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ABSTRACT With the development of specialization, coordination and intelligence in the manufacturing
service process, the issue of how to quickly extract potential resources or capabilities for distributed
manufacturing service requirements, and how to carry out resource matching for manufacturing service
requirements with correlated mapping characteristics, have become the critical issues to be addressed in
the cloud manufacturing environment. Through the combination of the characteristics of relevance, synergy
and diversity of manufacturing service tasks on the intelligent cloud platform, a matching decision method
for manufacturing service resources is proposed in this paper based on multidimensional information
fusion. On the basis of integrating multidimensional information data in cloud manufacturing resource,
the information entropy and rough set theory are applied to classify the importance of manufacturing
service tasks, while the matching capability are analyzed by using a hybrid collaborative filtering (HCF)
algorithm. Then, the information of function attribute, reliability and preference is employed to match and
push manufacturing service resources or capabilities actively, so as to realize the matching decision of
manufacturing service resources with precise quality, stable service and maximum efficiency. At last, a case
study of resources matching decision for body & chassis manufacturing service in a new energy automobile
enterprise is presented, in which the experimental results show that the proposed approach is more accuracy
and effective compared with other different recommendation algorithms.

INDEX TERMS Manufacturing service, information fusion, hybrid collaborative filtering, resource
matching.

I. INTRODUCTION
With the development of cloud computing, big data, ‘‘Inter-
net +’’, Internet of things, artificial intelligence and other
emerging technologies, the manufacturing industry has also
changed from the previous single production model to a
service-oriented, collaborative and intelligent cloudmanufac-
turingmodel [1]. Based on big data, cloudmanufacturing will
not only improve production efficiency, but also generate new
product and servicemodels in addition to traditional products,
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open up new growth space, and redefine the operation mode
and competitiveness of manufacturing industry [2].

Cloud manufacturing is a new model of networked and
agile manufacturing based on knowledge, which supports
customers to acquire resources and capability of manufactur-
ing services in real time, and increases or decreases manu-
facturing resources dynamically and nimbly, then completes
all kinds of process throughout the manufacturing life cycle
intelligently [3]. For manufacturing applications and busi-
ness operations on the virtual cloud manufacturing systems,
the resources and capabilities required by customers come
from the large scale manufacturing cloud pool. The man-
ufacturing resources and capability are integrated by cloud
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manufacturing, and virtualized to customers in the form of
services. In particular, on-requirement matching is the basic
link to achieve the goal of cloud manufacturing services.
That is, the resources and capability on the cloud manufactur-
ing platform is searched and selected according to customer
requirements. Therefore, how to select the most suitable
resources from the cloudmanufacturing service resource pool
andmatch them to customers in an appropriate form to satisfy
various requirements is a key issue in the research field of
cloud manufacturing service [4].

From the previous research, the research on the cloud man-
ufacturing service resource selection and optimal matching
has made some achievements. However, there are two major
challenges to be solved. One is the analysis of influencing fac-
tors for resource selection and matching, the other is resource
matching methods of manufacturing service.

On one hand, analysis of influencing factors in the
search andmatching for manufacturing service resources, has
evolved from a single item to multiple indicators gradually.
Those influencing factors include product function, manufac-
turing and service quality, and so on. But most of them only
consider single environment or element in the resource selec-
tion and optimization [5]. Zhang et al. proposed a Bayesian
method based on time perception in a distributed manufactur-
ing environment, for better recommendation effect of manu-
facturing service resources [6]. According to the importance
of each part in collaborative assembly, Fei et al. presented
a matching scheme through genetic optimization algorithm,
which has a good effect on reducing the remaining num-
ber of parts [7]. Raj et al. applied an ant colony algorithm
for selection and matching of products and services, and
examples showed that using lower precision parts can obtain
higher precision assemblies [8]. Based on service quality
attributes, Yahyaoui et al. established a classification plan,
using rough set theory to match the best Web service to
users [9]. In order to solve the problem of on-requirement
mutual selection of service providers and tasks in cloud
manufacturing environment, Zhao et al. Established a task-
resource bilateral matching model based on quality of ser-
vice (QoS), and adopted cloud model and variable fuzzy
recognition method for quantitative analysis and calcula-
tion [10]. Tursi et al. established an ontology-based service
resource information system with product performance as
the core, and a resource model with the service information
system [11].

In order to obtain better resource matching effect, multi-
ple influencing factors is analyzed and studied. For exam-
ple, to reduce the information loss of function indicators,
increase the controllable range of data measurement, and
analyze the conditions that require interval fuzzy preference
for resource decision, Bentkowsk et al. introduced interval
numbers instead of real numbers for function indicators of
resource requirement (power, size, etc.) [12]. Considering the
ambiguity of qualitative indicators in the decision-making
process for cloud resource selection and the difficulty of func-
tion indicators represented by interval measures, Liu et al.

suggested a hybrid multi-index method of resource matching
decision for cloud manufacturing based on OWA operator in
uncertain environment [13], and proposed a QoS matching
method of personalized clustering and reliable trust percep-
tion for resource recommendation in cloud manufacturing
environment for personalized requirements [14]. The above
results show that the influencing factors of cloud manufac-
turing resource matching are mainly distributed in unilat-
eral aspects such as function, reliability. However, there are
few studies that comprehensively consider these multiple
influencing factors.

On the other hand, there is still the need for a detailed map-
ping relationship between manufacturing service resources
and task requirement implementation in cloud environment.
And the research mainly focuses on resource selection based
on task characteristics at first [15], [16]. Jones presented an
analysis method based on customer requirements for product
services, and assisted designers in the design and improve-
ment of service products by mining service product task char-
acteristics [17]. Kotekar et al. proposed a clustering method
for Web services based on task / function similarity using
cat swarm optimization algorithm [18]. Shen et al. stud-
ied the agglomeration mechanism of cloud manufacturing
resources and used the weight-based intuitionistic trapezoid
fuzzy method to achieve the matching of required tasks and
services [19]. According to the new characteristics of the rel-
evance of manufacturing tasks and service synergy on cloud
platform, Ren et al. proposed a two-side matching decision
method for manufacturing tasks which takes into account
learning and synergy, by using the expected utility theory and
social network theory [20].

Subsequently, in order to improve the efficiency and effec-
tiveness of matching, quick search method for manufactur-
ing service resources is studied extensively. Schaefer et al
proposed a keyword-based Web service matching method,
and designed a binary algorithm solution model for maxi-
mum similarity [21]; Strunk et al. used semantic matching
and genetic algorithms to find services that satisfy require-
ments [22]. Argoneto et al. adopted the cooperative game
algorithm based on GaleShapley model and the fuzzy engine
in resources searching, and verified the high efficiency of the
matching method for cloud manufacturing capabilities. [23].
In addition, Armstrong et al. analyzed user task differences
through K-means algorithm, determined the number of clus-
ters within a certain range, and used evaluation criteria to
obtain the optimal fast clustering results [24]. Yuan et al.
proposed a recommendation method based on VSM and
Bisecting K-means clustering in order to improve the uses
personalized experience [25].

At the same time, the research of rapid resource matching
by task ordering is also carried out gradually [26], [27].
PageRank et al proposed an importance ranking method that
considers the efficiency relation between tasks and resource
nodes [28], and the LeaderRank algorithm also considered
the ordering correlation between tasks/resource nodes, so it
is more suitable for fast matching [29].
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In the above researches, most of them focus on the direct
matching and selection of manufacturing service requirement
and related resources under single influence factors or envi-
ronmental conditions. Moreover, in the cloud manufacturing
environment, research on the matching decision of manufac-
turing service resources and task sequencing simultaneously,
is still rare [30]. In order to improve the matching decision
accuracy between manufacturing service resources and tasks
in the cloud environment, this paper takes into account the
multiple influence factors in resource matching and con-
structs a multi-source information fusion model. And rough
sets are proposed to sort the importance of manufacturing ser-
vice task requirements for the rapid effectiveness of resource
matching. On this basis, through the hybrid collaborative
filtering method, reasonable matching and push of manufac-
turing service resources are achieved, and the results of other
recommendationmethods are compared and evaluated. In this
paper, the importance of task identification of manufacturing
service requirement is sorted, and the requirements of man-
ufacturing service with functional characteristics, reliability,
preference similarity and other influencing factors can be
accurately matched, to push the potential resources of man-
ufacturing service. Therefore, it has certain theoretical and
practical significance to realize the accurate, rapid and effec-
tive matching decision of manufacturing service resources
and task requirements in cloud environment.

The remainder of this paper is organized as follows:
Section 2 presents a resource matching decision architec-
ture of cloud manufacturing services based on multidi-
mensional information fusion. Section 3 proposes a hybrid
collaborative filtering algorithm based on rough sets to
match and push the manufacturing service resources, and
Section 4 presents the experiments and results based on the
proposed approach. Finally, some conclusions of this paper
and future work are drawn in Section 5.

II. THE RESOURCE MATCHING ARCHITECTURE OF
MANUFACTURING SERVICES
In order to satisfy the initiative, timeliness and collaboration
requirements of manufacturing services in the cloud envi-
ronment, based on the description of cloud manufacturing
service data, a manufacturing services resource matching
architecture oriented multi-dimensional information fusion is
proposed, so as to realize the use of resource library in cloud
manufacturing environment. As a concrete form of manufac-
turing service resourcematching decision, information fusion
can accelerate the mining and utilization of resources in the
cloud environment to realize the new cloud manufacturing
service pattern.

A. MAIN COMPONENTS IN THE RESOURCES MATCHING
ARCHITECTURE
In the decision-making process of manufacturing service
resource matching in the cloud environment, the main
goal of the proposed architecture is to analyze, divide and
map task modules according to the manufacturing service

requirements, select appropriate task resources and capabil-
ities, match and push them to the manufacturing service
customer requirement proactively. Asmanufacturing services
are restricted by many requirements, the whole process of
manufacturing service resourcematching is a process of com-
pleting the expected tasks continuously. The decision process
of manufacturing resource matching based on multidimen-
sional information fusion can be defined as: a manufacturing
service requirement or target is decomposed into specific
tasks, and the matching and push of manufacturing service
resources are realized by combining the information about
the relationship between tasks and requirements. According
to the matching results of manufacturing service tasks and
resources, the corresponding manufacturing service activities
are implemented. When a corresponding task changes, it is
necessary to further select the collaborative resources, until a
manufacturing service activities is completed. The resources
matching architecture of the manufacturing service in the
cloud manufacturing environment mainly consists of three
parts: matching decision process, collaborative manufactur-
ing service activities, application support modules (protocol
library, algorithm library, database). The details of each part
can be showed in Figure 1.

Figure 1 presents that the expected target of manufacturing
service is decomposed into a series of manufacturing service
subtasks according to the task decomposition rules in the
protocol library. Using the matching decision algorithm in
the algorithm library and multidimensional information such
as task content and resource characteristics in the database,
the matching manufacturing service resource is obtained.
Then the manufacturing service resources receive subtasks
and process collaboratively until the manufacturing service
activity is completed.

B. MULTI-DIMENSIONAL INFORMATION IN CLOUD
MANUFACTURING
The resources matching of cloud manufacturing service is
to push the corresponding resource information from the
resource database to the corresponding customers according
to the task conditions defined in the initial stage. Prior to
the decision-making of resources matching, those related
multi-dimensional information is classified and explained.

(1) Requirements information of manufacturing services
The requirements information of manufacturing services

are comprehensive details of manufacturing service resources
and capabilities, considering the customer requirements of
market forecasting, personalized customization, mass pro-
duction, and other factors that affect the technical parameters
of manufacturing services.

The requirements information for manufacturing service
is comprehensive requirements detail of resources and capa-
bilities, which is put forward by considering the customer
requirements for market prediction, personalized customiza-
tion, mass production, etc., and combining with various
influencing factors such as manufacturing service technical
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FIGURE 1. Resource matching architecture oriented multi-dimensional information fusion.

parameters. Its information structure can be described as
follows:

CS = (CSI, CSB, CSD, CSN) is defined as requirement
information of manufacturing service. Where CSI represents
the identification number of the requirement, CSB is the prod-
uct and service module to which the requirement belongs.
CSD denotes domain knowledge, that is, information about
the manufacturing services domain related to requirements.
CSN describes specific manufacturing service requirements,
such as manufacturing requirement content, service time
requirements, manufacturing service conditions, and cus-
tomer requirement preferences and so on.

(2) Task information of manufacturing services
Manufacturing service tasks, that is, in the initial phase

of collaborative work, manufacturing service requirements
or objectives are broken down into specific tasks or sub-
tasks. According to the specific manufacturing service tasks,
the requirements can be clearly defined. Meanwhile, task
information of manufacturing service will be provided to the
corresponding resources and capabilities.

PST = (PSTI, PSTC, PSTO, PSTD, PSTA) is defined
as task information of manufacturing service. Where PSTI
represents the identification number of themanufacturing ser-
vice task, PSTC is the importance of the task (weight), PSTO
denotes the manufacturing service object and the category to
which it belongs, and the PSTD is the specific description of
manufacturing service tasks. The PSTA describes ancillary
conditions for the completion of manufacturing service tasks,
such as task time constraints, workflow order, and so on.

(3) Resources information of manufacturing services
Manufacturing service resources are the collection of

resources and capabilities in the cloud environment. Accord-
ing to the basic rules of requirement satisfaction and task
ordering, resource or capability information is actively
pushed to the manufacturing service customer require-
ment. Resource information of manufacturing service can be
extracted from data such as capability qualifications, process
parameters, design templates, and product examples.

PSR = (PSRI, PSRB, PSRS, PSRA, PSRD) is defined
as resource information of manufacturing service. Where,
PSRI represents the identification number of manufacturing
service resource. PSRB describes the service category of
manufacturing service resource, such as requirement analy-
sis, planning and design, process structure, simulation and
trial-production, production and manufacturing, logistics
and warehousing, operation and maintenance, remanufac-
turing. PSRS is the description object of manufacturing
service resource, that is, the resource information to solve a
manufacturing service problem. PSRA describes the stored
information of manufacturing service resources, including
the ownership of resource. And PSRD is specific service
content description, which can be design scheme, product
parameters, production process, operation and maintenance
methods, etc., or successful case of manufacturing ser-
vice resources. Through the objective description of
the resources information, the conflicts or constraints
that may occur in manufacturing service could be
solved.
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(4) Characteristic information of manufacturing services
The characteristic information of manufacturing service is

the collection of active factors that directly participates in the
resource matching decision and the main basis for pushing
matched resources to the manufacturing service requirement.
The characteristics information of manufacturing services
can be described in multiple dimensions such as QOS, oper-
ational effects, process, etc.

PSC = (PSCI, PSCB, PSCD) is defined as characteris-
tic information of manufacturing service. Where PSRI rep-
resents the identification number of manufacturing service
characteristic, PSRB describes the manufacture service type
to which the resource belongs. PSRD is a specific descrip-
tion of the characteristics of manufacturing services, such as
QOS, collaboration or coordination, efficiency, energy con-
sumption and stability in operation; materials, time, cost and
quality in the process, flexibility in production, environment,
and so on.

(5) Professional information of manufacturing services
Professional information of manufacturing services is a

data collection created by industry definitions or standards,
which includes the division information of parts, assemblies,
components, parts and assemblies, and information on gen-
eral, specialized, intelligent devices by industry or size, infor-
mation of general parts and special parts according to the
production or processing standard division.

PSP = (PSPI, PSPB, PSPS, PSPD) is defined as profes-
sional information of manufacturing services. Where PSPI
is the identification number of manufacturing service indus-
try, PSPB refers to the category of manufacturing service
industry, PSPS are subclasses of industry. For example,
the industries belonging to the middle category in the special
equipment include: mining and metallurgy, electronics and
electrical machinery, and so on. And PSPD is a specific
description of professional information for the manufacturing
services.

In the cloud manufacturing environment, multi-
dimensional information of manufacturing service resources
is collected, analyzed, and pushed to obtain the matching of
resources and tasks. Subsequently, the cloud manufacturing
service tasks are completed together, based on actual experi-
ence. Through the analysis of multidimensional information
for manufacturing services, an information fusion process of
resources matching in cloud manufacturing environment is
introduced.

C. INFORMATION FUSION PROCESS OF MANUFACTURING
SERVICE IN CLOUD ENVIRONMENT
The multi-dimensional information fusion process, in which
manufacturing service resources utilize available services and
capabilities such as processing, product, technology and per-
sonnel to satisfy customer requirements continuously, is for-
mulated as follow.

Rm = i← 2 {T , I , S,N ,E} (1)

where, Rm is defined as the manufacturing service require-
ment, and the target example of manufacturing service
can be obtained from the customer requirement. i is an
instance of manufacturing service resource.2 refers to a pro-
cess of matching decision-making for manufacturing service
resources, T describes the manufacturing service target. I is
the collaborative information, which is mainly composed of
multidimensional information for manufacturing services. S
denotes the condition that the constraint satisfies in the manu-
facturing service, N is the number of manufacturing services,
and E represents the manufacturing service experience.

Based on the multi-dimensional information fusion model,
the system actively matches and pushes manufacturing ser-
vice resources, so as to reduce the difficulty and time for cus-
tomers to obtain manufacturing services as much as possible,
and to improve efficiency and effectiveness of manufacturing
service resources in collaborative work.

III. RESOURCES MATCHING OF
MANUFACTURING SERVICE
The processing and searching of a large number of mul-
tidimensional data presents challenges in cloud environ-
ment [31]. The Collaborative filtering is an important method
to avoid invalid data search and obtain effective data in big
data platform [32]. So the manufacturing service resources
is matched and pushed by a hybrid collaborative filtering
algorithm in this paper. In the context of rapid changes in
personalized demand, the capabilities and quality require-
ments of cloud manufacturing service resources have also
changed accordingly. Therefore, based on multidimensional
information and characteristics of the manufacturing ser-
vice resources in cloud, the matching influencing factors
are divided into three aspects: functional domain, reliability,
preference, so as to complete the comprehensive matching
estimation of manufacturing service resources [6], [33].

A. MATCHING OF FUNCTION ATTRIBUTES
Assume there are n field concepts {rj|1 ≤ j ≤ n} of func-
tional attribute for manufacturing services. And the associ-
ated set of manufacturing service resources ua is expressed as
{ui|1 ≤ i ≤ l, a /∈ [1, l]}, si,j is represented as the
matching degree between resource ui and the field concepts
rj of functional attribute for manufacturing service. While
Ii is described as a field concepts set of functional attribute
for manufacturing service in known matching degree of ui
currently. At the same time Ia is the field concepts set of
functional attribute in known matching degree of ua. Then
the matching degree sa,j of manufacturing service resource
ua and functional attribute rj is given as follows:

sa,j = s̄a +
l∑

i=1,rj∈Ii

w(a, i)(si,j − s̄i)/
l∑
i=1

w(a, i) (2)

where, s̄i is the average value of the matching degree between
the definedmanufacturing service resources ui and functional
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attributes.

s̄i =
∑
rj∈Ii

si,j/|Ii| (3)

In the same way, s̄a is the average value of the matching
degree between the defined manufacturing service resources
ua and functional attributes. Meanwhile, w(a, i) is the sim-
ilarity between manufacturing service resources ua and ui
which satisfy customer requirements in terms of functional
attributes. w(a, i) can be expressed as follow:

w(a, i) =

∑
rj∈Ia

(sa,j − s̄a)(si,j − s̄i)√∑
rj∈Ia

(sa,j − s̄a)2
∑
rj∈Ia

(si,j − s̄i)2
(4)

If multiple functional attribute vectors need to be matched
at the same time, the similarity wF (i, j) can be calculated
using linear weighting. According to the difference between
wF (i, j) and the actual data, whether to adjust the similarity
weight is determined.

B. RELIABILITY MATCHING
During the reliability matching of manufacturing service
resources, characteristic information of manufacturing ser-
vice is mainly involved, which include the process credibility,
the reliability of product or service quality, the timeliness
of delivery and other factors. The calculation equation of
similarity is consistent with the equation (4) in function
attribute matching. So the reliability similarity wR(i, j) of
the manufacturing service resources ui and uj to customer
requirements is showed as follow.

wR(i, j) = α1wr1(i, j)+ α2wr2(i, j)+ α3wr3(i, j) (5)

where, α1, α2 and α3 are the reliability regulation coefficients,

and
3∑
i=1
αi = 1.

C. PREFERENCE SIMILARITY MATCHING
As the customer requirement include the preferences in inno-
vation, cost control, energy conservation, emission reduction,
efficiency optimization and so on, and the feature vector of
preferences can be composed of 0 and 1. Jaccard is used
to obtain the preferences similarity wp(i, j) of manufacturing
service resources.

wp(i, j) = Jaccard(gi, gj) =

∣∣gi ∩ gj∣∣∣∣∣∣gi ∪ gj∣∣∣∣ (6)

So the similarity matching between manufacturing service
resources and customer preferences is showed as follow.

wP(i, j) = β1wp1(i, j)

+β2wp2(i, j)+ β3wp3(i, j)+ β4wp4(ii, j) (7)

where, βi is the adjustment coefficient of preference

similarity, and
4∑
i=1
βi = 1.

D. COMPREHENSIVE SIMILARITY MATCHING
Similarly, a linear weighting function wC (i, j) is used to cal-
culate the comprehensive similarity of manufacturing service
resources in adjacent sets.

wC (i, j) = γ1wF (i, j)+ γ2wR(i, j)+ γ3wP(i, j) (8)

where, γk is the adjustment coefficient of comprehensive
similarity and k ∈ 1, 2, 3. The value of γk will affect the inte-
grated similarity between manufacturing service resources.
By adjusting the value of γk to observe the change in the
integrated matching effect, the appropriate γk can be obtained
when the matching effect is the best.

And the formula of selection and matching for manufac-
turing service resource is shown as follows.

Pim =

∑
uj∈Ui

wC (i, j)× Pjm∑
uj∈Ui

wC (i, j)
=

∑
uj∈Ui

3∑
k=1

γkwk (i, j)× Pjm

∑
uj∈Ui

3∑
k=1

γkwk (i, j)

(9)

The adjacent resources set of the manufacturing service
resource ui is expressed as {uj|uj ∈ Ui}, Pjm represents the
result of resource uj being selected by m-th customer. If uj
has been selected, Pjm is 1, otherwise is 0.

Through the integration of multi-dimensional informa-
tion, such as function attribute, process credibility and
service preference in matching decision of manufacturing
service resource, the hybrid collaborative filtering algorithm
is used for data analysis of manufacturing service resources.
Then, the selection and matching of manufacturing service
resources can be obtained by combining the customer‘s inten-
tion to the adjacent resources selection.

E. TASK IMPORTANCE-ORIENTED RESOURCE MATCHING
DECISION OF MANUFACTURING SERVICE
In order to further improve the processing efficiency of
multidimensional information, the order of manufacturing
service tasks should be determined in advance on the basis
of resource matching using collaborative filtering algorithm.
Allow for rough set theory is a useful tool for dealing with
uncertainty and ambiguity, which start from the description of
a given problem, the inner law of the problem can be obtained
through the approximation domain of the indistinguishable
relation of the given problem. Meanwhile the defect can be
overcome that the traditional methods of processing uncer-
tain information often need prior knowledge or additional
data [34]. The rough sets are used to rank the importance of
manufacturing service subtasks, which can deal with the com-
plexity of collaborative manufacturing service environment
and the uncertainty of task information more effectively than
the traditional methods such as genetic algorithm, analytic
hierarchy process and fuzzy evaluation [35], [36].
Definition 1: A quad S = (U ,A,V , f ) is an information

system, of which U 6= φ is known as domain; A represents a
Non-empty finite set of all attributes, using V = ∪

a∈A
Va; Va
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FIGURE 2. Task importance-oriented manufacturing service resource matching decision.

is range of attribute a; f represents an information function
of U × A→ V , which assigns an information value to each
attribute of each object.
Definition 2: A binary equivalence relation IND(B) is

determined by each attribute subset B ⊆ A:

IND(B) = {(x, y) ⊂ U × U |∀a ∈ A, f (x, a) = f (y, a)} (10)

Definition 3: Equivalence relation IND(B) constitutes a
division of U , while B ⊆ A, expressed by U/IND(B) =
{X1,X2, . . . ,Xn}. Where, Xi represent different equivalence
classes, which form an equivalence class with all indistin-
guishable objects in case of IND(B), denoted as [x]IND(B).
Definition 4: If a ∈ A, and IND(B) 6= IND(A − {a}), a is

necessary in A; otherwise a is redundant.
Definition 5: H (P) is the information entropy of attribute

subset P ⊆ A, which can be obtained by the following
function:

P(Xi) =
|Xi|
|U |

, i = 1, 2, . . . ,m (11)

H (P) = −
m∑
i=1

P(Xi)InP(X i) (12)

Inwhich,U/IND(P) = {X1,X2, . . . ,Xm} andP(Xi) =
|Xi|
|U | ,

i = 1, 2, . . . ,m.

Definition 6: SA(a) is used to express the important of
attribute which in a ∈ A, given as follows:

SA(a) = |H (A)− H (A− {a})| (13)

If SA(a) > 0, then a ∈ A is necessary in A. If SA(a) = 0,
then a is redundant.

Then the process of resource matching decision and col-
laborative data push based on manufacturing service task
importance is shown in figure 2, which mainly includes the
following six steps:
Step 1: On the basis of the previous multidimensional data

collection and analysis, the information fusion is applied to
identify and determine the influence degree of each task on
the whole manufacturing service.
Step 2: Through the analysis of customer‘s requirements,

the manufacturing service requirements are decomposed into
each subtask by combining with the multiple manufactur-
ing service objectives. Subtasks should have an appropri-
ate granularity, which can be decomposed from the product
level, component level, part level and process level layer by
layer [37].
Step 3:Using the calculation of rough set theory, the prior-

ity of importance is obtained. Then the subtask of manufac-
turing service with large influence degree is selected, and the
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TABLE 1. Attribute table of resource matching decision based on multidimensional information fusion.

multivariate matching decision or push is implemented based
on the data of the manufacturing service resource base.
Step 4: Whether a matching decision succeeds is judged.

If it is successful, turn to (5), and then make the matching
decision between the next task and the resource. Otherwise,
the manufacturing service resources are updated, and match-
ing decisions of manufacturing service subtasks in this round
is made. Meantime the matching data of manufacturing ser-
vice resources is supplemented, and the multivariate match-
ing decision and push are re-conducted, and then turned (5).
Step 5:Whether there are any remaining tasks to be judged.

If so, combined with the requirement conditions of multi-
variate matching decision mentioned above, the constraint
conditions of the existing task are updated turning to (3).
Otherwise turn (6).
Step 6: Then the matching decisions and active push of

manufacturing service resources are obtained, and manu-
facturing service tasks are completed to satisfy customers’
multiple requirements for manufacturing services in the cloud
environment.

IV. CASE STUDY AND RESULTS ANALYSIS
In this section, a matching decision of manufacturing service
resource in a new energy automobile was toke as a case.
Considering the new energy automobile enterprise has mas-
tered one of the core technologies for new energy: vehicle
controller technology, which needs to form a cooperative
relationship with a number of resources in the cloudmanufac-
turing platform to cooperatively complete the multiple tasks
such as vehicle manufacturing and service of a new car at the
same time.

A. PRIORITY RANKING OF MANUFACTURING
SERVICE TASKS
According to the specific manufacturing service tasks pro-
posed by new energy automobile enterprises, the order of
task importance was obtained using rough set theory, which

could accelerate manufacturing service activities in the cloud
environment. In this case, using the actual business data of
the enterprise, the manufacturing service requirements are
decomposed into 8 subtasks according to the product level:
battery research and development, car chassis manufacturing
services, products and services of motor drive systems, brak-
ing energy recovery system (BER), anti-lock braking system
(ABS), products and services of both inside and outside
decoration, electronic stability program (ESP), vehicle intel-
ligent information processing system, etc., which denoted as
C1,C2,C3 · · ·C8, respectively.
For discussing importance of each subtask, the definitions

are given as below.
A quad S = (U ,A,V , f ) is defined as a decision informa-

tion system in manufacturing service tasks. Where, E 6= φ is
domain, and A is a nonempty finite set for decision attributes
identification. In a general way, A = C ∪ D, C ∩ D = φ,
where C is called a conditional attribute, and D is decision
attribute.

Meanwhile the task descriptions in the solutions provided
by the previous 28 resources of cloud manufacturing service
are selected and denoted as E1,E2,E3 · · ·E28 to calculate
the importance of manufacturing service subtasks. And the
manufacturing services effect of each solution is divided into
very consistent, consistent, non-compliant, with described as
D = (D1,D2,D3). Where, D1 = 3,D2 = 2,D3 = 1.
In combination with the multidimensional information set

of manufacturing service, the conditional attribute indexes
are R&D period, service quality, manufacturing cost, pro-
duction quality, functional attribute, preference satisfaction,
reliability, credibility, etc. All conditional attribute values are
discretized. According to the certain discrete rules, the condi-
tional attribute values are converted into graded values, which
are classified into three levels, and the three levels correspond
to 3, 2, 1. Thus, the values of the conditional attribute and the
decision attribute in 28 solutions are obtained, as shown in
table 1.
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TABLE 2. Importance degree of conditional attributes in matching decisions for manufacturing service resources.

Based on the table 1, the dependence of decision attribute
D to condition attribute C can is defined, represented by
γCi(D). There is dependence between D and C , and the
dependency indicates the proportion of equivalence instance
to all instances in the decision system, which can be correctly
divided into equivalence classes about C , using information
of condition attribute C . And the dependence is expressed as
a coefficient γCi(D):

γCi(D) =
card(posCi(D))

card(E)
(14)

where, the cardinality of set is represented by card(·).
And the importance degree of attribute C is solved. The

importance degree of conditional attribute Ci(Ci ∈ C) can be
understood as thematching degree of change in decisionmak-
ing, removing attributeCi from the conditional attributes. The
greater the change, the more important the attribute is. The
calculation equation for importance degree of the attribute C
is:

Sig(Ci = γC(D)− γ (C − Ci)(D) (15)

Then the importance degree is normalized. The importance
factor is obtained by normalizing the importance degree of
attributes. ωi is the importance degree of the i-th condition
attribute, show as below:

ωi =
Sig(Ci)
n∑
i=1

Sig(Ci)
(16)

So the operation results can be awarded using equation
(14-16), which include:

card(E) = 28,

card(posC(D)) = 28,

γC(D) =
card(posC(D))

card(E)
=

28
28
= 1.

While the importance degree of each attribute is shown in
table 2:

After the above calculation, the importance degree of 8
subtasks in the matching decision of manufacturing service
resources was obtained. Among them, battery R&D andman-
ufacturing, body and chassis manufacturing services, brak-
ing energy recovery system are more important, and motor
drive system and other tasks are second. According to the
importance of subtasks and specific requirements of subtasks,
such as functional attribute requirements, cost information,
system maintenance services, and so on, the matching and
push of resources in cloud manufacturing services could be
implemented.

B. MATCHING AND PUSH OF CLOUD MANUFACTURING
SERVICE RESOURCES
Considering the greater importance of body and chassis, suit-
able vehicle chassis resources of the manufacturing service
is matched and pushed, using historical data such as the
cooperation effect and evaluation of previous manufactur-
ing service resources. Relevant data were collected on the
website of ‘‘Cloud Service Innovation Platform for High-end
Equipment Manufacturing’’. The hybrid filtering algorithm
and multi-dimensional information of manufacturing ser-
vice resources proposed in this paper was used in related
operations, among which the similarity calculation is a key
step of hybrid collaborative filtering. In the similarity cal-
culation, the subtasks of the body and chassis are broken
down into modules such as the frame, suspension, transmis-
sion, steering system, brake at the component level. And
the similarity calculation is carried out from three aspects
of multi-dimensional information: functional attributes, reli-
ability, and preference matching. Moreover, the classifica-
tion and utility information of each resource are shown
in table 3:

In the selecting and matching of resources, website related
data were used, and positive feedback behavior and weight-
ing rules were adopted: inquiry = 1, negotiation = 1,
purchase = 4. At the same time, the collected data were
denoised and normalized to obtain behavior statistics of
requirement & resource. During the similarity degree match-
ing, the information weight of basic function, reliability,
cost was assigned to 0.5 according to the customer experi-
ence, and the other matching weights of the same kind were
equally distributed. Then the each weight of comprehensive
similarity degree matching was the same and recorded as
γ1 = γ2 = γ3 = 0.33. Using the hybrid collabora-
tive filtering algorithm, the results of comprehensive sim-
ilarity degree matching are obtained and shown as ‘‘

√
’’

in table 4.
In order to verify the effectiveness of the proposed match-

ing and recommendation method, the data set of the existing
manufacturing service platform was used to compare with
other recommended methods. Typically, the indicator such
as f-measure is used to judge the matching effect, which is
determined by both precision rate and recall rate. Among
them, the precision rate indicates the accuracy, and the high
precision rate shows the high accuracy of thematched objects.
And the recall rate is based on the coverage of recommended
results. A large recall rate indicates a high coverage ratio
of the matched objects. The matching effect degree is com-
prehensively expressed by f-measure. The larger F value is,
the better the comprehensive matching effect will be. The
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TABLE 3. The classification and utility information of manufacturing service resource.

TABLE 4. Matching and predicting of manufacturing service resources.

equation for F is showed as follow [38].

Precision =
1
m
×

m∑
i=1

|Ri ∩ Li|
|Li|

(17)

Recall =
1
m
×

m∑
i=1

|Ri ∩ Li|
|Ri|

(18)

F − measure =
2× Precision× Recall
Precision+ Recall

(19)

Among them, |Ri ∩ Li| means the number of tasks that
resource ui is recommended to customer Ci and that cus-
tomer Ci does use resource ui to accomplish. |Li| represents
the number of tasks for recommendation resources ui, |Ri|
is the number of tasks that the customer actually adopts
the resources, m is the resources number of recommenda-
tion. Then the values comparison of P and R in different
algorithms are shown in figure 3 and figure 4 separately.
The different algorithms included: Item CF, User CF, Vector
SpaceModel(VSM) K-means clustering, VSM and Bisecting

K-means clustering, Cosine- CF, Pearson Correlation Coef-
ficient –CF, Adjusted Cosine-CF, Rough Set-CF and so
on. As shown in Figure 3 and 4, our approach achieves P
value of higher accuracy and R value of higher coverage
compare with other matching and recommendation meth-
ods. Meanwhile, in Figure 5, we can find that the F value
of comprehensive matching effect is relatively high in the
approach.

In the case, the adjustment coefficients are selected with
an interval of 0.2 and gradually increased from 0 to 1. The
length N of tasks recommended list is gradually increased
from 10 to 30 at intervals of 5. As can be seen from figure 5,
the effectiveness range of the optimal recommendation is
basically the same as that of other current recommendation
methods [39]–[41].

Using F values, the hybrid-CF based on RS (RS-CF)
method was compared with other recommendation algo-
rithms, such as traditional text-based collaborative filtering,
user-based collaborative filtering and so on. Figure 3 shows
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FIGURE 3. Comparison of P values for different recommendation algorithms.

FIGURE 4. Comparison of R values for different recommendation algorithms.

FIGURE 5. Comparison of F values for different recommendation algorithms.

the comparison results. It can be seen that the F value of
the hybrid collaborative filtering algorithm proposed in this
paper increases faster, indicating that the matching effect of

this method is better, which is more conducive to the rapid
identification and push of manufacturing service resources
reasonably and effectively.
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V. CONCLUSION
In this paper, the resource matching decision framework
is constructed in the cloud manufacturing environment,
and the multivariate information of manufacturing service
tasks, requirements, resources, characteristics, specialties,
etc., is analyzed. Then a manufacturing service resource
matching decision method based on multidimensional infor-
mation fusion is proposed, which includes: the rough set the-
ory is used for dynamic analysis and the importance ranking
of manufacturing service tasks. Taking advantage of the sim-
ilarity degree of manufacturing service resources, the hybrid
collaborative filtering algorithm is used to recommend and
push manufacturing service resources, so as to complete the
matching decision task of manufacturing service resources.
Subsequently, the rationality and effectiveness of the pro-
posed method are verified, by analyzing a case of matching
decision of body and chassis manufacturing service resources
in a new energy automobile enterprise. At the same time,
compared with other recommendation algorithms, the match-
ing effect of this method is proved to be superior. In the future
work, the different effects of multidimensional information
on resource matching decision in collaborative manufactur-
ing service are further analyzed. In addition, the selection and
optimization of different adjustment coefficients in the hybrid
collaborative filtering algorithm, as well as the influence and
correlation of the matching results, which is generated by the
number of recommended projects and the number of adjacent
similar projects, are also deeply studied.
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