantified.
In the second phase, the combination rule of Dempster is
applied to fuse all the pieces of evidence obtained from dis-
tributed sensors. Several metrics are examined to evaluate the
performance of different uncertainty measurement and fusion
schemes, which are the degree of uncertainty, the accuracy of
the fused result, and the probability of detection of human
activities based on fused data. The simulation results are
explained in the following. Table 1 reports the summary of the
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fused results of the four schemes compared with the proposed
scheme.

Figure. 6 shows the comparison of the degree of uncer-
tainty measured by existing methods and the proposed
scheme. The results of the figure show that the uncertainty
measured by George and Pal, Klir and Parviz, Hohle’s Con-
fusion, Klir and Ramer, Deng Entropy, DS, and DFUDS
increases as the number of elements in BoE increases. Simi-
larly, Hohle’s confusion uncertainty measures, George & Pal,
and DS have reflected the same result in terms of degree
uncertainty. It confirms that these three uncertainty methods
fail to detect the change in the element of BoEs. The existing
methods of entropy do not consider the redundant information
in the BoEs which reduces the uncertainty between the BoEs.
The proposed scheme reduces the redundant information to
correctly quantify the uncertainty between the BoEs. There-
fore, the proposed belief entropy is effective for uncertainty
measurement in the Dempster-Shafer framework.

Figure 7 shows the fusion results for six different objects
by combining BoEs from different sensors. Believes are dis-
tributed for different objects. The proposed entropy and Deng
entropy have a strong belief for object ‘A’ than the Ds entropy.
The belief of the proposed scheme for other objects is very
close to the Deng entropy in the case of two BoEs, m and m;.
Likewise, belief results by other groups of BoEs are evaluated
as shown by Figure 7 (b), (c), and (d). The fusion results with
DS and Deng methods have the weak belief for all objects
with all evidence and the proposed scheme has the strong and
correct decision for target ‘A’. Due to conflicting evidence,
the DS combination rules indicate weak evidence for the tar-
get objects, B, C, D, E, and F', however, the evidence results
of DFUDS and Deng entropy are strong for target ‘A’. It is
because the uncertainty measurement of the DFUDS scheme
is more effectual and give more accurate result than the other
schemes even the BoEs have same mass value. The proposed
belief entropy measured the redundant information from the
BoE:s to contribute efficiently in sensor data fusion, especially
in the presence of conflict in the evidence. The effects and
benefits of new entropy convince better performance of the
DFUDS scheme.

Figure 8 shows the fusion result of the three sensors by
the proposed scheme for three different activities, cycling
in Figure 8(a), walking in Figure 8(b), and bending in
Figure 8(c). The detection result of the three sensors is fused
to recognized human activities. The fusion result obtained by
the proposed scheme is recognized, about 0.75 percent for
cycling activity while 0.18 for walking, and 0.1 percent for
bending. Similarly, the fusion result is evaluated for other
activities as shown in Figure 8(b) and 8(c), respectively. The
simulation result of the three schemes shows that DFUDS
gives more strong and correct fused result than the other
methods.

Figure 9 shows the accuracy of the proposed scheme
after applying the modified belief entropy to the BoEs in
the DS evidence theory. The proposed scheme provides a
more accurate fused result than the Deng entropy and typical
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FIGURE 8. Fusion result of three activities cycling, walking and bending.

DS evidence theory. Deng entropy and DS evidence theory
do not detect the redundant values in the BoEs. The pro-
posed scheme used the modified belief entropy to the BoEs
of the sensors data before combining them. As shown in
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the figure if the accuracy of fusion result given by typ-
ical DS evidence theory is around 65 percent, the pro-
posed scheme gives 25 percent better result than the DS
theory and around 20 percent better result than the Deng
entropy. By applying the modified belief entropy, the pro-
posed scheme gives the efficient result as shown in the figure.
It seems that the performance of the proposed method is
better than the Deng entropy and DS scheme. It improves the
efficiency of the system in terms of measuring the entropy of
the BoEs.

V. CONCLUSION

In this article, a new method called DFUDS is proposed for
data fusion. We use belief entropy for individual sensor data
as a mass-function in DS theory to quantify uncertainty and
merge multi-sensor data. The modified entropy adopted by
Deng entropy is used for the mass value of the sensor data and
the DS theory is used to fuse it. As aresult, the inference accu-
racy is improved and the energy consumption and network
traffic can be significantly reduced. Simulation results show
that the proposed method performs significantly better in
terms of quantify uncertainty, inference accuracy, data fusion,
and reduce redundant information.

The accuracy of the DS evidence theory for data fusion in
the IoT environment can be improved if the detrimental influ-
ence of the redundant information is reduced by quantifying
the uncertainty of the BoEs. In the future, the performance
of the proposed scheme will be further enhanced by mul-
tisensor heterogeneous data fusion using feature selection,
extraction algorithm of the machine learning approaches to
select the best feature for the fusion based on the target.
The proposed scheme will also be extended using artificial
intelligence inference to improve inference accuracy obtained
by multisensor fusion in the smart [oT environment.
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