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ABSTRACT A novel method for finding roots of polynomials over finite fields has been proposed. This
method is based on the cyclotomic discrete Fourier transform algorithm. The improvement is achieved by
using the normalized cyclic convolutions, which have a small complexity and allow matrix decomposition,
as well as methods of adapting the truncated normalized cyclic convolutions calculation. For small values
of degree of the error-locator polynomial the novel method has not only the smallest multiplicative
complexity, but the full computational complexity of this method is also less than with other methods. Thus,
the multiplicative complexity of the novel method in comparison to the method of affine decomposition
(the Fedorenko–Trifonov method) is up to ten times less, although the additive complexity is approximately
10–15% more. The novel method has matrix representation convenient for implementation.

INDEX TERMS Convolution, decoding, discrete Fourier transforms, error correction codes, fast Fourier
transforms, Galois fields, Reed–Solomon codes.

I. INTRODUCTION
Finding roots of polynomials over finite fields is a very actual
problem. The step of finding the roots of the error-locator
polynomial is the second most time-consuming step of the
decoding process of the Reed–Solomon codes. That is why
the most important application of calculating the roots of
polynomials is decoding Reed–Solomon codes. Since non-
systematic encoding of Reed–Solomon codes is performed
by using the truncated discrete Fourier transform (DFT) cal-
culation (see Definition 5) then nonsystematic encoding is
another application of the novel method.

Let us formulate the problem of finding the roots of a
polynomial: Find all the roots of an arbitrary polynomial of
degree t over finite fieldGF(2m), the roots are searched in the
field of the computation GF(2m), and the multiplicity of the
roots is not taken into account.

Several methods of finding the roots of polynomials are
known:

1) Algebraic methods.
For small values of degree t (t ≤ 4) these methods
are the simplest (see, for example, [8], [14], [18], [26],
[38], [39]). If the polynomial is an affine polynomial
(see Definition 2) (this polynomial is not an arbitrary
polynomial), then we can apply the method [5, Ch. 11].
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Also for any polynomial we can construct the least
affine multiple of this polynomial [5, Ch. 11], and then
apply the method of Berlekamp too. Unfortunately,
with increasing degree t , the complexity of the latter
methods increases significantly.

2) Representation of polynomials in the form of the sumof
affine polynomials was first introduced in [35], method
of affine decomposition (the Fedorenko–Trifonov
method) was introduced in [17], and developed
in [15], [18], [29].

3) The calculation of the polynomial roots corresponds to
the polynomial evaluation for all nonzero elements of
finite field. Obviously, this coincides with the calcu-
lation of the DFT over finite field (see Definition 3).
Many methods for the DFT calculation over finite
field are known. The best methods for the asymp-
totic complexity are [24], [27], [28]. To minimize
the number of multiplications, the cyclotomic DFT
algorithm [19], [32] should be considered, as well as
improvements of this algorithm to reduce the number
of multiplications [3], [20], [22], and the number of
additions [3], [4], [10], [11], [34], [40], [41]. The appli-
cation of several convolutions for the DFT calculation
were published in [19], [20], [22], [32], [36], [40].
The methods of constructing cyclic convolutions are
considered in [4], [6], [7], [21], [36], [40], [41]. These
methods can be used to construct the cyclotomic
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TABLE 1. The best methods of finding the roots of polynomials over finite field GF (2m).

DFT algorithm. Reducing the complexity of decoding
the Reed–Solomon codes by speeding up the calcula-
tion of the DFT, Chien search or syndrome calculation
is described in [9], [12], [30], [37], [42].

4) Several algorithms for the factorization of polynomi-
als over finite fields are presented in the monograph
[25, Ch. 14] and in [2], [31].

5) The above methods can be combined, which leads to
a decrease of the computational complexity. Hybrid
methods are described, for example, in [14], [18].
To simplify the presentation, a combination of methods
for finding the roots of polynomials in this paper will
not be considered.

The best methods of finding the roots of polynomials over
finite field GF(2m), depending on the value of degree t are
shown in Table 1.

The novel method is based on the cyclotomic DFT algo-
rithm. The following points have been added to the original
version of the cyclotomic DFT algorithm [32]:

1) the novel normalized cyclic convolutions [21] have the
following properties:
a) they lead to a decrease in computational complex-

ity in relation to the classical cyclic convolutions;
b) there is a decomposition into a product of square

matrices of the same dimension;
c) the matrix decomposition allows recursion;
d) they allow easy modification by matrix

transposition;
2) the construction of truncation of the normalized cyclic

convolutions through
a) adaptation of input components of the

convolutions;
b) cyclic shifts for input components of the

convolutions;
c) the input components of convolutions cease being

consecutive;
3) ordering the cyclotomic cosets and generators for the

cyclotomic cosets;
4) constructing the normal bases for each subfield accord-

ing to Lemma 1.
The cyclotomic DFT algorithm [32] and its improve-

ments [3], [4], [10], [11], [19], [20], [22], [32], [34], [40], [41]
have the smallest multiplicative complexity among all known
algorithms calculating DFT for short lengths n ≤ 4095.
The additive and the full complexities are also comparable
to the complexities of other algorithms. The comparison of
the complexity of different full and partial DFT is presented
in [40, Table IV], [10, Table I, II], [29, Table I].

It is well known that if DFT calculation has the low-
est complexity [19], [22], [32], then by using partial

DFT calculation we have the lowest complexity, too. Accord-
ing to this statement, the author believes that at present there
are no better methods for finding the roots of polynomials
over finite field GF(2m) for 4 < t � 2m than the one
introduced in this article.

The presented method is a nontrivial development of
the ideas of the methods [17], [18]. The main differences
between the proposed method and the affine decomposition
method [17], [18] are

1) the affine decomposition of the error-locator polyno-
mial is replaced by the decomposing of the original
polynomial into a sum of linearized polynomials;

2) in the polynomial decomposition there are no monomi-
als of type x3 and x5.

The applicability of the method: the method is applicable
for any values of degree t over finite field GF(2m), but for
4 < t � 2m this method will have less computational
complexity than any other known methods.

The main contributions of the novel method for finding
roots of polynomials over finite fields consist of the following
points:

1) the novel method is the algorithm with the smallest
multiplicative complexity for finite fields;

2) the full computational complexity of this method is also
less than with other methods;

3) the concept of truncated normalized cyclic convolu-
tions is introduced;

4) adapting the truncated cyclotomic DFT and the trun-
cated normalized cyclic convolutions.

Notations: Cursive bold lower case letters denote vectors,
but cursive bold upper case letter F is used for denoting the
resulting vector of the DFT. Bold upper case letters denote
matrices. The expression a | b denotes the fact that integer a
divides integer b.
The remainder of this paper is organized as follows.
In Section II, the description of the Fedorenko–Trifonov

method for finding roots of polynomials over finite fields [17]
and the concept of the affine decomposition are given.
In Section III, the cyclotomic DFT algorithm [32] is intro-
duced. These two Sections are also necessary, since they
introduce the concepts and definitions necessary for the pre-
sentation of the novel method. In Section IV, the concept
of the truncated normalized cyclic convolution is described.
In Section V, the novel method of finding roots of poly-
nomials via the concept of the truncated cyclotomic DFT
is proposed. In Section VI, the complexity of the truncated
cyclotomic DFT computation is calculated, and the Tables for
the complexity of the truncated cyclotomic DFT computation
over often applicable finite fields are shown. In Conclusion,
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the comparison of the computational complexities of the
novel and well-known methods is presented.

II. FEDORENKO–TRIFONOV METHOD FOR FINDING
ROOTS OF POLYNOMIALS OVER FINITE FIELDS
This Section is based on the method [17]. Let us introduce the
following definition for polynomials.
Definition 1: A linearized polynomial over GF(2m) is a

polynomial of the form

L(x) =
∑
i

bix2
i
, bi ∈ GF(2m).

A main property of the linearized polynomials is
L(λ+ µ) = L(λ)+ L(µ), where λ,µ ∈ GF(2m).
Definition 2: An affine polynomial overGF(2m) is a poly-

nomial of the form

A(x) = L(x)+ β,

where L(x) is a linearized polynomial over GF(2m) and
constant β ∈ GF(2m).

A. AFFINE DECOMPOSITION
Each polynomial can be decomposed into a sum of multiples
of affine polynomials according to Theorem 1.
Theorem 1 ([17]): Each polynomial f (x) =

∑t
i=0 fix

i,

fi ∈ GF(2m), of degree t can be represented as

f (x) = f3 x3 +
d(t−4)/5e∑
k=0

x5k (f5k + Lk (x)),

where Lk (x) =
∑3

s=0 f5k+2s x
2s
= f5k+1x + f5k+2x2 +

f5k+4x4+f5k+8x8, dpe is the least integer greater than or equal
to p, fi = 0 for i > t .

Another representation for the affine decomposition of the
polynomial is

f (x) = f3 x3 +
(
A0(x)+ x5

[
A1(x)+ x5

{
A2(x)+ . . .

}])
,

where Ak (x) = f5k + Lk (x).
Let α be a primitive element of the field GF(2m). The

binary representations for all elements {0, α0, α1, . . . , α2m−2}
of GF(2m) are ordered as a Gray code. Let δ(αj, αj−1) ∈
{0, 1, . . . ,m−1}, j = 1, 2, . . . , 2m−2, be a position in which
binary representations of elements αj and αj−1 are different.
For j = 0 we assume δ(α0, 0) = 0.
The algorithm for finding roots consists of four steps:
1) Compute bk,p = Lk (αp), k = 0, 1, . . . , d(t − 4)/5e],

p = 0, 1, . . . ,m− 1;
2) Initialize Ak,0 = f5k , k = 0, 1, . . . , d(t − 4)/5e], and

f (0) = f0;
3) Compute Ak,j = Ak,j−1 + bk,δ(αj,αj−1), k =

0, 1, . . . , d(t − 4)/5e], j = 0, 1, . . . , 2m − 2;
4) Compute f (αj) = f3(αj)3 +

∑d(t−4)/5e
k=0 (αj)5kAk,j, j =

0, 1, . . . , 2m − 2.
If f (αj) = 0 then αj is a root of the polynomial f (x).

B. COMPUTATIONAL COMPLEXITY
The computational complexity of the Fedorenko–Trifonov
method over GF(2m) consists of three parts: the number of
multiplications, the number of additions, and the number of
exponentiations.

According to [17, eq. (2)] the multiplicative complexity is

4m
⌈
t + 1
5

⌉
+

⌈
t + 1
5

⌉
(2m − 1),

the additive complexity is

3m
⌈
t + 1
5

⌉
+ 2

⌈
t + 1
5

⌉
(2m − 1),

and the exponential complexity is

2(2m − 1).

In this method the exponentiation means calculating (αj)3

and (αj)5 for all nonzero elements of the finite field GF(2m).
One way to do these calculations is (αj)3 = (αj)2(αj) and
(αj)5 = (αj)3(αj)2 with complexity equal to 2+ 1 = 3 multi-
plications. Other options for implementing these calculations
are possible too.

The computational complexity for examples of this method
are shown in Table 6 and Table 7.

Other variants of the affine decomposition for polynomial
of degrees t = 8 and t = 16 are published in [18] and [15]:

f (x) = (f0 + f1 x + f2 x2 + f4 x4 + f8 x8)
+x3

(
(f3 + f5 x2 + f7 x4)+ f6 x3

)
,

f (x) = (f0 + f1 x + f2 x2 + f4 x4 + f8 x8 + f16x16)

+x3
(
(f3 + f5 x2 + f7 x4)

+x3
[
f6 + x3

{
(f9 + f10x + f11x2 + f13x4)

+x3
(
(f12 + f14x2)+ f15x3

)}])
.

III. CYCLOTOMIC DFT ALGORITHM
This Section is based on the method [32].

A. BASIC NOTIONS AND DEFINITIONS
Definition 3: The discrete Fourier transform (DFT) of

length n of a vector f = (fi), i = 0, 1, . . . , n − 1,
fi ∈ GF(2m), n | (2m − 1), in the field GF(2m) is the vector
F = (Fj),

Fj =
n−1∑
i=0

fiαij, j = 0, 1, . . . , n− 1,

where α is an element of order n in GF(2m) and a transform
kernel.

We assume that the length of the n-point Fourier transform
over GF(2m) is n = 2m − 1. Let α be a primitive element of
the field GF(2m). Every vector f = (fi), i = 0, 1, . . . , n− 1,
is associated with a polynomial f (x) =

∑n−1
i=0 fix

i, and we
have Fj = f (αj). The field of the computation is the finite
field GF(2m).
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Definition 4: The set Ck = {ck , ck2, ck22, . . . , ck2mk−1}
is the cyclotomic coset modulo n over GF(2), where ck ≡
ck2mk mod n, ck is a generator of the kth cyclotomic coset
Ck ,mk is a cardinality of the kth cyclotomic cosetCk ,mk | m,
C0 = {c0} = {0}, l + 1 is the number of cyclotomic cosets
modulo n over GF(2), k = 0, 1, . . . , l.

B. CYCLOTOMIC ALGORITHM
The cyclotomic algorithm is based on representing an original
polynomial f (x) as a sum of linearized polynomials Lk (x)
(cyclotomic decomposition of the polynomial), finding their
values in a set of basis points 0k (cyclic convolution), and
computing the resulting vector as a linear combination of
these values with coefficients ajkp (see (3)) from a prime field
(multiplication of a binary matrix by a vector).

The cyclotomic algorithm consists of three steps:
0) (preliminary step) decomposing an original polynomial

into a sum of linearized polynomials

f (x) = f0 +
∑
k

Lk (x);

1) evaluating the linearized polynomials at a set of basis
points

{Lk (γp)}, γp ∈ 0k ;

2) components of the Fourier transform are computed as
linear combinations of these values with coefficients from a
prime field

Fj = f0 +
∑
k,p

Lk (γp), j = 0, 1, . . . , n− 1.

Consider these steps in detail.

0) CYCLOTOMIC DECOMPOSITION

The polynomial f (x) =
n−1∑
i=0

fix i, fi ∈ GF(2m), can be

decomposed as

f (x) = f0 +
l∑

k=1

Lk (xck ), Lk (y) =
mk−1∑
s=0

fck2s mod n y2
s
,

f (x) = f0 +
l∑

k=1

mk−1∑
s=0

fck2s x
ck2s .

1) LINEARIZED POLYNOMIAL EVALUATION AT THE BASIS
POINTS
Let 0k =

(
γk , γ

2
k , γ

22
k , . . . , γ

2mk−1
k

)
be a normal basis for

each subfield GF(2mk ) ⊂ GF(2m) over GF(2), where γk ∈
GF(2mk ) is a generator of this normal basis. Each of the
linearized polynomials Lk (y) can be evaluated at the basis
points of the corresponding subfield by the formula

Lk (γ 2p
k ) =

mk−1∑
s=0

γ 2p+s
k fck2s ,

k = 1, 2, . . . , l, p = 0, 1, . . . ,mk − 1.

Let us rewrite the latter formula in matrix form:
Lk (γ 20

k )
Lk (γ 21

k )
. . .

Lk (γ 2mk−1
k )

 def
= Lk f [ck ],

where

Lk
def
=


γ 20
k γ 21

k . . . γ 2mk−1
k

γ 21
k γ 22

k . . . γ 20
k

. . . . . . . . . . . .

γ 2mk−1
k γ 20

k . . . γ 2mk−2
k

 (1)

and

f [ck ]
def
=


fck20
fck21
. . .

fck2mk−1

 . (2)

It means the calculation of a normalized cyclic convolution
of length mk [21]. The matrix Lk is called a basis circulant
matrix [19], because its first row is a normal basis.

2) COMPUTING THE RESULTING VECTOR F = (Fj ),
j = 0,1, . . . ,n− 1, AS A LINEAR COMBINATION OF Lk(γ 2p

k )
The element (αj)ck = (αck )j ∈ GF(2mk ) can be decomposed
with respect to basis 0k of the subfield GF(2mk ):

αjck =

mk−1∑
p=0

ajkpγ 2p
k , ajkp ∈ GF(2). (3)

According to the main property of the linearized polyno-
mials, we have

Lk (αjck ) =
mk−1∑
p=0

ajkpLk (γ 2p
k ).

Components of the Fourier transform of a polynomial f (x)
are linear combinations of these values:

Fj = f (αj) = f0 +
l∑

k=1

Lk
(
(αj)

ck
)

= f0 +
l∑

k=1

mk−1∑
p=0

ajkpLk (γ 2p
k )

= f0 +
l∑

k=1

mk−1∑
p=0

ajkp

mk−1∑
s=0

γ 2p+s
k fck2s

 ,
j = 0, 1, . . . , n− 1, ajkp ∈ GF(2).

C. MATRIX FORM OF THE CYCLOTOMIC ALGORITHM
TheDFT calculation is divided into two steps:multiplying the
block diagonal matrixL by the vector5f andmultiplying the
binary matrix A = (ajkp) by the vector L(5f ):

F = AL(5f ), (4)
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where the block diagonal matrix

L =


L0 O . . . O
O L1 . . . O

. . . . . .
. . . . . .

O O . . . Ll

,


L0 = 1, O denotes all-zero matrices of appropriate dimen-
sions, and

5f def
=


f0

f [c1]
f [c2]
· · ·

f [cl]

 (5)

is a permutation of the original vector f , where f [ck ],
k = 1, 2, . . . , l, is defined by formula (2).

IV. TRUNCATED NORMALIZED CYCLIC CONVOLUTION
A. NORMALIZED CYCLIC CONVOLUTION
First, we present auxiliary Lemma on the connection of the
normal bases for subfields.
Lemma 1 ([23]): Let

(
γ 20 , γ 21 , . . . , γ 2m−1

)
be the nor-

mal basis for the field GF(2m) over GF(2), mk | m,

and εp =

m/mk−1∑
s=0

γ 2smk+p , p = 0, 1, . . . ,mk − 1,

then
(
ε0, ε1, . . . , εmk−1

)
is the normal basis for subfield

GF(2mk ) ⊂ GF(2m) over GF(2).
To each cyclotomic coset Ck , k = 0, 1, . . . , l, assign

the basis circulant Lk , which is defined by formula (1).
For each cardinality mk | m of the cyclotomic coset we
construct the basis circulant 3mk of dimensionmk×mk . Sec-
ondly, we choose the normal basis for GF(2m) over GF(2):
0(m) =

(
γ, γ 2, γ 22 , . . . , γ 2m−1

)
and construct the normal

bases 0(mk ) =
(
ε, ε2, ε2

2
, . . . , ε2

mk−1
)
for each subfield

GF(2mk ) ⊂ GF(2m) over GF(2), which we will choose
according to the condition of Lemma 1. Further, we define
the basis circulants 3mk for all dimensionsmk×mk , mk | m,
as

3mk
def
=

((
ε2

p+s
)
, p, s = 0, 1, . . . ,mk − 1, ε ∈ 0(mk )

)
(6)

over the corresponding subfields GF(2mk ). Then all Lk ∈

{3mk : mk | m}.
The next theorem is a modification of theorem [21, Th. 1].
Theorem 2: For any finite field GF(2m) with even m there

exists a decomposition of the m× m basis circulant

3m =

( (
γ 2p+s

)
, p, s = 0, 1, . . . ,m− 1

)

=


γ 20 γ 21 . . . γ 2m−1

γ 21 γ 22 . . . γ 20

. . . . . . . . . . . .

γ 2m−1 γ 20 . . . γ 2m−2



= B
(

3m/2 O
O 3m/2

)

×



Im/2 O
αck

αck2

αck2
2

. . .

αck2
m/2−1

Im/2


×

(
Im/2 Im/2
O Im/2

)
,

where γ is the generator of the normal basis 0(m) =(
γ, γ 2, γ 22 , . . . , γ 2m−1

)
for GF(2m) over GF(2), B is an

m × m nonsingular binary matrix, 3m/2 =

(
ε2

p+s
)
=((

γ + γ 2m/2
)2p+s)

, p, s = 0, 1, . . . ,m/2 − 1, is an m/2 ×

m/2 basis circulant over GF(2m/2) (according to Lemma 1),
O is an m/2 × m/2 all-zero matrix, Im/2 is an m/2 × m/2
identity matrix, ck is a generator of the cyclotomic coset Ck
of cardinality m satisfying the conditions αck = αck2

m/2
+ 1

[21, Th. 2].
Note that for the basis circulant 3mk with dimension

smaller than m × m this basis circulant 3mk belongs to the
subfield GF(2mk ) ⊂ GF(2m) and can be decomposed over
this subfield in the same way as the basis circulant 3m.

Further, while decomposing the matrix 3m we execute the
decomposition of thematrix3m/2. The latter operation is exe-
cuted recursively or we can apply short cyclic convolutions
from [6, Fig. 11.1] for small odd dimensions of this basis
circulant. Note that there are no general algorithms for effi-
cient short cyclic convolutions over finite fields except [4],
[6, Fig. 11.1], [7], [12], [21], [40], [41]. Finally, we obtain
the decomposition of the initial matrix3m into3m = PmSm,
where Pm is the matrix of postadditions.

B. EXAMPLES
Example 1 (Normalized cyclic convolution of length
m = 2):
The finite field GF(22) is defined by an element ω, which

is a root of the primitive polynomial x2 + x + 1. Let 0(2) =(
ω,ω2

)
be a normal basis for the field GF(22) over GF(2).

Let ck = 1. Let us write the decomposition of the 2× 2 basis
circulant according to Theorem 2

32 =

(
ω1 ω2

ω2 ω1

)
=

(
0 1
1 1

)(
1 0
0 1

)(
1 0
ω1 1

)(
1 1
0 1

)
=

(
0 1
1 1

)(
1 1
ω1 ω2

)
= P2S2,

where P2 is the binary matrix of postadditions for the calcu-
lation of the normalized cyclic convolution of length m = 2.
Example 2 (Normalized cyclic convolution of length

m = 4):
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The finite field GF(24) is defined by an element α, which
is a root of the primitive polynomial x4 + x + 1. Let 0(4) =(
γ, γ 2, γ 4, γ 8

)
and 0(2) =

(
γ + γ 4, γ 2

+ γ 8
)
=
(
α5, α10

)
be the normal bases for the field GF(24) and the subfield
GF(22) ⊂ GF(24) over GF(2), respectively, where γ = α6.
Let ck = 1. Let us write the decomposition of the 4× 4 basis
circulant according to Theorem 2

34 =


α6 α12 α9 α3

α12 α9 α3 α6

α9 α3 α6 α12

α3 α6 α12 α9



=


0010
1101
1010
1001



α5 α10 0 0
α10 α5 0 0
0 0 α5 α10

0 0 α10 α5



×


1 0 0 0
0 1 0 0
α1 0 1 0
0 α2 0 1



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



=


0001
1011
0101
0111




1 0 0 0
α5 1 0 0
0 0 1 0
0 0 α5 1



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



×


1 0 0 0
0 1 0 0
α1 0 1 0
0 α2 0 1



1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



=


0001
1011
0101
0111



α0 α0 α0 α0

α5 α10 α5 α10

α1 α2 α4 α8

α6 α12 α9 α3

 = P4S4,

where P4 is the binary matrix of postadditions for
the calculation of the normalized cyclic convolution of
length m = 4.

The decomposition of the matrix 34 is calculated recur-
sively using equality α5 = ω ∈ GF(22) ⊂ GF(24) and the
decomposition for the matrix 32 (see Example 1). Matrices
of postadditions for the multiplication by the matrix 32 are
absorbed into the first binary matrix for the decomposition of
34 (see Theorem 2).

C. TRUNCATED MATRIX
According to formulae (1) and (6), the matrix 3mk =

Lk is the basis circulant matrix, and the multiplication by
this matrix is the calculation of a normalized cyclic con-
volution. From 3mk

def
=

(
3left 3right

)
and f [ck ]

def
=(

f [ck ]top
f [ck ]bottom

)
it follows that the matrix 3left is a left

truncated matrix, and 3left f [ck ]top is the calculation of a
truncated normalized cyclic convolution.
Example 3 (Truncated normalized cyclic convolution

of length m = 4 for two nonzero consecutive input
components):

From 34 = P4S4 H⇒

34


f1
f2
0
0

 = P4

S4


f1
f2
0
0


 H⇒

S4


f1
f2
0
0

 =

α0 α0 α0 α0

α5 α10 α5 α10

α1 α2 α4 α8

α6 α12 α9 α3



f1
f2
0
0

 H⇒

×


α0 α0

α5 α10

α1 α2

α6 α12

( f1
f2

)

=


1 0 0 0
α5 1 0 0
0 0 1 0
0 0 α5 1



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



×


1 0
0 1
α1 0
0 α2

( f1
f2

)
.

Notes. In this Example we do not perform the multiplica-
tion by the matrix of postadditions P4. In the latter formula
zero rows and columns of matrices are deleted.

V. NOVEL METHOD FOR FINDING ROOTS OF
POLYNOMIALS
A. DERIVATION OF ANOTHER FORMULA FOR THE
CYCLOTOMIC DFT ALGORITHM
Using Theorem 2 and a recursion for calculating the decom-
position of the basis circulant3mk ,mk | m, we obtain that the
decomposition of this matrix has the form 3mk = PmkSmk ,
where Pmk is the matrix of postadditions. Then each
matrix Lk , k = 0, 1, . . . , l, can be decomposed as

Lk = PkSk , (7)

where Pk ∈ {Pmk : mk | m} and Sk ∈ {Smk : mk | m}.
We rewrite the matrix form of the cyclotomic DFT

algorithm (4) as follows:

F = AL(5f )

=

A

P0 O . . . O
O P1 . . . O

. . . . . .
. . . . . .

O O . . . Pl




S0 O . . . O
O S1 . . . O

. . . . . .
. . . . . .

O O . . . Sl


×(5f ) def

= Post S(5f ),

where Pk ∈ {Pmk : mk | m}, k = 0, 1, . . . , l, is the mk × mk
nonsingular binary matrix of postadditions for the calculation
of the normalized cyclic convolution, Sk is themk×mk second
matrix in decomposition (7), O denotes all-zero matrices of
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appropriate dimensions, S is a block diagonal matrix consist-

ing of matrices Sk , Post
def
= A


P0 O . . . O
O P1 . . . O

. . . . . .
. . . . . .

O O . . . Pl

 is the

binary matrix of postadditions for the calculation of the DFT.
Taking into account (5), we obtain

F = Post


S0 O . . . O
O S1 . . . O

. . . . . .
. . . . . .

O O . . . Sl




f0
f [c1]
f [c2]
· · ·

f [cl]

 . (8)

The matrices of postadditions Pk , k = 0, 1, . . . , l, are
absorbed into the binary matrix Post. The multiplication by
the matrix Sk ∈ {Smk : mk | m} we call the calculation of a
normalized cyclic convolution too.

B. CYCLOTOMIC COSETS CHOICE
We can choose the cyclotomic cosets, so that the following
properties are satisfied:

1) For any cyclotomic cosetCk the generator ck is selected
as the smallest number in the cyclotomic coset;

2) The cyclotomic cosets are ordered by increasing their
generators.

C. UNION OF THE CYCLOTOMIC COSETS C
Let us introduce for the degree t of the error-locator polyno-
mial the union of the cyclotomic cosets C as follows:

Ck ⊂ C ⇐⇒ ∃ i :
{
i ∈ Ck
i = 0, 1, . . . , t.

Let kmax be the maximum value of the index k of the
cyclotomic coset Ck :

kmax = max {k : Ck ⊂ C} ,

then the union of the cyclotomic cosets is

C =
kmax⋃
k=0

Ck

and we define a number v as a cardinality of the union of the
cyclotomic cosets C:

v =
kmax∑
k=0

mk .

D. TRUNCATED CYCLOTOMIC DFT
Definition 5: Assume that the input polynomial f (x) for

the cyclotomic DFT algorithm has degree t , then coefficients
fi = 0 for i = t + 1, t + 2, . . . , n − 1. We call the DFT for
this input polynomial a truncated cyclotomic DFT.

Using (8), we get the notation for the truncated
cyclotomic DFT

F = Post[0..v− 1]

×


S0 O . . . O
O S1 . . . O

. . . . . .
. . . . . .

O O . . . Sl




f0
f [c1]
f [c2]
· · ·

f [ckmax ]



def
= Post[0..v− 1]


r0
r1
r2
· · ·

rkmax

 def
= Post[0..v− 1]r, (9)

where Post[0..v − 1] is the first v columns of the matrix
Post, O denotes all-zero matrices of appropriate dimensions,
the calculation result of the (truncated) normalized cyclic
convolution rk = Sk f [ck ], k = 1, 2, . . . , kmax, is the column
vector, r0 = S0 f0 = f0.

E. ALGORITHM FOR THE TRUNCATED CYCLOTOMIC DFT
CALCULATION
Let us describe the algorithm for the truncated cyclotomic
DFT calculation more formally.
Algorithm input: the length of the DFT overGF(2m) is n =

2m−1, t is a degree of the error-locator polynomial, the input
components fi, i = 0, 1, . . . , n−1, fi ∈ GF(2m), correspond
to the vector f = (fi) or the error-locator polynomial f (x).
We assume that fi = 0 for i > t .
Algorithm output: the output vector of the DFT F = (Fj),

i = 0, 1, . . . , n− 1, Fi ∈ GF(2m).
The preliminary calculations: calculation of kmax, the

union of the cyclotomic cosets C, and the cardinality of the
union of the cyclotomic cosets v (V-C), the matrices Sk , k =
0, 1, . . . , kmax (7), and the submatrix Post[0..v− 1] (9).

The algorithm consists of two steps.
1) Compute the (truncated) normalized cyclic convolu-

tions
r0 = f0;
rk = Sk f [ck ], k = 1, 2, . . . , kmax.
If ck2s > t for some number s ∈ {0, 1, . . . ,mk − 1}
then fck2s = 0 and we compute rk as the truncated
normalized cyclic convolution.

2) Multiplying the binary matrix Post[0..v − 1] by the

vector r =


r0
r1
r2
· · ·

rkmax

 from an extended finite field

GF(2m): F = Post[0..v− 1]r.
The algorithm pseudocode representation is
1) Computing the truncated normalized cyclic convolu-

tions rk = Sk f [ck ], k = 0, 1, . . . , kmax.
2) Multiplying the binary matrix Post[0..v − 1] by the

vector r.
Example 4 (DFT for length n = 15):
See conditions in Example 2. From formula (4), we get the

matrix form of the cyclotomic algorithm (10), as shown at the
bottom of the next page.
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We continue to consider the Example for the degree of
polynomial t = deg f (x) = 5. kmax = 3. The union of the
cyclotomic cosets is

C = C0 ∪ C1 ∪ C3 ∪ C5

= {0} ∪ {1, 2, 4, 8} ∪ {3, 6, 12, 9} ∪ {5, 10}.

The cardinality of C is v = 11. We take into account that
the binary matrix of postadditions for the calculation of the
normalized cyclic convolution Pk , k = 0, 1, . . . , l, can be
absorbed into the binary matrix Post of the DFT calculation.
Further, we rewrite formula (9) of the truncated cyclotomic
DFT as F = P̃ost S̃ (5̃f ) (see (11)), as shown at the bottom
of the next page, where zero rows and columns of matrices
are deleted.

Consider the first step of the algorithm for the truncated
cyclotomic DFT calculation.

0) Compute the trivial convolution r0 = f0;
1) Compute the column vector r1 of length 4 as the trun-

cated normalized cyclic convolution:

r1 =


α0 α0 α0

α5 α10 α5

α1 α2 α4

α6 α12 α9


 f1
f2
f4



=


1 0 0 0
α5 1 0 0
0 0 1 0
0 0 α5 1



1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



×


1 0 0
0 1 0
α1 0 1
0 α2 0


 1 0 1

0 1 0
0 0 1

 f1
f2
f4

 ;

2) Compute the column vector r2 of length 4 as the trun-
cated normalized cyclic convolution:

r2 =


α0

α5

α1

α6

 f3

=


1 0

α5 0
0 1

0 α5


(

1
α1

)
f3 =


f3

α5f3
α1f3
α6f3

 ;



F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 0 1 1 0 1 1 0 1
1 1 0 0 1 1 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 1 0 1 1 1 0 0 0
1 1 1 0 0 0 1 0 0 1 0 0 1 1 1
1 1 0 1 0 1 1 1 1 0 1 1 0 1 0
1 1 0 0 0 0 0 0 1 1 1 0 1 0 0
1 1 1 0 1 1 0 0 0 1 0 1 1 0 0
1 0 1 1 0 0 0 1 0 0 1 1 0 1 1
1 0 0 1 0 0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 1 1 1 1 1 0 0 1 0 1
1 1 0 1 1 0 0 0 1 0 1 1 0 0 1
1 0 1 0 0 1 0 0 0 1 1 0 0 1 0
1 0 1 1 1 0 0 1 0 1 0 0 0 1 1
1 1 1 1 0 0 1 0 0 0 1 0 1 1 0



×



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 α6 α12 α9 α3 0 0 0 0 0 0 0 0 0 0
0 α12 α9 α3 α6 0 0 0 0 0 0 0 0 0 0
0 α9 α3 α6 α12 0 0 0 0 0 0 0 0 0 0
0 α3 α6 α12 α9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 α6 α12 α9 α3 0 0 0 0 0 0
0 0 0 0 0 α12 α9 α3 α6 0 0 0 0 0 0
0 0 0 0 0 α9 α3 α6 α12 0 0 0 0 0 0
0 0 0 0 0 α3 α6 α12 α9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 α5 α10 0 0 0 0
0 0 0 0 0 0 0 0 0 α10 α5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 α6 α12 α9 α3

0 0 0 0 0 0 0 0 0 0 0 α12 α9 α3 α6

0 0 0 0 0 0 0 0 0 0 0 α9 α3 α6 α12

0 0 0 0 0 0 0 0 0 0 0 α3 α6 α12 α9





f0
f1
f2
f4
f8
f3
f6
f12
f9
f5
f10
f7
f14
f13
f11



(10)
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3) Compute the column vector r3 of length 2 as the trun-
cated normalized cyclic convolution:

r3 =
(
α0

α5

)
f5 =

(
f5

α5f5

)
.

Note that the calculation of the second and the third con-
volutions is the trivial case since we have only one nonzero
input component.

Finally, the second step of the algorithm for the truncated
cyclotomic DFT calculation is multiplying the binary matrix

P̃ost by the vector r =


r0
r1
r2
r3

 over GF(24).

Consider the computational complexity of the current
Example.

The first step is the calculation of the four truncated nor-
malized cyclic convolutions. It requires 0 + 4 + 3 + 1 = 8
multiplications and 0+ 6+ 0+ 0 = 6 additions.

The second step is the multiplication of the binary matrix
P̃ost by the vector r over GF(24). If we use a heuristic
algorithm [33] then the complexity is 34 additions. Other
methods for multiplication of a binarymatrix by a vector have
about the same additive complexity.

The full computational complexity of Example is shown
in Table 6.

Consider another nontrivial Example of convolution com-
putation.
Example 5: Consider the calculation of the polynomial

roots over GF(28) when the degree of polynomial t =
deg f (x) = 33. This Example is interesting because according
to Table 5 the input components in the truncated normal-
ized cyclic convolutions cease being consecutive. In general,
the calculations are the same as in the t = 32 case except for
one calculation of the truncated normalized cyclic convolu-
tion. Consider this nontrivial case in detail.

The finite field GF(28) is defined by an element α, which
is a root of the primitive polynomial x8 + x4 + x3 + x2 + 1.



F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14



=



1 1 0 0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 0 1 1 1
1 0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 1 0 1
1 0 1 0 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 1 1 0
1 1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 1 0 1 1 1
1 0 1 0 1 1 0 1 1 1 0
1 1 1 0 0 1 0 0 0 0 1
1 0 0 1 1 0 1 1 1 1 1
1 1 0 1 1 0 0 0 1 1 0
1 1 0 0 1 0 1 0 1 0 1
1 1 1 1 1 1 0 1 1 1 1





1 0 0 0 0 0
0 α0 α0 α0 0 0
0 α5 α10 α5 0 0
0 α1 α2 α4 0 0
0 α6 α12 α9 0 0
0 0 0 0 α0 0
0 0 0 0 α5 0
0 0 0 0 α1 0
0 0 0 0 α6 0
0 0 0 0 0 α0

0 0 0 0 0 α5





f0
f1
f2
f4
f3
f5

 . (11)

r5 =



1 0 0 0 0 0 0 0
α85 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 α85 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 α85 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 α85 1





1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



×



1 0 0 0
0 1 0 0
α17 0 0 0
0 α34 0 0
0 0 1 0
0 0 0 1
0 0 α17 0
0 0 0 α34




1 0 0
0 1 0
α7 0 0
0 α14 1


 1 0 0

0 1 1
0 0 1

 f9
f18
f33

 (12)
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Let 0(8) =
(
γ, γ 2, γ 4, γ 8, γ 16, γ 32, γ 64, γ 128

)
be the nor-

mal basis for the field GF(28) over GF(2), where γ = α5.
The set C9 = {9, 18, 36, 72, 144, 33, 66, 132} is the cyclo-
tomic coset.

There are only two consecutive input components and one
more input component for this case

f9
f18
0
0
0
f33
0
0


.

Using the matrix decomposition

38 = P8S8,

where P8 is the binary matrix of postadditions for the calcu-
lation of the normalized cyclic convolution of length m = 8,
we compute the column vector r5 of length 8 as the truncated
normalized cyclic convolution (12), as shown at the bottom of
the previous page, which is based on the cyclotomic cosetC9.
Consider the computational complexity of the current

Example. The calculation of this nontrivial convolution
requires 10 multiplications and 10 additions only. According
to Table 4 this is two additions more than for the convolution
with two consecutive input components, and one multiplica-
tion and two additions less than for the convolution with three
consecutive input components. This Example requires only
two more additions in comparison to the case when t = 32.

VI. COMPLEXITY OF THE TRUNCATED CYCLOTOMIC DFT
COMPUTATION
A. COMPLEXITY OF THE TRUNCATED NORMALIZED
CYCLIC CONVOLUTIONS COMPUTATION
1) COMPLEXITY OF THE MODIFICATION OF THE
NORMALIZED CYCLIC CONVOLUTIONS COMPUTATION
From Theorem 2 it follows that normalized cyclic convo-
lutions of length m computation consists of calculation of
two normalized cyclic convolutions of length m/2, com-
ponentwise multiplication by a vector of length m/2, and
two additions of vectors of length m/2. Note that the
order of operations differs from the order of operations by
[21, Th. 1], and besides the last operation will be the multi-
plication by the binary matrix B. This binary matrix B (or the
product of several binary matrices at recursive computations)
is absorbed into the binary matrix Post.
Consider the method of obtaining the multiplicative and

the additive complexity. The method is a modification and
improvement of the result [21].

The recursive formulae for the number of multiplica-
tions and additions of the normalized cyclic convolution

calculation of length e2i overGF(2m) follow from Theorem 2{
Mult(e2i) = 2Mult(e2i−1)+ e2i−1;
Add(e2i) = 2Add(e2i−1)+ e2i;

i ≥ 1,

where number e is an odd integer, e ≥ 1, number i is an
integer, i ≥ 0 for the convolution length and i ≥ 1 for
the recursive formulae, hm and ha are the number of mul-
tiplications and additions for the convolution of odd length
e, respectively, the initial conditions are Mult(e) = hm and
Add(e) = ha.

These recursions are satisfied by{
Mult(e2i) = (ie+ 2 hm) 2i−1;
Add(e2i) = (ie+ ha) 2i;

i ≥ 0.

The matrix of postadditions Pmk , where mk = e2i for
some integer i, is absorbed into the binary matrix Post. The
multiplication by this matrix of postadditions Pmk is not
included in the complexity of the normalized cyclic convo-
lution computation.

2) TRUNCATED NORMALIZED CYCLIC CONVOLUTIONS
Consecutive input components.

Recall the definition of the truncated normalized cyclic
convolution 3left f [ck ]top. If the column vector f [ck ]top con-
sists of nonzero components only, and the column vector
f [ck ]bottom is an all-zero vector, then this convolution is called
the truncated normalized cyclic convolution with consecutive
components.

For calculation of the truncated normalized cyclic convolu-
tion of length mk with one component there is a simple algo-
rithmwhich requiresmk−1multiplications. From the normal
basis property that the sum of all its components equals 1,
it follows that the multiplicative complexity is reduced by
one multiplication. This result cannot be improved. For cal-
culation of the truncated normalized cyclic convolution of
length mk with any s components s(mk − 1) multiplications
are required. Of course, this result is not optimal.

The computational complexity of the truncated normalized
cyclic convolution for lengthsm = 2, 4, 8 is shown in Table 2,
Table 3, and Table 4, respectively. All input components in
these convolutions are consecutive.

TABLE 2. The computational complexity of the truncated normalized
cyclic convolution for length m = 2.

3) CONSECUTIVE INPUT COMPONENTS IN THE FINITE
FIELDS
The minimal degrees t of polynomials for which the input
components in the truncated normalized cyclic convolutions
cease being consecutive are shown in Table 5. The length
n = 2m − 1 is the length of the DFT over GF(2m).
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TABLE 3. The computational complexity of the truncated normalized
cyclic convolution for length m = 4.

TABLE 4. The computational complexity of the truncated normalized
cyclic convolution for length m = 8.

TABLE 5. The minimal degrees of polynomials for which the input
components in the truncated normalized cyclic convolutions
cease being consecutive.

For all error-locator polynomials whose degree is less than t ,
all input components in the truncated normalized cyclic con-
volutions are consecutive. The cyclotomic coset Ck is the
cyclotomic coset modulo n over GF(2) for which t ∈ Ck .

4) CONDITIONS FOR CONSECUTIVE INPUT COMPONENTS
Let us write the conditions for all the input components to be
consecutive.

For each cyclotomic cosetCk modulo n overGF(2) accord-
ing to Definition 4 there is a set Ĉk = {ck , ck2, ck22, . . . ,
ck2mk−1} of integers. Note that the set Ĉk lies in ordinary
integer arithmetic.
Lemma 2: If for the set Ĉk , k = 1, 2, . . . , l,

∃ smin :

{
smin = min

{
s : ck2s > n

}
t ≡ ck2smin mod n

,

where t is a degree of the error-locator polynomial, then input
components do not have to be consecutive.

Proof: From ck2smin > n and due to increasing the
integer numbers of the ordered set Ĉk , we obtain ck2smin−1 <

n. Further, we have

ck2smin−1 = ck2smin − ck2smin−1 < n;

ck2smin−n < ck2smin−1;

(ck2smin mod n) < ck2smin−1.

Number ck2smin in the cyclotomic coset Ck modulo n over
GF(2) is less than number ck2smin−1 in the same cyclotomic
coset. Thus in a cyclotomic coset the input components do not
have to be consecutive. An exception (all input components
are consecutive) is possible when in a cyclotomic coset the
input components cease being consecutive several times.
Lemma 3 (sufficient condition): If all numbers i, i ∈
{0, 1, . . . , t}, where t is a degree of the error-locator poly-
nomial, can be represented as

i = ck2s, ck ∈ Ck ⊂ C, s ∈ {0, 1, . . . ,mk − 1},

then for all cyclotomic cosets Ck ⊂ C all input components
are consecutive.

Proof: Obviously, the proof follows from Lemma 2.
If the truncated normalized cyclic convolution has no con-

secutive input components, then we can either construct an
algorithm for this case of calculation or complete the ‘‘phan-
tom’’ input components of the convolution until the input
components become consecutive.

B. COMPLEXITY OF THE FIRST STEP FOR THE TRUNCATED
CYCLOTOMIC DFT COMPUTATION ALGORITHM
Weconstruct complexity estimatesMult1(t,m) andAdd1(t,m)
for the first step of the truncated cyclotomicDFT computation
algorithm.
Lemma 4 (Upper bounds for computational complexity):

Let t be a degree of the error-locator polynomial over
GF(2m), n = 2m − 1, t ≤ (n − 1)/2, then the upper bounds
for the computational complexity of the truncated cyclotomic
DFT computation algorithm are

Mult1(t,m)

≤


t
4Mult(m)+ t

4 (m− 1), if 4 | t,
t+1
4 Mult(m)+ t+1

4 (m− 1), if 4 | (t + 1),
t+2
4 Mult(m)+ t−2

4 (m− 1), if 4 | (t + 2),
t−1
4 Mult(m)+ t+3

4 (m− 1), if 4 | (t + 3),

and

Add1(t,m) ≤


t
4Add(m), if 4 | t,
t+1
4 Add(m), if 4 | (t + 1),
t+2
4 Add(m), if 4 | (t + 2),
t−1
4 Add(m), if 4 | (t + 3),

whereMult(m) and Add(m) are the number of multiplications
and additions of the normalized cyclic convolution calcula-
tion of length m over GF(2m), respectively.

Proof: The cyclotomic cosets Ck and their genera-
tors ck have been chosen according to Subsection V-B.
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TABLE 6. The complexity of the truncated cyclotomic DFT computation over GF (24).

The union C of the cyclotomic cosets has the form C =
C0 ∪ C1 ∪ C3 ∪ C5 ∪ . . . ∪ Ct , that is, all indices of the
cyclotomic cosets Ck ∈ C are odd (excepting the trivial
cyclotomic coset C0 = {c0} = {0}). Note that some of the
cyclotomic cosets may not be on this list because they have
already been included into the set C. To calculate the roots
of the error-locator polynomial of degree t , we divide the
set C into three parts. If index of the cyclotomic coset does
not exceed t/2, then such cyclotomic coset contains two or
more components, which are necessary for calculating the
truncated normalized cyclic convolution. Obviously, the com-
putational complexity of such truncated normalized cyclic
convolution does not exceed the computational complexity of
the normalized cyclic convolution. If index of the cyclotomic
coset is more than t/2, then almost all such cyclotomic cosets
contain only one component. Sometimes in these cyclotomic
cosets the number of components can be greater than one,
if some cyclotomic cosets with indices greater than t/2 are
absent in the set C, but this does not affect the computa-
tional complexity (if d cyclotomic cosets are absent, then
no more than d components are added into other cyclotomic
cosets).

Division of the set C into three parts (the trivial cyclotomic
coset; the cyclotomic cosets containing several components;
the cyclotomic cosets containing one component):

1) If 4 | t then
C0; C1,C3, . . . ,Ct/2−1; Ct/2+1, . . . ,Ct−1;

2) If 4 | (t + 1) then
C0; C1,C3, . . . ,C(t−1)/2; C(t+3)/2, . . . ,Ct ;

3) If 4 | (t + 2) then
C0; C1,C3, . . . ,Ct/2; Ct/2+2, . . . ,Ct−1;

4) If 4 | (t + 3) then
C0; C1,C3, . . . ,C(t−3)/2; C(t+1)/2, . . . ,Ct .

This completes the proof of Lemma 4.
Note that the additive complexity of the first step of the

algorithm is considerably less than the additive complexity
of the second step.

C. COMPLEXITY ANALYSIS
The computational complexity depends on two parameters:
the DFT length n = 2m−1 and the degree of the error-locator
polynomial t . We assume that t < n/2.
The complexity of the first step of the algorithm for

the truncated cyclotomic DFT calculation, using the com-
plexity of the normalized cyclic convolutions computa-
tion (Subsubsection VI-A1) and upper bounds for com-
putational complexity (Lemma 4), can be estimated as
Mult1(t,m) = t

4Mult(m) + t
4m =

t
4

(
1
2m log2 m+ m

)
=

O
(
1
8 t log2 n log2 log2 n

)
and Add1(t,m) = t

4Add(m) =
t
4m log2 m = O

(
1
4 t log2 n log2 log2 n

)
, if m is a power

of two.
For n = 15 and n = 255 the estimate for the number of

multiplications is 2t and 5t , respectively. From comparison
with Table 6 and Table 7 it follows that the last estimate is
quite accurate.

If t > n/2, then the multiplicative complexity is close
to the multiplicative complexity of the full DFT calculation
O
(
n(log2 n)

log2(3/2)
)
[23].

D. ADDITIVE COMPLEXITY
The second step of the truncated cyclotomic DFT calculation
algorithm consists in multiplying the binary matrix by the
vector over GF(2m) (see (9)).
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TABLE 7. The complexity of the truncated cyclotomic DFT computation over GF (28).

There are several methods for multiplying the binary
matrix by the vector. The best known method is the modi-
fication of ‘‘four Russians’’ algorithm (V. L. Arlazarov, E.
A. Dinits, M. A. Kronrod, and I. A. Faradzhev) [1, Algo-
rithm 6.2] for multiplication of Boolean matrices, with com-
plexity less than 2 n2/ log2 n additions over GF(2m). Other
heuristic methods were reported in [3], [4], [10], [11], [33],
[34], [40], [41].

E. COMPUTATIONAL COMPLEXITY COMPARISON FOR
SEVERAL METHODS OF FINDING ROOTS OF
POLYNOMIALS
The complexity of the truncated cyclotomic DFT computa-
tion overGF(24) andGF(28) is shown in Table 6 and Table 7,
respectively. The methods are classical Chien search [13],
the method of affine decomposition (the Fedorenko–Trifonov
method) [17], direct truncation of the cyclotomic DFT algo-
rithm [32] (unpublished), and the novel method.

The methods for comparison were chosen for the follow-
ing reasons: the Chien search [13] seems to be the most
popular method, the method of affine decomposition (the
Fedorenko–Trifonov method [17]) is the best among the
published, direct truncation of the cyclotomic DFT algo-
rithm [32] (unpublished) seems to be the best method known
to the author.

The number t is called the degree of the error-locator
polynomial. The computational complexity of methods is
indicated in terms of number of multiplications (Mult), addi-
tions (Add), and exponentiations (Exp) in the finite field
GF(2m). Recall that the exponentiation means calculation
(αj)3 and (αj)5 for all nonzero elements of the finite field

GF(2m). For multiplying the binary matrix by the vector over
GF(2m) in the second step of the novel method the heuristic
algorithm [33] was used. The number of additions for direct
truncation of the cyclotomic DFT algorithm and for the novel
method almost coincides.

VII. CONCLUSION
A novel method for finding roots of polynomials inter-
connected with the method of affine decomposition and
the cyclotomic DFT algorithm was considered. Because of
adapting the truncated cyclotomic DFT and the trun-
cated normalized cyclic convolutions the novel method has
the smallest multiplicative complexity. For this method
according to Table 6 and Table 7 the multiplicative com-
plexity is up to ten times less than with the method of
affine decomposition (the Fedorenko–Trifonovmethod) [17],
although the additive complexity is approximately 10–15%
more. Moreover, the number of multiplications of the novel
method is up to 23–33% less at approximately the same the
number of additions, compared with the direct truncation of
the cyclotomic DFT algorithm [32] (unpublished). According
to the Tables, the full computational complexity of the novel
method is less than that of other methods. Finally, for small
values of degree t the novel method has not only the smallest
multiplicative complexity, but the full computational com-
plexity of this method is also less than with other methods.
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