
Received January 11, 2021, accepted January 25, 2021, date of publication March 2, 2021, date of current version March 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063254

DDES: A Distribution-Based Dynamic Ensemble
Selection Framework
YE-RIM CHOI AND DONG-JOON LIM
Department of Industrial Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Dong-Joon Lim (tgno3@skku.edu)

This work was supported in part by the National Research Foundation of Korea (NRF), South Korea, under Grant 2020R1F1A1066629,
and in part by the Korea Institute for Advancement of Technology (KIAT), South Korea, under Grant N0002429.

ABSTRACT Dynamic Ensemble Selection (DES) is a special type of ensemble modeling that selects
different subsets of base classifiers for different test sample cases. In this process, multiple base classifiers are
compared in terms of their competence as an ensemble to the best possible prediction for a given test sample
case. Traditional DES methods rely on the Euclidean distance-based k-Nearest Neighbor (kNN) algorithm
to identify the most relevant reference data points in such a way that the base classifiers correctly classifying
them can be considered for an optimal ensemble. However, this approach is sensitive to the local structure
of the data and the presence of noisy or irrelevant attributes. This study proposes a novel distribution-based
DES (DDES) framework that takes the data structure into consideration when selecting reference data points.
The experimental results for 30 classification problems indicate that the proposed approach yielded the best
accuracy among the competing DES methods. Additionally, we discuss the correlation between the data
complexity and the improvement in classification performance.

INDEX TERMS Multiple classifier systems, dynamic ensemble selection, region of competence, feature
variance, data complexity.

I. INTRODUCTION
In multiple classifier systems, ensemble modeling seeks to
make more accurate predictions by combining multiple clas-
sifiers in an attempt to reduce the potential bias from reliance
on a single classifier. The typical ensemble approaches, such
as bagging [1], boosting [2], and stacked generalization [3],
achieve this by fostering diversity in the ensemble, and they
generally lead to better decisions complementing the vulner-
ability of weak classifiers.

There are two distinct strategies in ensemble selection:
static ensemble selection (SES) and dynamic ensemble selec-
tion (DES). SES builds an optimal ensemble for all test data
by exploring multiple combinations of base classifiers, while
DES assigns an individual ensemble for each test sample
point by customizing the base classifiers. A key assumption
in DES is that varying the decision boundaries of the base
classifiers may result in their own regions of competence
(RoC), i.e., confident regions for prediction in the feature
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space. Therefore, it is essential to properly evaluate base
classifiers for a given test sample case.

In DES, the predictive performance of the resulting
ensemble is significantly affected by the choice of refer-
ence data points. It should be pointed out that most DES
methods employ the Euclidean distance-based k-Nearest
Neighbor (kNN) algorithm as a means of identifying the
reference data points. Consequently, the data structure is not
accounted for when estimating the RoC. This may be trivial in
cases where classes are readily separable and hence decision
boundaries are constructed equally well by classifiers. How-
ever, as will be discussed in the following sections, an inde-
cision region issue [4] occurs when data points are highly
dispersed and/or overlapped. As a result, RoC estimation
becomes highly ambiguous, which eventually undermines the
overall ensemble performance.

This study presents a novel DES framework, referred to
as distribution-based DES (DDES). Specifically, we intro-
duce two DDES methods, DDES-I (Independent dispersion
based DDES) and DDES-M (Mahalanobis distance based
DDES), that can effectively estimate the RoC such that more
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relevant classifiers are involved in the construction of an
ensemble. In particular, feature variances are accounted for
independently in DDES-I, whereas covariance among fea-
tures is utilized in DDES-M. Both methods are intended to
enhance the predictive performance of the resulting ensemble
by properly selecting reference data points for a given test
sample point, especially in the presence of an indecision
region.

The remainder of this paper is organized as fol-
lows. Section II reviews the related studies on ensem-
ble methods. Section III highlights the motivation of this
research. Section IV describes the computational procedures
of the proposed methods. Section V presents the perfor-
mance benchmarks for the proposed methods against other
state-of-the-art dynamic selection methods. Section VI pro-
vides a discussion focusing on the relationship between data
complexity and prediction performance. Finally, Section VII
summarizes the findings and suggests directions for future
work.

II. RELATED WORKS
A. STATIC ENSEMBLE SELECTION
SES employs certain searching methods in conjunction with
selection criteria to identify themost suitable ensemble across
the given data [5]. The searching methods include greedy
search [6] and heuristic algorithms [7]. Recently, search-
ing techniques such as the greedy iterative optimization
method [8] have been proposed for balancing the diversity
and the individual classifier accuracy, as well as for searching
the optimal number of classifiers and feature subsets using
various metaheuristic algorithms [9].

As selection criteria in SES, diversity in the ensemble has
attracted much research attention. In particular, data diver-
sity [10], [12], model structure diversity [12], and hyper-
parameter diversity [13] can be considered to improve the
performance of the ensemble [14], [15]. Two different aspects
of diversity were also addressed in the literature: pairwise
diversity and overall diversity. [16] The former is focused on
a pair of classifiers [17]–[19], while the latter seeks diversity
presented by a whole ensemble [20], [21]. Various attempts
were made to obtain the best possible diversity [22] such as
tuning learning algorithms [23], [24], samplingmethods [25],
[26], and feature selection [27]–[30].

Recent advancements utilizing the concept of diversity
also include applying classifier overlapping indexes [31],
attentional mechanism-based explicit measures [32], multi-
modal perturbation-based ensemble algorithms with progres-
sive kNN classifiers [33], ensemble clustering algorithms
with diversity based on the normalized mutual informa-
tion [34], and the ensemble pruning method using margin and
diversity [35].

However, it is debatable whether a certain selection cri-
terion can be used to yield a better ensemble performance
in SES. For example, some researchers argued that combin-
ing heterogeneous classifiers does not guarantee that they

complement each other [36]–[38]. Moreover, one argued that
the impact may exist, but an immediate cause may not [39],
or the performance does not monotonically improve in pro-
portion to the diversity measures [40], [41]. See more discus-
sion in [16], [22], [42]–[44].

B. DYNAMIC SELECTION
Unlike SES, dynamic selection (DS) approaches assign a (set
of) classifier(s) to a given test sample case by estimating the
RoC where a group of data points identified to be relevant
to the test sample case lies. Specifically, two distinct DS
approaches exist: Dynamic Classifier Selection (DCS) and
Dynamic Ensemble Selection (DES). The former chooses
the most competent classifier, whereas the latter discovers a
subset of base classifiers most suitable for a given test sample
case. Table 1 lists the most well-known DS methods.

Local Classifier Accuracy (LCA) utilizes a posteriori-
probability to obtain the percentage of correct classifiers
within the local region [45]. Specifically, this method com-
pares base classifiers by how well they predict data points
in RoC whose class label is the same as the test sample
case. In contrast, Overall Local Accuracy (OLA) adopts an
a priori-probability to choose the most suitable classifier
based on how each classifier correctly predicts all points in
the RoC.

Multiple Classifier Behavior (MCB) takes a behavior-
based DCS approach that calculates the value of the similarity
function of the output profiles of the classifiers [46]. Within
this process, data points in RoC are evaluated according to
the similar behavior of classifiers with a test sample case. The
most competent classifier is then selected by applying OLA
to the qualified data points.

In theDES approach, RoC defines a validation spacewhere
multiple classifiers are examined. K-Nearest-ORAcles-
Union (KNORA-U) and K-Nearest-ORAcles-Eliminate
(KNORA-E) are two popular Oracle-based methods that
discover a subset of base classifiers to correctly predict
the unknown pattern in RoC [47]. In particular, KNORA-U
involves all classifiers that correctly predict at least one data
point in RoC to an ensemble and each classifier submits the
votes by the number of points that it predicts correctly, while
KNORA-E only chooses ones that correctly predict all data
points in RoC. They both employ kNN to define the RoC. If a
test sample case is in an indecision region (that is, no classifier
is selected), KNORA-E adjusts the value of k until a certain
number of classifiers is chosen.

Meta learning-DES (META-DES) introduces meta-
classifiers to further assess the level of competence of a
classifier based on meta-features extracted from the train-
ing data especially when there is low consensus among
base classifiers [48]. The meta-features include a neighbor’s
hard classification, posterior probability, OLA, output profile
classification, and classifier confidence. During the general-
ization phase, the meta-classifier estimates whether a base
classifier is competent enough to be added to the ensemble.
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TABLE 1. Dynamic selection (DS) method variants.

DES-Performance (DES-P) is a probability-based method
using weighted kNN that considers an absolute standard
expected from a random classifier that draws a class label
using a uniform distribution [49]. The competence of a base
classifier is defined as how much improvement is made as
compared to a random classification. A base classifier is
qualified to be included in the ensemble only when the com-
petence value is positive.

See more details for the DES techniques and their cat-
egorization describing the definition of RoC, competence
estimation, and selection criteria in [50], [51].

C. REGION OF COMPETENCE
In recent years, various methodological advancements have
been made to enhance the DES approaches by modifying
the RoC definition. There are two primary topics to bet-
ter define the RoC: noisy points and overlapped decision
boundaries.

In [52], a new way of estimating the competence of clas-
sifiers was proposed to address the class imbalance prob-
lem. Moreover, to address the problem of borderline samples
in the local region, the Frienemy Indecision REgion-DES
(FIRE-DES) method introduces a notion of ‘‘frienemy’’ by
pre-selecting classifiers that correctly classify at least one pair
of samples from different classes [53].

FIRE-DES++ is an extension of FIRE-DES to ameliorate
the noise sensitivity and indecision region problems [54].
It removes the noises and reduces the overlap of classes
in the validation set and then applies K -Nearest Neighbors
Equality (KNNE) to define a more balanced RoC.

DES-hesitant utilizes the concept of a hesitant fuzzy set as
an RoC [55]. It constructs the Hesitant FuzzyDecisionMatrix
(HFDM) consisting of several selection criteria and tech-
niques, such as the accuracy, fraction-based method, ranking-
based method, and potential function method. In dynamic
selection procedure, the classifiers whose competence levels
are more than a threshold are selected.

An online local pool generation method deals with the
problem of overlapped samples [56]. After the online phase
obtains the RoC by kNN to the training set, it defines whether
a test sample point is in an indecision region or not by con-
sidering the hardness value calculated from the offline phase.

If yes, it generates a local pool using Self-Generating Hyper-
planes (SGH) method, and the kNN rule is used otherwise.

The oracle-based DES method using a discriminant index,
which is used in the Item and Test Analysis (ITA), shows
promising results [57]. To compose the RoC, it selects the
k most discriminant instances among the validation data by
ranking them, starting with the double size of kNN.

In [58], a novel dynamic ensemble outlier detection model
was proposed to ensemble one-class classifiers with the adap-
tive kNN rule using Support Vector Data Description (SVDD)
to estimate the RoC. The competence level of classifica-
tion is estimated by the posterior probabilities, and then
two non-parametric statistical tests, the Friedman test and
Nemenyi test, are used to make a final decision.

Graph-basedDynamic Ensemble Pruning (GDEP) addresses
the problem of sensitivity in the classifier selection process
by building the must-link and cannot-link graphs whereby
the level of competence is measured [59]. To better choose
the proper neighborhood, this approach considers the statis-
tics of classifiers’ behavior toward data as a form of the
Behavior-based Geodesic Matrix (BGM).

To tackle the noisy data problem, a prototype selec-
tion technique was proposed by applying novel kNN algo-
rithms [60]. This approach effectively reduces the high degree
of overlap between two classes, making decision boundaries
more discriminative. The performance using both Edited
Nearest Neighbor (ENN) and adaptive kNN has proven to
yield competent results.

In [61], the Discriminant Adaptive Nearest Neigh-
bor (DANN) was developed to take into account the shape
and size of the RoC. It adopts an ellipsoidal RoC whose
secondary axis is nearly orthogonal to the decision boundary
between the two classes. The number of neighborhood points
is dynamically chosen by using a posteriori probability.

An enhanced Differential Evolution (DE) algorithm with
KNORA-E was shown to improve the classification perfor-
mance [62]. This approach automatically generates a pool
of diverse classifiers, while removing noisy samples in the
validation data.

In addition, there is a context-based framework that
exploits the output profiles from the validation set to improve
the performance of Dos Santos Approach (DSA) [63]. In this
approach, the best ensemble of classifiers is dynamically
chosen and then the switch mechanism identifies whether the
decisions are confident enough after generating RoC with k
most similar output profiles.

III. MOTIVATION
DES is based on the premise that the closer data points
are to one another in the feature space, the more likely are
they to share aptly applicable classifiers. This is intuitive,
especially when classes are readily separable, and hence deci-
sion boundaries are constructed equally well by classifiers.
However, when data points are highly dispersed and/or over-
lapped, the problem of an indecision region may arise owing
to the ambiguous decision boundaries, which may even be
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FIGURE 1. Illustration of the differences between the RoC estimated by the conventional 7-NN,
independent dispersion-based 7-NN, and correlation-based 7-NN.

inconsistent across classifiers [64]. In the context of DES, this
implies that the predictive performance is largely affected by
the choice of reference data points.

It should be recognized that most DES methods employ
kNN as a means of identifying reference data points for the
test sample case. More importantly, the Euclidean distance
is commonly used as a distance metric and, consequently,
the data structure is not accounted for when estimating the
RoC. Moreover, the existing DES methods inherit the other
drawbacks of kNN; namely, they are sensitive to the local
structure of the data [65] as well as to the presence of noisy
and/or irrelevant attributes [66], [67].

Figure 1 illustrates the differences between the RoC esti-
mated by the conventional 7-NN, i.e., (a) and (d), the
RoC estimated by independent dispersion-based 7-NN, i.e.,
(b) and (e), and the RoC estimated by correlation-based
7-NN, i.e., (c) and (f). The two class labels of the validation
data are marked with ‘‘1’’ and ‘‘�’’; the markers filled with
black represent the test sample cases. Those with colors are
reference data points within RoC which are indicated as a
dotted outline.

The figure demonstrates typical situations of indecision
regions consisting of dispersed data. Note that the unequal
as well as correlated variances presented in X1 and X2 make
key differences in the similarity assessment of the test sample
case relative to the validation data. Specifically, it is reason-
able to expect that the reference data points with the same
class labels as the test sample case are more likely to be
included in the RoC when feature variances are considered
in the similarity measure. With more representative reference
data points, this approach is more likely to construct an
ensemble that can correctly classify the test sample case with-
out engaging classifiers fitted to heterogeneous data points.
In contrast, the conventional kNN based on the Euclidean
distance can mislead the RoC because this distance by its
nature does not always correspond to the likelihood of the
appearance of homogeneous data points. What is needed is
a more versatile RoC estimation process that can consider
both how distant a test sample case is from each validation
point, and how the rest of the data points vary. It should also
be noted that the distribution-based RoC (either the indepen-
dent dispersion-based consideration or the correlation-based
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consideration) can be readily integrated into the existing DES
framework. That is, the conventional kNN-based RoC can be
viewed as a special case when features are assumed to have
equal and independent variance.

In this study, we propose a DDES framework by intro-
ducing two distinct RoC estimation approaches: one with
independent dispersion consideration (DDES-I) and the other
that considers the correlation by adopting the Mahalanobis
distance (DDES-M). Both of these can effectively estimate
the RoC such that more relevant classifiers are involved in the
construction of an ensemble. As discussed in the following
sections, this is enabled by taking the data distribution into
consideration when selecting the reference data points for the
test sample case. The aim of this study is both to present
algorithmic procedures of the proposed methods and their
comparative classification performances against the existing
methods, and to provide a discussion of the relationship
between data complexity and the behavior of the new meth-
ods to give insights into possible extensions of the current
specifications.

IV. METHODOLOGY
Following the conventions of the DES literature, let us first
define notation as follows:

• The original dataset is partitioned into a training set
(DTrain), a dynamic selection set (DSel), and a test set
(DTest ).

• Ri denotes an RoC identified for a test sample case
(xTesti ) consisting of reference data points (xSelj ) in DSel .

• Ci indicates a set of competent classifiers for a test
sample case (xTesti ) in DTest .

• K specifies the minimum size of Ri, which can also be
dynamically adjusted by the algorithm.

• AccThreshold is the minimum accuracy of a classifier
required to be included in Ci.

The DDES framework is divided into four phases as sum-
marized in Figure 2: 1) the training phase where a pool of
classifiers (C) is trained using DTrain; 2) the RoC estimation
phasewhereRi is determined as a set of xSelj ; 3) theDES phase
where Ci is composed of classifiers that yield classification
accuracy greater than or equal to AccThreshold on Ri; and 4) the
prediction phase where Ci is applied to xTesti and a majority
vote gives the classification.

1) Training phase: In this phase, DTrain is used to gen-
erate a pool of classifiers, among which some will be
adopted as competent classifiers for xTesti . A diverse set
of classifiers is generally sought to take advantage of
divergent decision boundaries. To achieve this, various
kinds of base classifiers in conjunction with a wide
range of hyperparameters may be trained using DTrain.
Additionally, the feature variances (σ ) presented in
DTrain are obtained to account for the data distribution
in the RoC estimation phase.

2) RoC estimation phase: This phase determines an
RoC for each xTesti . As discussed already, DDES is

Algorithm 1 RoC Estimation for xTesti in DDES-I

Input
Data: DSel, and xTesti ∈ DTest

Parameters: K and 1li
Standard deviations of features observed in DTrain: σ

Procedure
Set initial lengths of axes: li = σ
while li < 3σ do

Set an initial RoC: Ri = ∅
for all xSelj ∈ DSel do

if
∑

i (
xSelj −x

Test
i

li
)
2
≤ 1 then

Ri = Ri ∪ {xSelj }

end if
end for
if |Ri| < K then
li = li +1li

end if
end while

Output
RoC: Ri

characterized by incorporating the data distribution
into the selection of reference data points. There can
be different strategies to achieve this; in this paper,
we introduce two approaches: DDES-I and DDES-M.

• DDES-I: In this approach, feature variances are
accounted for independently, and RoC is essentially
defined as an ellipsoidal form with axes represented
by the corresponding variances of DTrain along each
feature (see Algorithm 1). To elaborate, the initial size
of the ellipsoid is determined by the feature variances
(σ ), and the ellipsoid is enlarged by updating the
lengths of the axes at the learning rate (1li) until the
required number (K ) of reference data points (xSelj ) is
included in the RoC (Ri) (see Figure 3). The updating
procedure terminates once the required number of
reference points (K ) are included in the RoC, that is the
number of points larger than K can be included in Ri.
One may notice that the resulting RoC will retain axes
parallel to the feature axes. That is, it is presumed that
features may have unequal variances, but they are not
correlated. It is also of note that reference data points
collectively falling within three standard deviations are
only considered tominimize the impact of outlying data
points.

• DDES-M: In practice, many datasets exhibit correlations
as well as differing levels of variance between features.
DDES-M attempts to address this by accounting for
the variance structure (see Algorithm 2). In particular,
the Mahalanobis distance [68] is employed so that the
covariance among features is reflected in the distance
calculation. Consequently, the resulting RoC is typi-
cally an ellipsoid constructed in a principal component
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FIGURE 2. Overview of the DDES framework.

FIGURE 3. Schematic illustration of the RoC estimated in DDES-I.

subspace. When the features are completely uncorre-
lated, i.e., S−1 = 1, the principal component axes will
correspond to the feature axes, thus this method becomes
identical to the conventional kNN-based DES method.

3) DES phase: Next, we proceed to the DES phase.
As summarized in Algorithm 3, a set of competent
classifiers (Ci) is dynamically selected for each test
sample point (xTesti ). Whether a classifier is competent
is determined by its accuracy when applied to Ri. If the
accuracy of a classifier is greater than or equal to
AccThreshold , it is included in the ensemble (Ci). For
example, suppose there are 10 reference data points in

Algorithm 2 RoC Estimation for xTesti in DDES-M

Input
Data: DSel and xTesti ∈ DTest

Parameters: K
Covariance matrix of DSel : S

Procedure
Set an initial distance set: Dist i = ∅
for all xSelj ∈ DSel do

Dist i = Dist i∪
√
(xTesti − xSelj )S−1(xTesti − xSelj )

end for
Arrange Dist i in ascending order
Assign xSelj to Ri where j is in the first K elements of
Dist i

Output
RoC: Ri

Ri and the AccThreshold is 0.8. The Ci comprises base
classifiers that correctly classify at least eight points in
the Ri. In a case where no classifier meets the accuracy
threshold, the value of K is increased and re-estimate
the RoC until there is at least one classifier in Ci.

4) Prediction phase: Lastly, in the prediction phase, mul-
tiple predictions from the set of competent classifiers
(Ci) on xTesti are collected, and then a simple majority
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Algorithm 3 Dynamic Ensemble Selection
Input

Data: Ri
Parameters: AccThreshold
Classifiers: C

Procedure
for all i do

Set an initial set of competent classifiers: Ci = ∅
for all ck ∈ C do

Compute the accuracy of ck on Ri: Acc(ck )
if Acc(ck ) ≥ AccThreshold then
Ci = Ci ∪ {ck}

end if
end for
if Ci is empty then

K = K + 1
Go to the RoC estimation phase

end if
end for

Output
Set of competent classifiers: Ci

vote is applied to determine the final prediction. In the
case of a tie, a random prediction is made as in the
conventional DES specification [52], [54]. Obviously,
this setting can be revised, e.g., by aweighted vote, as in
recent studies [74]–[76].

V. EXPERIMENTAL EVALUATION
In this section, we present the comparative classification
performances of the proposed methods against well-known
DS methods by applying them to multiple datasets.

A total of 30 datasets were taken from the UCI machine
learning repository and Kaggle benchmark repository. The
datasets consist of 23 binary classification problems and
seven multiclass problems (see Table 2). The last two
columns contain the class separability metric, namely the
N2 measure, and the level of unequal variance.

The class separability metric represents the ratio of the sum
of the intra-class distances to the sum of the inter-class dis-
tances [72]. As the measure compares the intra-class disper-
sion with the inter-class separability, a larger value generally
indicates a higher level of difficulty in classification owing to
a lower degree of separability.

To verify the impact of unequal variance to the classifi-
cation performance across the datasets, we first applied a
min-max rescaling so that the feature ranges were consis-
tently scaled to the range between 0 and 1, and then we
obtained the ratio of the maximum variance to the minimum
variance across the features in each dataset. The resulting val-
ues therefore indicated how representative unequal variances
are in the datasets.

The pool of base classifiers was composed of total 51 vary-
ing classifiers: 11 Neural Networks, 12 Support Vector
Machines, six Decision Trees, five Logistic Regressions, five

TABLE 2. Description of the dataset.

Gradient Boosts, six kNNs, five XGBoosts, and a Naïve
Bayes model (see Table 3).

The experiment was conducted in a Python environment,
and the pool of base classifiers was generated using the
Scikit-learn package [73] except for XGBoost. Additionally,
the five DS methods were implemented using DESlib [74].

We compared the proposed methods with seven state-
of-the-art dynamic selection methods: three DCS methods
(LCA, OLA, and MCB) and four DES methods (KNORA-
U, KNORA-E, META-DES, and DES-P). Following the con-
ventions in the literature, we designed the experiment as
follows.
• The standard stratified random split was conducted to
perform the holdout method, and each dataset was ran-
domly partitioned into three sets, a training set (50%),
a dynamic selection set (20%), and a test set (30%) in
such a way that the ratios of each class were maintained.
Validation was repeated 100 times to obtain an average
accuracy to mitigate variations in the random splits.

• For the sake of simplicity, hyperparameters for base
classifiers were randomly selected from Table 3 rather
than tuned in each iteration. This makes it possible for
diverse weak classifiers to be involved in the ensemble
across the benchmarkmethods. See similar experimental
designs in [49], [75], [76].
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TABLE 3. Base classifiers and hyperparameter pools.

• For the sake of consistency, common parameters were
selected based on the best overall performance: K was
set to 7 and AccThreshold was set to 0.3, both of which
yielded the best average classification accuracy obtained
across the datasets. Likewise, method specific param-
eters were selected on the basis of the resulting per-
formance. Kp and hc are META-DES parameters that
were set to 5 and 1, respectively, and 1li is a DDES-I
parameter that was set to 0.1×σ . See similar settings
in [48], [53], [54].

• Following guidelines in the literature [53], [54], [78],
theWilcoxon signed rank test with an adjusted alpha risk
of 0.0014 (≈ 0.05/36) was used to determinewhether the
differences in classification performance of competing
methods were statistically significant.

Table 4 presents the comparative classification accuracies
of the seven benchmark methods in conjunction with those
of the proposed methods.1 Note that the accuracies were
obtained by averaging the results. The best results for each
dataset are highlighted in bold, and statistically significant
differences comparedwith the other methods aremarkedwith
the symbol •. The last two rows contain the average accura-
cies and average ranks of each method across 30 datasets.

On average, DDES methods outperformed the others.
In particular, DDES-Mwas found to be most compatible with
our datasets, achieving the highest mean accuracy of 0.8309
along with the mean rank of 2.0333. Specifically, DDES-I
showed more accurate classification results than other meth-
ods in 10 datasets, among which half of them exhibited

1The results presented here can be reproduced at
https://github.com/yerimchoi/IEEE.2020.DDES

statistically significant differences. DDES-M was superior to
the others in 14 datasets, among which eight of them were
found to show statistically significant differences. In fact,
DDES methods were surpassed (in a statistical sense) only in
four datasets: Banknote, Phoneme, Haberman, and Phishing.

It is seen that DCS methods were generally outper-
formed by DES methods, which is consistent with the litera-
ture [50], [51]. The accuracy gap was particularly wider when
the dataset was hard to classify, with B.C. Coimbra, Liver,
and Glass being typical cases in point. In contrast, the DDES
showed good performance for those datasets as well. We will
investigate the relationship between data complexity and clas-
sification performance in the following section.

To further examine the classification performance of
competing methods, the Friedman omnibus test was first
conducted, and then a post-hoc Wilcoxon rank test was
employed. It was verified from the results that nine methods
indeed performed unequally (p-value < 2.2e−16), and, inter
alia, DDES methods outperformed the others while there
was no statistically significant difference between DDES-I
and DDES-M (see Table 5). Figure 4 is a critical difference
diagram summarizing the post-hoc test results. Note that the
mean rank is plotted on the horizontal axis, and methods con-
nected by a solid line are on par with each other in a statistical
sense. In conclusion, the data distribution considered in the
DES framework was effective, while the conventional DES
methods, particularly DES-P, META-DES, and KNORA-U
yielded relatively more accurate classification performances
than the DCS methods (LCA, OLA, and MCB) in our
experiment.

VI. DISCUSSION
In this section, we carry the analysis a stage further by
examining the relationship between the data complexity and
the classification performance. We specifically verified the
impact of the unequal variance and class separability metric
(N2) on the classification performance across the datasets.

Figure 5 illustrates the distribution of winning methods
corresponding to the degree of unequal variance. The area
indicates the proportion that each method yielded the best
classification performance, e.g. DDES-M outperformed the
other methods about 20% in a repeated experiment on a
dataset whose degree of unequal variance was 0.20 (scaled).
It is generally seen that DDES methods were dominant even
in the presence of a high level of unequal variances; they
cumulatively accounted for more than 60% of dominance
even in the most extreme case of the Biodegradation dataset
whose feature variances range from 0.001 to 141.378 (scaled
to 1.90 in the figure).

It is interesting to point out that DDES methods surpassed
the other methods particularly when the dataset features high-
dimensionality, with B.C. Diagnostic, Biodegradation,Wpbc,
Hepatitis, Spect, and Vehicle being typical cases in point (see
Table 2). This indicates that DDES methods are capable of
handling complex data in terms of dimensionality as well as
variance structure.
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TABLE 4. Performance benchmarks.

TABLE 5. Post-hoc test (Wilcoxon) results (p-value).

As discussed earlier, the problem of an indecision region
arises particularly when the data are highly dispersed, and
consequently, heterogeneous classes are mixed within RoC.

Figure 6 illustrates the distribution of the winning methods
corresponding to the class separability metric, i.e., the N2
measure. Likewise, predominance of the DDES methods is

apparent, and it is particularly notable that this superiority
is more prominent in more complex datasets. That is, the
proposed methods provided a robust framework to properly
select reference data points even in the presence of an inde-
cision region which, in contrast, generally undermined the
classification performance of the other competing methods.
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FIGURE 4. Critical difference diagram.

FIGURE 5. Distribution of the winning methods over the degree of
unequal variance.

FIGURE 6. Distribution of the winning methods over the class separability
metric (N2).

This also implies that the DDES methods are better able to
deal with complex classification problems given the fact that
there is a negative association (ρ = −0.7216, p-value =
6.7900e−6) between the average classification accuracy and
the N2 measure.

There was no discernible performance difference between
DDES-I and DDES-M in our experiment. It is interesting to

note that DDES-I provided better classification performances
over DDES-M when datasets were highly dispersed. This
suggests that additional characteristics of data other than
covariance could be further investigated to improve the cur-
rent specifications of DDES-M, while computational proce-
dures of DDES-I would need to be streamlined.

VII. CONCLUSION
In this paper, we proposed two novel DES methods, namely
DDES-I and DDES-M, that can effectively construct the
RoC by accounting for data distribution. The performance
benchmark showed that the proposed methods yielded the
best accuracy on average, providing statistically significant
improvements over the competing DSmethods. It was further
verified that the improvements correlated with both the dif-
ference in feature variances and the class separability. That is,
more unequal variances and dispersion present in the dataset
resulted in better selection of the reference data points by the
proposed methods, which eventually provided more accurate
classification performance.

The current specifications of the proposed methods raise
the possibility of further elaboration. This can be driven by:
1) incorporating additional stochastic factors into the RoC
construction such as bias and density of data along with
principal components; 2) maximizing the information gain
such as redundant reference data elimination; and 3) real-
izing an adaptive ensemble selection by considering com-
binatorial DES approaches optimized for a given test case.
Lastly, the proposed approaches could be integrated with
other dynamic selection frameworks to investigate the com-
binatorial impact on the classification performance.
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