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ABSTRACT The ever-increasing number of Internet of Things (IoT) devices are continuously generating
huge masses of data, but the current cloud-centric approach for IoT big data analysis has raised public
concerns on both data privacy and network cost. Federated learning (FL) recently emerges as a promising
technique to accommodate these concerns, by means of learning a global model by aggregating local
updates from multiple devices without sharing the privacy-sensitive data. However, IoT devices usually
have constrained computation resources and poor network connections, making it infeasible or very slow
to train deep neural networks (DNNs) by following the FL pattern. To address this problem, we propose a
new efficient FL framework called FL-PQSU in this paper. It is composed of 3-stage pipeline: structured
pruning, weight quantization and selective updating, that work together to reduce the costs of computation,
storage, and communication to accelerate the FL training process. We study FL-PQSU using popular DNN
models (AlexNet, VGG16) and publicly available datasets (MNIST, CIFAR10), and demonstrate that it can
well control the training overhead while still guaranteeing the learning performance.

INDEX TERMS Federated learning, Internet of Things, big data, model compression, network pruning.

I. INTRODUCTION
Over the past decades, Artificial Intelligence (AI) technol-
ogy has made great strides in a variety of real-life applica-
tions, ranging from image recognition, video surveillance,
speech synthesis, to machine translation. The development of
these AI-based applications relies heavily on the knowledge
embedded in big data, which are indispensable for training
high-performance AI models such as the deep neural net-
works (DNNs). The Internet of Things (IoT) have brought
about an explosion in the availability and quantity of data
for achieving such purposes, with an estimated 50 billion
devices connected to the Internet by 2020 [1]. In current
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implementations, the real-time data collected by IoT devices
are uploaded to and processed by a cloud server in a central-
ized fashion. However, the cloud-based model training raises
public concern about the sharing of privacy-sensitive data,
andmay suffer from unacceptable long latency as well as high
traffic burden [2]. To mitigate these challenges, it is prefer-
able to decouple model training from the need for remotely
collecting and centrally processing of the raw data.

In view of these shortcomings of the cloud-centric solution,
researchers have recently proposed a new approach to train
a shared global model on datasets decentrally located at a
loose federation of participating devices (clients), termed as
Federated Learning (FL) [3]. In FL, each client computes an
update to the global model based on its local training dataset,
and then uploads the updated local model parameters to a FL

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 38457

https://orcid.org/0000-0002-4523-3735
https://orcid.org/0000-0002-6407-7467
https://orcid.org/0000-0002-8850-9447
https://orcid.org/0000-0001-6890-9606
https://orcid.org/0000-0002-0394-4635
https://orcid.org/0000-0003-1390-399X


W. Xu et al.: Accelerating FL for IoT in Big Data Analytics With Pruning, Quantization and Selective Updating

server. The FL server aggregates the updates from all clients
to improve the model, and sends the newly updated global
model back to the clients. The steps will be repeated for a
number of rounds until the convergence or a desired accuracy
is reached [2]. As the training data is kept locally at each
client and never shared with others, the FL approach provides
a very promising solution to privacy-preserving and resource-
efficient big data analytics.

Nevertheless, a critical challenge posed to FL is the training
overhead. On one hand, popular DNNmodels usually contain
from tens of thousands of to hundreds of millions of parame-
ters [4]. The ever-increasing network complexity and training
data make the model training very compute- and memory-
intensive [2]. On the other hand, the high-dimensional and
frequent parameter updates incur high communication costs
and may result in the training bottleneck [5]. It is even worse
that the IoT devices are usually resource constrained in terms
of computation capability and communication bandwidth,
so the training time will be too long or even unbearable. This
is not conducive to the rapid deployment and application of
AI models in practice. Though a lot of model compression
techniques have been proposed for efficient processing of
DNNs, most solutions are designed to accelerate the DNN
inference processing [4], [6], and few work has taken the
training costs into account [7].

In this paper, we propose FL-PQSU, a training acceleration
framework that compresses and optimizes DNN models dur-
ing the FL training process. The processing pipeline, which
runs for a specific model learning task, consists of three
stages: structured pruning, weight quantization and selective
updating. The pruning stage alleviates the computation over-
head by reducing the number of parameters and FLOPs, while
the latter two stages mitigate the communication overhead by
reducing the total sizes of transmission and the total times of
update, respectively. To the best of our knowledge, FL-PQSU
represents the first effort to unify the above three mechanisms
into one framework. It can be further optimized for different
specific resource limitations or performance requirements.
For example, the user can freely determine which mechanism
among the three to be used in FL training, according to the
target model and dataset [7]. In all, the contributions of our
work are summarized as follows.
• We propose FL-PQSU, a new framework that enables
efficient model training on resource-limited IoT devices,
by incorporating overhead reduction techniques into the
standard FL.

• We design the optimization approaches targeting for
reduction of the computation and communication over-
heads respectively. On one hand, we perform one-shot
structured pruning to the initial model at the FL server,
so as to reducing the model size and the compu-
tation overhead. On the other hand, we adopt two
approaches to reduce the communication overhead for
model updates, i.e., we not only quantize model weights
to reduce the total transferred bits, but also preclude

helpless updates from being uploaded to reduce the total
update times.

• We conduct extensive experiments to evaluate the per-
formance of our FL-PQSU using popular DNN models
(i.e., AlexNet, VGG16) and publicly available datasets
(i.e., MNIST, CIFAR10), which confirm that FL-PQSU
enables a FL system to dramatically reduce the compu-
tation and communication overheads in model training,
while preserving the model accuracy at a desired level.

The remainder of this paper is structured as follows.
In Section II, we outline the related work in the fields
of efficient FL and DNN model compression, respectively.
Section III describes our proposed FL-PQSU framework
in detail. Experimental results are analyzed in Section IV.
Finally, we conclude our work in Section V.

II. RELATED WORK
In this section, we outline several important prior works
on efficient FL and DNN model compression. Due to the
space limitation, interested readers can refer to [2], [4] for
more detailed and comprehensive introductions on these two
research topics.

A. EFFICIENT FEDERATED LEARNING
FL, proposed by McMahan et al. [3], aims to solve the prob-
lem of decentralized training over distributed data sources
without direct access to the privacy-sensitive data. The Fed-
erated Averaging (FedAvg) algorithm introduced in [3] has
become the state-of-the-art method for FL. Considering that
high training costs remain as the main obstacle hindering
federated training, many research efforts have been made in
recent years.

Many studies focus on reducing the communication costs
between clients and the FL server during the training process.
The concept of structured and sketched updates is proposed
in [8] to reduce the size of uploaded model updates during
training. However, it only takes the optimization of client-to-
server communication into account, and may come with no
guarantee of convergence [9]. In contrast, Caldas et al. [10]
proposed to optimize server-to-client communications costs,
by employing federated dropout to train small sub-models on
clients and lossy compression to server-to-client exchanges.
While these two studies dedicate to decrease the transferred
bits during model training, some other works attempt to pre-
clude unimportant updates from being uploaded for mitigat-
ing communication overhead [5], [9]. In the edge Stochastic
Gradient Descent (eSGD) algorithm [5], only a small por-
tion of important gradients are selected to be updated to the
server in each communication round. However, eSGD suf-
fers from non-negligible accuracy loss, and its performance
fluctuates arbitrarily with the hyperparameters used. Similar
to eSGD, the Communication Mitigated Federated Learning
(CMFL) algorithm [9] merely uploads relevant updates to the
server. It not only reduces the communication overhead in FL
training, but also provides provable convergence guarantees.
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More recently, model compression has been revisited as
a method for cost reduction in FL training [7]. By jointly
training and pruning the DNN model in a federated manner,
the approach proposed in [7] can well reduce the model size,
resulting in significant decrements in both communication
time and computation time. However, the weight pruning
method adopted in [7] is considered harmful [11], due to its
inferiority in computation efficiency and storage overhead.
What’s more, the work lacks consideration of communication
overheads during the updating process. This problem will be
more salient when the FL training involves a large number of
clients [9].

B. DNN MODEL COMPRESSION
Modern DNN models are known to be severely resource
intensive, and various compression techniques have already
been proposed to reduce the model size as well as the number
of operations [6]. Existing studies can be roughly catego-
rized into five solution families, namely network pruning,
data quantization, knowledge distillation, low-rank factoriza-
tion and compact network design [4]. Here, we just briefly
summarize the first two techniques that are related to this
work.

Network pruning targets at removing redundant struc-
tures and parameters from the DNN model to accelerate
the inference. Early works [6], [12] proposed to remove the
connections with small-weights whose values are below a
given threshold. However, weight pruning inherently induces
unstructured sparsity, and cannot function without dedicated
hardware and libraries [11]. The following works focus more
on the structured pruning techniques, especially channel
pruning. For example, Li et al. uses the `1-norms of per-
channel weights to select and prune redundant channels [13].
Network slimming [14] imposes sparsity regularization on
the scaling factors in batch normalization layers during train-
ing, so as to identify and prune insignificant channels. Unlike
these previous approaches, Play and Prune [15] allows to
specify the error tolerance limit instead of the pruning ratio
for each layer. Wang et al. [16] verify that pruning from ran-
domly initialized weights directly can result in more diverse
pruned structures with competitive performance. More recent
studies [7], [17] proposed to prune the model during training
for not only improving the performance of inference but also
reducing the costs of training.

Data quantization aims to represent weights or activa-
tions using lower-precision numerical formats rather than the
32-bit floating point (FP32), in order to reduce the model size
and improve the computing efficiency. BinaryConnect [18]
trains a DNN with binary weights (i.e.,−1 or 1) during prop-
agations, and replaces resource-hungry multiply-accumulate
operations by simple additions and subtractions. By leverag-
ing an extra 0 state in DNNweights, TernaryWeight Network
(TWN) [19] can achieve a good trade-off between model
size and inference accuracy. However, such binary or ternary
quantizations are challenged by the non-negligible accu-
racy degradation, particularly for large-scale models. The

FIGURE 1. An overview of FL training process for IoT in big data analytics.

Stochastic Quantization (SQ) algorithm [20] is proposed
to overcome this accuracy drop problem, by stochastically
selecting a portion of weights to quantize and gradually
increasing the SQ ratio to quantize the whole network. Actu-
ally, it has been revealed that quantizing weights and activa-
tions using 8-bit integers (INT8) can result in a relatively low
loss of accuracy [6], [21]. Thus, INT8 quantization is now
widely supported by deep learning frameworks, e.g., Google
TensorFlow, Nvidia Tensor RT, and Baidu PaddlePaddle [22].

III. OUR PROPOSED FL-PQSU FRAMEWORK
A. STANDARD FL PROCEDURE
A typical FL system consists of a FL server S and a set C
(|C| ≥ 1) of participating clients, each of which owns a
private dataset dc∈C . Each client c uses its local dataset dc
to train a local modelmc, and then sends the local parameters
as an update to S. The FL server S collects all the local
models m = ∪c∈Cmc, and finally obtains the global model
MG according to some aggregation rule [2]. Note that this is
different from the conventional cloud-centric training, which
trains the modelMG by centrally aggregating and processing
the data from all clients D = ∪c∈Cdc.
As shown in Fig. 1, the training process of FL consists of

the following three steps:

• Step 1 (Initializing task and distributing model): In
round 0, S determines the specific training task, includ-
ing the target model, the data requirements, and the
hyperparameters (e.g., batch size). Then, it broadcasts
the initial global model M0

G and task settings to all
participating clients.

• Step 2 (Training and updating local model): In round t ,
based on the global modelMt

G, client c updates the local
model parameters mt

c using its local data. Specifically,
it aims to obtain optimal parameters mt

c that minimize
the loss function L(mt

c). Then, client c uploads the
updated local parameters to S.

• Step 3 (Aggregating and updating global model): In
round t , S aggregates all the received local models, with

VOLUME 9, 2021 38459



W. Xu et al.: Accelerating FL for IoT in Big Data Analytics With Pruning, Quantization and Selective Updating

FIGURE 2. An overview of FL-PQSU training under different initial
conditions.

the objective to minimize the global loss function [3]:

L(Mt
c) =

1
|C|

|C|∑
c=1

L(mt
c). (1)

Then, S will broadcast the updated global modelMt+1
G to

the clients for the training in next round t + 1, until the
convergence of L(Mt

c) or the achievement of a desired
accuracy.

As discussed in Section II, in the IoT application scenario
where clients usually have constrained computation resources
and poor network connections, the above FL training process
is very costly on computation and communication, especially
when training a complex DNN model [7], [17]. As such, it is
very imperative to reduce the overheads on computation and
communication at clients.

B. FL-PQSU FRAMEWORK
Our goal is to reduce the computation and communication
overheads to accelerate the FL training process. To achieve
this goal, we propose the FL-PQSU framework, a three-stage
pipeline to reduce the training costs while still preserving the
prediction accuracy at a desired level. First, the pruning tech-
nique is used to reduce the model size and the computation
cost, by removing redundant parts and keeping informative
parts. Next, data quantization is applied to reduce the total
bits transferred in the model updates (i.e., local and global).
Finally, we propose selective updating to avoid unnecessary
local model updates from some clients, so as to reduce the
total number of updates in training.

The FL-PQSU framework integrates the above three tech-
niques, namely Pruning, Quantization, and Selective Updat-
ing, into the original FL training process in Fig. 1. The new
training process is shown in Fig. 2, and the description of our
extensions to the standard FL are described as follows:
• Step 1 (Initializing task and distributing model ¬®):
In round 0, S initializes the model parameters, and per-
forms pruning to the global model M0

G. Note that the

model pruning is one-shot, i.e., it is only performed in
round 0. After quantizing the weights of pruned model
M0

GP , S broadcasts the compressed model M0
GPQ to the

clients.
• Step 2 (Training and updating local model ¯°±²): In
round t , client c dequantizes Mt

GPQ , and performs the
local training. Based on the variation of its loss values,
c determines whether to uploads its local update mt

c to
S. If so, c will quantize the model weights of mt

c, and
uploads the quantized local parameters to S.

• Step 3 (Aggregating and updating global model ³´µ):
In round t , S dequantizes all the received local models,
and then aggregates them to update the global model
Mt+1

GP . After quantization, S will broadcast the com-
pressed model Mt+1

GPQ to the clients.

It is worth noting that initial model pruning can be carried
out in two different cases with regard to data availability at
the FL server.

• Server has no data (SHND): In this case, S is a dedicated
FL server with no training data. This is themost common
case in FL [3]. Fortunately, according to [16], the model
pruning can be directly started from randomly initialized
weights, and model convergence is guaranteed.

• Server has data (SHD): In this case, S itself has kept a
certain amount of data samples, which could be obtained
from either the data sharing of some clients or the data
collection on its own. Actually, the initial model training
at S before the FL process starts will help to further
accelerate the convergence of global model.

C. STRUCTURED PRUNING
Modern DNN models generally have very large models with
a huge number of weights. Due to the resource limitations,
training DNN models on the IoT device is usually a time-
consuming task [7]. The most recent studies [7], [17] have
found that, though model pruning is mainly proposed to
improve the inference performance, it can also significantly
accelerate training by reducing model size and computation
burden. Note that the pruning should be conducted based on
some predefined metric, because shrinking the model size
blindly may result in non-negligible accuracy loss. In this
work, we perform `1-norm based, one-shot channel pruning
in FL-PQSU for training optimization. Our choice is based
on the following three reasons: (1) Other than weight prun-
ing [7], channel pruning produces hardware-friendly mod-
els without introducing irregular sparsity [11]. (2) `1-norm
can be easily calculated for measuring the importance of
filters [13], while most pruning criteria [14], [15] can only be
obtained in the formal training process. (3) Unlike [7], only
one-shot pruning is adopted by FL-PQSU, as the further prun-
ing in federated training incurs additional overhead, but con-
tributes little to performance improvement [13]. According to
our testing experiments, `1-norm based pruning outperforms
blind model shrinking by about 1% accuracy loss for large
models like VGG16, which can’t be simply neglected [16].

38460 VOLUME 9, 2021



W. Xu et al.: Accelerating FL for IoT in Big Data Analytics With Pruning, Quantization and Selective Updating

In FL-PQSU, we can prune not only convolutional layers
but also fully connected layers, if necessary. That’s because
convolutional layers contribute to the majority of computa-
tion overhead, while fully connected layers may contribute
to the storage space of mode size [13], [15]. The `1-norm
based pruning algorithm is shown in Algorithm 1. For the i-th
convolutional layer, let C i

in and C
i
out denote the input and out

channels,H i
in andH

i
out denote the number of input and output

channels, H i
in/W

i
in and H i

out/W
i
out denote the height/width

of the input and output feature maps, and K ∈ Rk×k (e.g.,
3 × 3) be the 2D kernel, respectively. By applying C i

out 3D
filters Fi,j ∈ RC iin×k×k to the C i

in input channels, the input
feature maps xiin ∈ RC iin×H

i
in×W

i
in can be transformed into the

output feature maps xiout ∈ RC iout×H
i
out×W

i
out . By removing a

filter from the i-th convolutional layer, we can reduce totally
C i
in× k

2
×H i

out ×W
i
out operations and C

i
in× k

2 weights [13].
Meanwhile, we also prune the redundant neurons from fully
connected layers [15]. For the k-th fully connected layer, let
nk denote the number of neurons, and wk ∈ Rnk×nk+1 denote
the number of weights. By removing a neuron from the k-th
fully connected layer, we can reduce totally nk+1 operations
and nk+1 weights.

Algorithm 1 `1-Norm Based Pruning Algorithm
Input:

Minit : the initial DNN model
I : the total number of convolutional layer
K : the total number of fully connected layer

Output:
Mpruned : the pruned DNN model

1: Procedure
2: if Server has data then
3: Use the available data samples to train Minit
4: else
5: Assign randomly initialized weights to Minit
6: end if
7: for each layer i ∈ {1, . . . , I } do
8: For each filter Fi,j, calculate `1-norm sj =

∥∥Fi,j
∥∥
1

9: Sort the filters by sj
10: Prune a certain number of smallest filters
11: Copy the remaining filters to the new model Mpruned
12: end for
13: for each layer k ∈ {1, . . . ,K } do
14: For each weight wk,j, calculate `1-norm s′j =

∥∥wk,j∥∥1
15: Sort the weights by s′j
16: Prune a certain number of smallest weights
17: Copy the remaining weights to the new modelMpruned
18: end for
19: return Mpruned

D. WEIGHT QUANTIZATION
Though network pruning can help to reduce computation
overhead and model size, the pruned model may still have a
large number of parameters. For example, VGG16 has 138M

FIGURE 3. The impact of quantization on accuracy using different
bit-widths.

weights in total, and 13.8M weights are still remained after
90% weights are removed. In such cases, communication has
become a severe bottleneck, especially when the network
bandwidth is low. Quantization can help reduce bandwidth
and computation requirements, by replacing the full precision
32-bit floating point numerical format with a lower bit-width
format, e.g., INT8. However, it has been revealed that training
DNN models with low precision directly may result in non-
negligible accuracy loss [22]. Therefore, in FL-PQSUwe still
use full precision parameters in model training, but quantize
and dequantize the transfered data in model updates.

The choice of bit-width for data representation has a great
impact on accuracy recovery. We conduct a simple quan-
tization experiment on the second convolutional layer of
AlexNet, using different bit-widths ranging from 1 to 8 to
quantize the layer weights. Fig. 3 shows the results on accu-
racy recovery at initialization and after training, respectively.
Note that T represents the tolerable difference between the
original value and the dequantized value, less than which
these two values can be treated as equal. The results confirm
the superiority of INT8 in accuracy as compared to the other
options [21]. Thus, regarding the generality and generaliza-
tion of our solution, the INT8-based quantization is adopted
by FL-PQSU.

Let Xsf denotes the scaling factor, Zq denotes the zero
point in quantized values, Wf ∈ [Wmin

f ,Wmax
f ] and Wi ∈

[Qmin,Qmax] denote the float and integer weights before and
after quantization, respectively. Specifically, Xsf and Zq can
be given as:

Xsf =
Wmax
f −Wmin

f

Qmax − Qmin
. (2)
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Zq=



Qmax ,
Wmax
f /Xsf ∈ (−∞, 0)

Qmax −Wmax
f /Xsf ,

Wmax
f /Xsf ∈ [0,Qmax−Qmin]

Qmin,
Wmax
f /Xsf ∈ (Qmax − Qmin,+∞)

. (3)

A weight can be quantized from FP32 to INT8 according
to:

Wi = bZq +Wf /Xsf e. (4)

Conversely,Wi can be dequantized back into the FP32 for-
mat, W ′f , according to:

W ′f = Xsf (Wi − Zq). (5)

E. SELECTIVE UPDATING
The FL training generally involves a number of participating
clients, resulting in considerable communication overhead
because of frequent updating exchanges and low link band-
width between the FL server and clients. However, it has
been found that not all client-side updates are relevant enough
to model improvement [5], [9], as they may be trained over
biased or device-specific data samples. Therefore, it is neces-
sary to preclude helpless updates from being uploaded, so as
to avoid unnecessary data transfer and high communication
cost.

In FL-PQSU, the loss value is used by the client to judge
the importance of current update [5]. Intuitively, the loss func-
tion is anticipated to be converged in each round, i.e., the loss
value should be gradually reduced and closer to the optimal
value. However, the loss value often fluctuates erratically in
the training process. In our design, each client records the loss
value llast in the last upload, and compares it with the current
value lcurrent . If llast > lcurrent , this indicates that the cur-
rent update is beneficial to the loss function and should be
uploaded to the FL server. Otherwise, this indicates that in
current round lcurrent is undesirable. Accordingly, the current
update are prevented by the client to be uploaded, and the FL
server will have to use the latest update of this client instead.

IV. PERFORMANCE EVALUATION
A. EXPERIMENT SETTINGS
1) DATASETS
We conduct experiments on image classification tasks using
theMNIST and CIFAR10 datasets, which are widely used for
benchmarking in the FL researches [3], [8], [10]. TheMNIST
dataset contains 60000 training and 10000 testing gray-
scale images of handwritten digits, and the CIFAR10 dataset
contains 50000 training and 10000 testing colored images
in 10 classes.

2) MODELS
For MNIST, we use the AlexNet model as [23], [24]: a CNN
with 5 convolutional layers and 3 fully connected layers,

requiring 61M weights and 724M multiply-and-accumulates
per image. For CIFAR10, we use the VGG16 model [13],
[25], which has a deeper architecture consisting of 13 convo-
lutional layers and 3 fully connected layers. It totally requires
138M weights and 15.5G multiply-and-accumulates to pro-
cess one input image. The two models are often adopted by
AI applications [4], [6].

3) HYPERPARAMETERS
The default settings of the FedAvg algorithm, which have
been proved to work reasonably well [3], are not optimized in
our experiments. For local training, we choose static learning
rates of 0.01 for MNIST, 0.1 for CIFAR10, and 0.9 for all
momentums. The training data is distributed evenly among
the participating clients. In the SHD case, the FL server has
1
10 and 1

5 data for AlexNet and VGG16, respectively.

4) HARDWARE
Though in previous works [1], [7] the Raspberry Pi devices
are used as IoT clients in FL, training a DNN model for
one time on such single-board computers would actually
take too much time (ranging from days to weeks), espe-
cially for the complex VGG16 model. This would be very
challenging and even intolerable for accomplishing all the
performance evaluation experiments [4]. Thus, as suggested
in [9], we use 3 Intel NUCMiniPCs with Core i5-9300HCPU
as clients for AlexNet, and 3 desktop servers with Intel Xeon
CPU E5-2678v3 as clients for VGG16. Note that even these
CPUs are far less powerful than high-performance GPUs that
are commonly used for training DNN models. Meanwhile,
the link bandwidth is limited as 1Mbps [7]. It is worth men-
tioning that the results obtained in this study only provide
a reference to demonstrate the effectiveness of FL-PQSU.
Actually, when the computation or communication resources
of IoT devices are even more constrained, the overheads will
be more noticeable and need to be well reduced.

5) BASELINE
In all the experiments, we take the original model training
without using any optimization mechanism as the baseline,
e.g., when we only adopt the structured pruning mechanism
with a pruning ratio of 0.

While the above experimental settingsmay not be the state-
of-the-art, they are sufficient for evaluation, as our intention
is to measure the overhead reduction against the baseline but
not to achieve the best possible result on the inference tasks.

B. AlexNet TRAINING ON MNIST
In this set of experiments, we prune the network parameters
up to 10 levels, from 0 to 90%. When the FL server initially
has data samples (SHD), the pruning will be started after the
server has trained the initial model training for 30 iterations
using its own data.

1) TRAINING ACCELERATION IN ONE ROUND
Fig. 4 shows the speedup on computation and communication
(with/without quantization) in a single round, as we vary the
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FIGURE 4. Training acceleration by FL-PQSU in one round for AlexNet.

FIGURE 5. Model size reduction by FL-PQSU for AlexNet.

pruning ratio. Note that the selective updating strategy is not
considered here, as it is adopted only when needed. We see
from Fig. 4 that as the pruning ratio increases from 0 to 90%,
the time on computation and communication are accelerated
by 1 − 6.15× and 1 − 9.91×, respectively. Moreover, data
quantization from FP32 to INT8 further helps accelerate
client-server communication by 4 times, achieving at most
39.58× speedup when the pruning ratio is 90%.

2) MODEL SIZE REDUCTION BY FL-PQSU
Fig. 5 shows the model size under different pruning ratios.
As more connections are pruned, the model size decreases
from 112MB to 11.3MB, and can be further compressedwith
quantization to 1/4 size on this basis. We can notice that the
smallest size is only 2.83 MB, only about 1/40 of the original
model size. This reduces not only the cost on communication
time but also the requirement on storage space. It is worth
noting that in pruning the size reduction is mostly attributed
to the pruning to fully connected layers, which are often
neglected by conventional pruning studies [13], [14].

3) OVERALL TRAINING ACCELERATION BY FL-PQSU
The results on overall acceleration in model training using
all the three strategies are shown in Fig. 6. We can notice an

FIGURE 6. Overall training acceleration by FL-PQSU for AlexNet.

FIGURE 7. Contribution of each strategy in FL-PQSU to acceleration for
AlexNet.

apparent advantage of the SHD-based pruning. In general,
the speedup ratio increases from 4.3 × to 28.2 × for the
SHND case, and from 4.7 × to 29.5 × for the SHD case.
That’s because the initial training at the server make the
model more inclined to converge than random initialization,
and therefore selective updating can obtain more opportuni-
ties to help reduce helpless communications (Fig. 7). We can
also observe from Fig. 7 that all the three strategies in
FL-PQSU have contributed to the overall time reduction to
a certain extent.

4) ACCURACY UNDER DIFFERENT
COMPRESSION STRATEGIES
Table 1 shows the inference accuracy under different com-
pression strategies. From the figures and Table 1, we can
conclude that FL-PQSU can dramatically speedup FL train-
ing for AlexNet, while incurring negligible accuracy loss
(0 − 1.9%). Besides, quantization and selective updating
(i.e., PQ and PQSU in Table 1) will not further affect the
accuracy significantly as compared to pure pruning (i.e, P
in Table 1). Further, when all the three strategies (PQSU) are
jointly used, FL-PQSU in SHD can achieve an equal or a little
higher accuracy as compared to that in SHND under the same
pruning ratio.
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TABLE 1. Accuracy of AlexNet under different compression strategies. P:
Pruning, Q: Quantization, SU: Selective updating.

FIGURE 8. Training acceleration by FL-PQSU in one round for VGG16.

C. VGG16 TRAINING ON CIFAR10
To study how the proposed framework performs when the
model is deeper and more complex, we evaluate FL-PQSU
on VGG16. Different from previous experiments, we only set
4 pruning levels between 0 and 90%, and pre-train the model
at the server for 50 iterations in the SHD case.

1) TRAINING ACCELERATION IN ONE ROUND
As shown in Fig. 8, with the increment of pruning ratio,
the time on computation and communication are accelerated
by 1 − 5.35× and 1 − 10.16×, respectively. The results are
different from those in Fig. 4, as these two DNNmodels have
totally different layer architectures and proportions. Further-
more, the maximal speedup of 40.38× can be reached with
data quantization.

2) MODEL SIZE REDUCTION BY FL-PQSU
As shown in Fig. 9, we can prune the model from 128 MB to
12.6 MB. By INT8 quantization, the smallest model is only
3.17 MB.

3) OVERALL TRAINING ACCELERATION BY FL-PQSU
From Fig. 10, we can find that the differences on speedup
between SHD and SHND are not as much as those of
AlexNet (Fig. 6). That’s because VGG16 has a slower con-
vergence process, in whichmost training iterations are impor-
tant. Accordingly, the selective updating strategy has little

FIGURE 9. Model size reduction by FL-PQSU for VGG16.

FIGURE 10. Overall training acceleration by FL-PQSU for VGG16.

FIGURE 11. Contribution of each strategy in FL-PQSU to training
acceleration for VGG16.

contribution to training acceleration, e.g., only about 0.5%
when the pruning ratio is 90% (Fig. 11). From Fig. 11,
we can find that pruning contributes the most to training time
reduction among the three strategies, and selective updating
has the least contribution.

4) ACCURACY UNDER DIFFERENT
COMPRESSION STRATEGIES
Compared to the results of AlexNet in Table 1, we can make
three key observations fromTable 2. Firstly, when the pruning
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TABLE 2. Accuracy of VGG16 under different compression strategies. P:
Pruning, Q: Quantization, SU: Selective updating.

FIGURE 12. Comparisons on the time cost between AlexNet and VGG16.

ratio is relatively low (e.g., ≤ 30%), the pruning can even
help to improve the accuracy. We hypothesize that the risk
of model overfitting could be partially mitigated by pruning
redundant parameters. Secondly, when the pruning ratio is
relatively high (e.g., ≥ 90%), the accuracy loss is as high
as 5% − 8.2%, and can’t be simply neglected. The results
imply that a proper ratio for pruning should be carefully
selected beforehand through empirical studies (as there is no
strict mathematical statement about relationship between the
pruning ratio and the prediction accuracy for DNN by now).
Thirdly, different from those in Table 1, the results in Table 2
reveal that when we start to prune the model, quantization
and selective updating (i.e., PQ and PQSU in Table 2) will
further affect its ability of feature extraction, and lead to
non-negligible accuracy loss for complex model and dataset.
Lastly, the pre-training at the server can potentially help
FL-PQSU to improve its prediction capability, resulting in
significant improvements on accuracy for SHD over SHND.

D. COMPARISONS BETWEEN AlexNet AND VGG16
As stated above, we obtain different performance results on
speedup and accuracy for AlexNet and VGG16. To investi-
gate the underlying reason, wemeasure the time consumption
on different operations in the FL training process for these
models, and compare the results in Fig. 12. For AlexNet,
it takes the most of training time (i.e., 90.1%) for client-
server communication, which can be well optimized through
the three compression strategies by reducing model size,
transfered bits, and update times. Comparatively, VGG16 is a
more complex model that needs more resource and time (i.e.,
68.9%) for convolutional computation. We have to rely more
on pruning to speedup the training, which may inevitably hurt

the prediction accuracy when the pruning ratio is relatively
high.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a new framework FL-PQSU to
accelerate the model training in FL on resource-constrained
IoT devices. It operates by three key optimizations, including
pruning the unimportant connections, quantizing the trans-
fered weights, and exclude the helpless updates. Through
extensive experiments on real devices, we have shown that
FL-PQSU can achieve the convergence and preserve the ben-
efit of FL, while significantly reduce the costs of compu-
tation, storage, and communication. Altogether, FL-PQSU
can accelerate the training time of AlexNet for MNIST by
4.3−29.5× and of VGG16 for CIFAR10 by 1.3−7.2×, while
incurring acceptable accuracy loss or even accuracy gain.
With FL-PQSU, we can not only accelerate the training and
deployment of DNN models for big data analytics, but also
avoid long-time computation to promote active participations
of IoT devices.

For the future work, we aim at testing FL-PQSU with
typical IoT devices and more models/datasets [4], improving
the performance of FL-PQSU on non-IID data [7], and inves-
tigating other compression mechanisms that can be applied
to FL [2].
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