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ABSTRACT Short-term load forecasting (STLF) plays an important role in the secure and reliable operation
of the electric power system. Grouping similar load profiles by a clustering algorithm is a common method to
reduce the uncertainty of electric consumption data. However, due to the uneven distribution of different date
types in a historical data set, the tradition fuzzy c-means clustering (FCM) algorithm cannot identify typical
load consumption patterns accurately. To solve this problem, a novel STLF model based on the improved
FCM (IFCM) algorithm, random forest (RF) and deep neural networks (DNN) is proposed in this paper.
First, IFCM is used to partition the load consumption profiles into several groups, and each group represents
a typical load consumption pattern. The optimal number of clusters is determined by a recent clustering
validity index. Then, a RF model is trained by the meteorological and calendar features of the historical data
set. Finally, a DNN model is established for each group, and is trained using the features of the days that
are partition into this group by IFCM. The experimental results on two daily load consumption data sets
have showed that the proposed STLF model achieves better prediction performance as compared to other
methods. In addition, the load consumption pattern of holidays was extracted from the historical data sets by
utilizing IFCM, and the prediction performance of holidays in the testing set therefore has been significantly
improved.

INDEX TERMS Clustering, fuzzy c-mean algorithm, load forecasting, random forest, deep neural network.

LIST OF ABBREVIATIONS RMSE, root mean square error
FCM,  fuzzy c-means clustering SVM,  support vector machine
STLF, short-term load forecasting
RF, random forest
DNN, deep neural network I. INTRODUCTION
CNN, convolutional neural network short term load forecasting (STLF) is a key part of the grid
RNN, recurrent neural network management system, and its accuracy has a direct effect on
DBN, deep brief network the results of grid safety inspections. STLF plays a key role
LSTM, long short-term memory in the dynamic estimation of grid states, load dispatch, and
GRNN, generalized regression neural network the reduction of power generation costs [1]. However, it is
ELM, extreme learning machine a difficult task to perform load forecasting precisely due
MAPE, mean absolute percentage error to the high volatility and uncertainty involved in the power
MASE, mean absolute scaled error system [2].

Till to now, a number of methods have been proposed
The associate editor coordinating the review of this manuscript and to perform the load forecasting, and can be usually divided
approving it for publication was Tossapon Boongoen . into two categories: traditional linear prediction methods
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and artificial intelligence (AI) based methods. Traditional
approaches mainly focus on linear predictions by using clas-
sical time-series models and their variations, such as the
linear regression models [3], [4], the autoregressive moving
average method [5] and the Kalman filtering based method
[6]. As the load consumption patterns become more dynamic
and unpredictable, Al-based methods are applied to improve
the prediction precision [7]. Several models have been used
to preform the load forecasting, such as the artificial neural
network [47], wavelet transform [9], random forest method
[1] and so on. Compared with traditional linear prediction
approaches, Al-based methods have been showed better pre-
diction performance owing to the advanced models they use.

Recently, deep learning based forecasting models have
been observed in literatures [10]. Several types of deep neural
networks have been utilized for load forecasting. Qiu ez al.
used the deep brief network (DBN) for load demand time
series forecasting [11]. The factored conditional restricted
Boltzmann machine was used to forecast the future electric
load in [12]. A STLF model was proposed based on the
fuzzy time series and convolutional neural networks (CNN)
in [13]. The recurrent neural network (RNN) is a powerful
model for the feature learning from sequence data, and has
been widely used for the STLF. For example, Kong et al.
proposed a long short-term memory (LSTM) based forecast-
ing model with load consumption sequences [14]. Shi et al.
proposed a RNN based forecasting model for the household
load forecasting [15]. In addition, some studies try to combine
two different neural networks for the load forecasting. For
example, Kim ez al. proposed a CNN-LSTM network that can
learn spatial and temporary features to predict load consump-
tion [16]; Chen et al. constructed a ensemble deep learning
model by combining RNN and deep residual network (DRN)
for the STLF [17]. Compared with the traditional machine
learning methods, the load forecasting performance has been
significantly improved by using deep learning models in these
studies.

It is a common method to group similar load profiles
using a clustering algorithm with the purpose of reducing
the variance of the uncertainty within each cluster [18]. For
example, Farfar and Khadir identified a set of day classes
using the c-means clustering algorithm, and built regres-
sion models to forecast each day type independently [19].
Kan et al. proposed a forecasting model by combining the
c-means clustering algorithm, artificial neural network and
k-nearest neighbor method [20]. Quilumba ez al. applied the
c-means clustering algorithm to group customers with similar
load consumption patterns prior to perform load forecasting
[21]. Oprea and Bara used the c-means clustering algorithm
to determine load consumption patterns and then constructed
forecasting models [22]. Panapakidis proposed two hybrid
forecasting models by combining clustering algorithms and
artificial neural networks [23]. FCM clustering method was
used to extract the load consumption patterns in [24] and
[25]. In these studies, c-means (CM) and FCM clustering
algorithms are the most frequently used methods to extract
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load consumption patterns because of their advantages of
simplicity and effectiveness. The prediction precision has
been improved owing to the application of clustering algo-
rithms. However, the performance is heavily dependent on
the robustness of clustering algorithms.

Previous studies have demonstrated that the load consump-
tion is related to the date category, such as the weekdays,
weekends and holidays [26]. The historical load data set is
imbalanced because the percents of days in different cate-
gories are significantly uneven. Specifically, holidays only
occupy a small fraction in a year. However, the clustering
results of the CM and FCM algorithms, which are commonly
used in existing load forecasting methods, are significantly
affected by the imbalanced distributions inter-clusters; this is
called “‘uniform effect” in literatures [27], [28]. The reason of
the “uniform effect” of CM and FCM is that they use a sum-
of-squared objective function, and relatively uniform cluster
sizes will achieve a smaller value of this objective func-
tion. In our previous study, we have proposed an improved
FCM (IFCM) by constructing a new objective function [28],
in which the “uniform effect” of FCM is solved by nor-
malizing the traditional one using cluster volumes. Applied
to metagenomic sequences clustering, IFCM exhibited better
performance than other methods [29].

Hence, load consumption patterns cannot be effectively
extracted from a historical load consumption data set using
the traditional CM or FCM algorithm, thus affecting the sub-
sequent load forecasting. To address this issue, a novel STLF
model based on the IFCM clustering algorithm, RF method
and DNNs is proposed in this paper. First, historical load
profiles are grouped using the IFCM algorithm, which is
insensitive to the imbalance of days in different categories,
to obtain several typical load consumption patterns. Then,
the meteorological and calendar features of the training set
are used to train a RF model, and the clustering result of
the IFCM algorithm is used as the label of a day. Finally,
a five-layer DNN is constructed for each group. The DNN
model is to fit the relationship between the meteorological
and calendar features and the peak and valley load values in
each group. The experimental results on two daily load data
sets have showed that the proposed STLF model achieves
better performance in term of prediction precision than other
methods.

The main contributions of this paper are: (1) the load
consumption patterns are identified by an advanced clustering
algorithm to eliminate the effect caused by the unevenly dis-
tribution of different date types; (2) the load consumption pat-
tern of the day to be predicted is determined by a well-trained
RF model; (3) the deep neural network is used to fit the
relationships between the peak and valley load values and
the meteorological and calendar features. To our knowledge,
this is the first study that considers the imbalanced property
of historical load data sets and solves it by a new clustering
algorithm.

The rest of this paper is organized as: the proposed STLF
model is described in Section II. The experimental results are
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FIGURE 1. Flowchart of the proposed STLF model.

showed in Section III. Section IV discusses the performance
of the proposed model. A brief conclusion is provided in
Section V.

Il. MATERIALS AND METHODS

The flowchart of the proposed STLF method is summarized
in Fig. 1. First, a historical load data set is randomly parti-
tioned into 2 subsets, namely the training set and testing set.
The training set contains 70% of days of this data set, while
the rest days are in the testing set. Then the IFCM clustering
algorithm [28] is utilized to group the load profiles of the
training set with the optimal number of clusters determined
by a recent clustering validity index. After that, the meteo-
rological and calendar features, together with the clustering
result of IFCM, are used to train a RF model [30]. Meanwhile,
a deep neural network [31] based forecaster is constructed
for each group. Finally, the testing set is used to evaluate the
prediction performance of the proposed STLF model.

A. LOAD PROFILING BASED ON IFCM ALGORITHM

FCM is a centroid-based clustering algorithm, and imbal-
anced distributions inter-clusters have a negligible effect on
its clustering performance [28]. The reason is that FCM uses
a sum of squared objective function, which is defined as:

¢ N
2
Jrew =YY ulllxi—0; |

j=1 i=1

ey

where x; is the ith data point of X, 6; is the jth cluster
center, u;; is the membership value of x; to 8; and satisfies
Z;: 1 wij = 1, q is the fuzziness degree, and c is the number
of clusters. Previous studies have demonstrated that minimiz-
ing this objective function will equalize the volumes of all
clusters [32]-[35], as a result some samples in one class may
be classified into its adjacent class incorrectly. Considering
the imbalanced number of days of different categories in a

59756

historical data set, the IFCM clustering algorithm is used to
extract typical load consumption patterns in this paper.

A new objective function is designed in the IFCM cluster-
ing algorithm:

< YN WIDTW (x;,6;)
Jircm = Z e & f ( : ])
J

j=1
where f; represents the volume of jth cluster and is calculated
by:

@

N

A
fi= % (3)
The dynamic time warping (DTW) distance is a famous
metric to measure the similarity of time series data, and is
used in this paper to calculate the distance between x; and
;. By introducing the volumes of clusters into the objective
function, IFCM could normalize the number of samples in
different clusters, and is able to improve the clustering per-
formance of the traditional FCM for imbalanced data sets. By
using the Lagrange multiplier method, the partial derivative
of Jircy to the membership matrix can be obtained. Defining
it to be zero, the membership matrix of [IFCM can be calcu-
lated by:
1

(o)™
DTW (xr,0,)°

Ups = 1

“
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2= <DTW(x,,a_,)2>
The formula of the cluster center is as the same as the tradi-
tional FCM:

N
p ”?}xi
N
Dimt “?j

The number of clusters is an important parameter in clus-
tering algorithms. In this paper, it is determined by a recent

6; = §)
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clustering validity index, IMI [36], which is defined as:
N 2 N
2;21 Dim “g'DTW (xi,0))" / 220y uy
mind;DTW (01, 0j)2 + mediand;;DTW (01, Oj)2
I#j I#]
(6)

where §;; = max(f;, f;)/ min(f;, f;) measures the imbalanced
degree of the cluster / and j. IMI is a recently proposed clus-
tering validity index and is robust to the imperfect clustering
result of FCM for imbalanced data sets. The result with the
minimum IMI value will be determined as the number of
clusters:

IMI(c) =

¢* =arg min IMI(c) @)
2<c<K

In summary, the pipeline of the load profiling based on the
IFCM clustering algorithm is as follows:

1) Set parameters: ¢ > 2, the number of clusters ¢ = 2
to K, iteration error ¢ = 1077, max iteration number
"max = 1000, initial volume of a cluster f; = 1/c, and
current iteration number r = 1;

2) Select ¢ samples in the training set as the initial cluster
centers randomly;

3) Calculate the membership values u,; according to the
formula (4);

4) Update the centers of clusters according to the for-
mula (5);

5) Calculate the volumes of clusters f; according to the
formula (3);

2

6) Setr =r + 1. If (JI(;-)CM —JI(I?J&},[) < €O0rr > Imax,
go to the next step; otherwise return to the step 3);

7) If ¢ = K, go to the next step; otherwise, setc = ¢ + 1
and return to the step 2).

8) Calculate the IMI values of these clustering results
and select the optimal one, and get ¢* typical load
consumption patterns.

B. LOAD CONSUMPTION PATTERN DETERMINATION
BASED ON RANDOM FOREST

The RF algorithm is a supervised integrated learning method,
and integrates several weak classification decision trees to
establish a strong classifier. The fundamental theory of RF
is the Bagging ensemble learning theory and the random
subspace method. For a classification task, samples to be
classified are used as inputs and each decision tree generates
an independent classification result. The final classification
labels are determined by the majority voting of all the deci-
sion trees [30], [37], [38]. Therefore, the RF algorithm can
overcome some limitations of single decision tree and has
been widely applied in the load forecasting [1], [39].

First, a RF model is developed based on the clustering
result of historical load consumption profiles, and the mete-
orological and calendar features. The meteorological and
calendar features are randomized and selectively extracted to
establish several individual subsets of samples. Then, an inde-
pendent decision tree is generated for each subset, and dual
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FIGURE 2. Architecture of the DNN-based forecaster.

classification is applied on each node based on Gini gain
until one, and only one, load consumption pattern is present
in this node. In this case, the node is regarded as a leaf
node. Eventually, several decision trees with classification
capabilities are established.

Then, the meteorological and calendar features of the
day to be predicted are employed as the inputs of the RF
model and the load consumption pattern of this day is
determined by the majority voting of the results of all the
decision trees.

C. LOAD FORECASTING BASED ON DEEP NEURAL
NETWORKS

Deep neural networks (DNN) are nonlinear representation
learning methods, and typically include an input layer, an out-
put layer and several hidden layers. Neuron is the basic com-
ponent of the layers, and is a multi-input and single-output
unit. It receives the information from the previous layer and
transmits to the next layer after a nonlinear activation func-
tion. Due to its powerful ability of nonlinear complex function
fitting, DNN has been applied into many areas.

In this paper, a DNN-based forecaster is constructed for
each group. Each neural network contains 5 layers, including
1 input layer, 3 hidden layers and 1 output layer, as showed
in Figure 2. The first layer inputs the meteorological and
calendar features into the network, and the number of neurons
is the sum of the numbers of the two types of features. The
hidden layers all contain 10 neurons. The last layer outputs
the peak and valley load values of the training samples.
Every DNN is trained and optimized by the samples that are
clustered into this group by IFCM. The mean squared error
between the output values of a network and the true values
is used as the loss function, and the Levenberg-Marquardt
method was used to train the network.

D. FORECASTING PROCEDURE

The meteorological and calendar features of a day to be
predicted are use to forecast its load profile through three
steps. First, input the meteorological and calendar features
of a day to be predicted into the RF model and get several
labels from all the decision trees in the model. The load
consumption pattern is determined by the majority voting of
these labels, termed as &;.
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TABLE 1. China federal holidays.

Holiday name Date

New year’s day January 1

Spring festival The first to the third day of the first lunar month
Qingming festival April 4

International Labour Day May 1
Dragon Boat Festival the 5th day of the 5th lunar month
Mid-Autumn Festival the 15th day of the 8th lunar month
National Day October 1-3

Then, input the meteorological and calendar features of this
day into the §;th DNN-based forecaster and get the peak and
valley load values of this day.

Finally, the load pattern and the peak and valley values are
combined to determine the load profile of this day by:

P, — min(Ps,)

L= Peak — Valley) + Valley (3
P nan(Py)) — min(Py  \Feak  Valle) & Valley (8)

where §; is the label of the day to be predicted and is deter-
mined by the RF model, Ps, is the §;th load consumption
pattern, and Peak and Valley are the output values of §;th
DNN-based forecaster.

Ill. RESULTS

A. EXPERIMENTAL DATA SETS

Two data sets were selected to evaluate the prediction per-
formance of the proposed STLF model. The first data set
consists of daily load consumption profiles, meteorological
and calendar features of a city in Jilin Province, China from
2015 to 2016, totally 710 days. The load profile of a day con-
tains 24 load values with the sampling frequency of one hour.
The meteorological features include the maximum and min-
imum wind speeds, maximum and minimum temperatures,
and average surface pressure, while the calendar features are
one-hot encoded according to the weekdays, weekends, and
holidays. Holidays are determined by the federal holidays of
China, as showed in Table 1. Figure 3 shows the load profile
of one day in this data set.

The second data set is from a US utility and was
used in the Global Energy Forecasting Competition 2014
(GEFCom2014) [40]. Hourly historical load and temper-
ature values from 2005 to 2006, total 730 days, were
selected in this paper. The calendar features were deter-
mined by the US calendar and US federal holidays,
as showed in Table 2. This data set is available at https://
www.sciencedirect.com/science/article/pii/S0169207016000
133?via%3Dihub#ec000005. Figure 4 shows the load profile
of one day in this data set.

For convenience, the two data sets are named as D_China
and D_US in the rest of this paper respectively.

B. EVALUATION CRITERIA

The load forecasting performance is evaluated based on
three metrics, namely the root mean square error (RMSE),
the mean absolute percentage error (MAPE) and the mean
absolute scaled error (MASE). RMSE evaluates the general
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FIGURE 3. The load profile of one day in the D_China data set.

TABLE 2. US federal holidays [40].

Holiday name Date
New year’s day January 1
Birthday of Martin Luther King, Jr. Third Monday in January
Washington’s birthday (Presidents’ day) Third Monday in February
Memorial day Last Monday in May
Independence day July 4
Labor day First Monday in September
Columbus day Second Monday in October

Veterans day November 11
Thanksgiving day Fourth Thursday in November
Christmas day December 25
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FIGURE 4. The load profile of one day in the D_US data set.

deviation between the real and the predicted load profiles, and
is defined as:

&)

Erpmse =

\/ S IFG) — y()1?
n

MAPE reflects the accuracy of a prediction method, and can
be calculated by:

n

Eyape = %Z

i=1

J@) —y@)

fa
MASE measures the scaled mean error of the real and pre-
dicted load profiles [41] and is defined as:

é If (i) — y(0)| '
o IFG) = £G = DI

In the above formulas, f(i) and y(i) are the actual gnd
the predicted load values of ith moment respectively, f is

(10)

1

Emase = - T
n L

i=1 n—1

Y
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FIGURE 5. The IMI values of the clustering results of IFCM with different numbers of clusters on the D_China and D_US data sets. The point with
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FIGURE 6. Load patterns clustered by the FCM and IFCM clustering algorithms on D_China data set.

the average value of the real load profile, and n is the
number of daily measurements. The smaller these met-
rics are, the higher the accuracy of the load forecasting
model is.

C. RESULTS OF LOAD PROFILING BASED ON IFCM

First, the IFCM clustering algorithm was performed sev-
eral times with different numbers of clusters (from 2 to 10)
and IMI was then used to determine the optimal number of
clusters for each data set. Figure 5 shows the IMI values
of the clustering results of IFCM on D_China and D_US.
The point with the minimum value of IMI is determined as
the optimal number of clusters, and there are 5 clusters in the
D_China data set and 7 clusters in the D_US data set. The
numerical results of the load patterns obtained by FCM and
IFCM clustering algorithms are listed in Table S1-S4 of the
Supplementary File.

Figure 6 shows the load consumption patterns obtained by
the FCM and IFCM clustering algorithms with the optimal
number of clusters from the D_China data set. It can be
observed from Fig. 6 (a) that the load patterns obtained by
FCM have similar shapes. There are only 4 distinct load
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patterns in Fig. 6 (a), because the load pattern 1 and 4 are
exactly the same. The reason lies in that the “uniform effect”
of FCM occurred in this experiment, and many samples from
a majority cluster might be clustered into its adjacent cluster
to make their centers closer. The load pattern 1, 3 and 4 of
FCM mainly consist the dates from October to February,
representing the load characteristic of winter. The load pattern
2 and 5 of FCM mainly consist the dates from April to
September, representing the load characteristic of summer.
The difference between them is that the vast majority of
weekends in these months are in the load pattern 2, while the
load pattern 5 mainly includes weekdays.

IFCM is able to solve the ‘“‘uniform effect” of FCM
and 5 clusters with distinct load consumption patterns were
discovered by IFCM, as showed in Fig. 6 (b). The load
pattern 3 and 5 of IFCM represent the load characteristic
of winter. The load pattern 2 and 4 of IFCM represent the
load characteristic of summer; the former load pattern mainly
includes weekdays, while majority of weekends in summer
are in the latter one. There are 41 days of holidays in the
D_China data set, and 24 of them were clustered in the load
consumption pattern 1.
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FIGURE 7. Load patterns clustered by the FCM and IFCM clustering algorithms on D_US data set.

TABLE 3. Comparison of clustering results of IFCM on other algorithms
on D_China and D_US data sets. The minimum values are written in bold.

FCM csiFCM siibFCM IFCM
XBI lel5 1e35 5.5805 0.9309
D China FSI -0.5917 -0.3237 -1.1917 -3.1497
- WLI 9.5397 9.0446 4.6696 0.985

IMI 8.7125 8.2461 3.196 0.9168
XBI 0.5633 0.4556 0.4647 0.8993

D US FSI | -371.6394 | -321.4555 | -543.708 | -901.8275
- WLI 0.4276 0.4061 0.4609 0.3244
IMI 0.0044 0.0044 0.3548 0.0044

Figure 7 shows the load consumption patterns obtained by
the FCM and IFCM clustering algorithms with the optimal
number of clusters from the D_US data set. It can be observed
that the load patterns obtained by IFCM are more diverse than
that of FCM, such as the load pattern 3 of I[FCM.

Because the label information of each historical load data
set is not available, the clustering performance of the IFCM
clustering algorithm was than evaluated by 4 commonly
used internal metrics, FSI [42], XBI [43], WLI [44] and
IMI [36], and was compared with the traditional FCM algo-
rithm and two improved FCM algorithms, csiFCM [45] and
siibFCM [46]. FSI, XBI, WLI and IMI evaluate a clustering
result of a data set according to its structure of clusters
with no need for the ground truth of samples in this data
set. Smaller values of these indexes indicate better cluster-
ing results. Table 3 lists the values of the four indexes on
the clustering results of the D_China and D_US data sets
by IFCM and other clustering algorithms respectively. We
can find that IFCM achieved smaller values of all of these
indexes than these of other algorithms on the D_China data
set and three indexes on the D_US data set, illustrating
that the IFCM algorithm exhibits the ability to improve the
performance of the load profiling than the traditional FCM,
and outperforms the other two improved FCM algorithms
that are also designed to solve the “‘uniform effect” of the
traditional FCM.

D. RESULTS OF LOAD FORECASTING

First, the IFCM clustering algorithm was combined with
four famous regression models, the support vector machine
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(SVM), general regression neural network (GRNN), extreme
learning machine (ELM) and DNN models, and was
compared with the traditional FCM clustering algorithm.
Figure 8 and 9 show the box diagrams of the MAPE, MASE
and RMSE values of the results on the testing sets of the
D_China and D_US data sets predicted by these methods
respectively. It can be observed that the prediction perfor-
mance is significantly improved by utilizing IFCM on the
D_China data set as the levels of MAPE, MASE and RMSE
are much lower than that of FCM. For the D_US data set,
a distinct smaller levels of MAPE and MASE were achieved
by combining IFCM with SVM, ELM and DNN as com-
pared to the traditional FCM. Table 4 lists the average val-
ues of MAPE, MASE and RMSE on the testing sets of the
D_China and D_US data sets predicted by these methods
respectively. For the D_China data set, the average values
of MAPE, MASE and RMSE of the IFCM+SVM model
are 0.4%, 6% and 0.3% less than that of the FCM+SVM
model respectively, these values of the [FCM+GRNN model
are 0.1%, 2% and 0.1% less than that of the FCM+GRNN
model respectively, these values of the IFCM+ELM model
are 0.3%, 7% and 0.4% less than that of the FCM+ELM
model respectively, and these values of the proposed model
are 0.9%, 16% and 1.2% less than that of the FCM+DNN
model respectively. For the D_US data set, the average values
of MAPE, MASE and RMSE of the IFCM+SVM model
are 0.6%, 7% and 0.3% less than that of the FCM+SVM
model respectively, these values of the [FCM+GRNN model
are 0.3%, 5% and 0.1% less than that of the FCM+GRNN
model respectively, these values of the [IFCM+ELM model
are 4%, 83% and 3% less than that of the FCM+ELM model
respectively, and these values of the proposed model are
0.6%, 4% and 0.3% less than that of the FCM+DNN model
respectively.

Then, the prediction performance for holidays was eval-
uated. Figure 10 and 11 show the prediction performance
of these methods on holidays in the D_China and D_US
data sets respectively. It can be observed that the the per-
formance of holidays was significantly improved on both
data sets by combining the IFCM clustering algorithm with
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TABLE 4. Average values of MAPE, MASE and RMSE on the testing sets of the D_China and D_US data sets. The best results are written in bold.

FCM+SVM | IFCM+SVM | FCM+DNN | Wu’s method | FCM+GRNN | IFCM+GRNN | FCM+ELM | IFCM+ELM | Proposed
MAPE 0.035 0.031 0.038 0.04 0.033 0.032 0.035 0.032 0.031
D_China | MASE 0.69 0.63 0.74 0.78 0.66 0.64 0.70 0.63 0.62
RMSE 0.033 0.3 0.036 0.037 0.032 0.031 0.034 0.030 0.029
MAPE 0.09 0.084 0.094 0.092 0.09 0.087 0.16 0.12 0.088
D_US MASE 1.56 1.49 1.59 1.59 1.59 1.54 2.93 2.1 1.55
RMSE 0.077 0.074 0.08 0.08 0.078 0.077 0.14 0.11 0.077
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FIGURE 8. Comparison of the prediction performance of different prediction models on the D_China data set. The MAPE, MASE and

RMSE values in the testing set are counted and showed in box plots.
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FIGURE 9. Comparison of the prediction performance of different prediction models on the D_US data set. The MAPE, MASE and RMSE

values in the testing set are counted and showed in box plots.

the four regression methods. Table 5 lists the average values
of MAPE, MASE and RMSE on holidays of the testing
sets of the D_China and D_US data sets predicted by these
methods. For the D_China data set, the average values of
MAPE, MASE and RMSE of the IFCM+SVM model are
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0.4%, 6% and 0.3% less than that of the FCM+SVM model
respectively, these values of the [IFCM+GRNN model are all
0.2% less than that of the FCM+GRNN model respectively,
the average value of MASE of the IFCM+ELM model is
0.2% than that of the FCM+ELM model, and the average
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FIGURE 10. Comparison of the prediction performance of different prediction models on holidays in the D_China data set.

TABLE 5. Average values of MAPE, MASE and RMSE on holidays of the D_China and D_US data sets. The best results are written in bold.

FCM+SVM | IFCM+SVM | FCM+DNN | Wu’s method | FCM+GRNN | IFCM+GRNN | FCM+ELM | IFCM+ELM | Proposed
MAPE 0.055 0.041 0.061 0.059 0.050 0.048 0.046 0.046 0.046
D_China | MASE 1.13 0.87 1.23 12 1.02 0.098 0.098 0.096 0.96
RMSE 0.05 0.039 0.055 0.054 0.045 0.043 0.043 0.043 0.043
MAPE 0.097 0.063 0.096 0.09 0.093 0.092 0.096 0.073 0.076
D_US MASE 1.85 1.25 1.93 1.79 1.94 1.89 2.00 1.39 1.59
RMSE 0.084 0.059 0.085 0.079 0.086 0.084 0.089 0.066 0.07

values of MAPE, MASE and RMSE of the proposed model
are 0.9%, 16% and 1.2% less than that of the FCM+DNN
model respectively. For the D_US data set, the average values
of MAPE, MASE and RMSE of the IFCM+SVM model are
3.4%, 60% and 2.5% less than that of the FCM+-SVM model
respectively, these values of the IFCM+GRNN model are
0.1%, 5% and 0.2% less than that of the FCM+GRNN model
respectively, these values of MAPE, MASE and RMSE of
the IFCM+ELM model are 2.3%, 61% and 2.3% less than
that of the FCM+ELM model respectively, and these values
of MAPE, MASE and RMSE of the proposed model are
2%, 34% and 1.5% less than that of the FCM+DNN model
respectively.

Finally, the proposed STLF model was compared with
the method in [1], termed as Wu’s method, in which the
k-means clustering algorithm and the linear regression model
are used. The prediction results on the two data sets have
showed the superiority of the proposed STLF model than that
of the Wu’s method. For the D_China data set, the average
values of MAPE, MASE and RMSE of the proposed model
are 0.9%, 16% and 1.2% less than that of the Wu’s method
respectively, and are 0.4%, 4% and 0.3% less than that of
the Wu’s method for the D_US data set respectively. The
prediction performance of holidays was also improved. For
the holidays in the D_China data set, the average values of
MAPE, MASE and RMSE of the proposed model are 1.3%,
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24% and 1.1% less than that of the Wu’s method respectively,
and are 1.4%, 20% and 0.9% less than that of the Wu’s method
for the holidays in the D_US data set respectively.

E. STABILITY ANALYSIS

The stability of the proposed STLF model was evaluated by
the population stability index (PSI). PSI is the most common
criterion to analyze the stability of a model by measuring the
distribution difference between the testing samples and the
training samples. If the PSI value of a model is less than 0.1,
the stability of the model is very high. The proposed STLF
model was first to predict the load profiles of the samples
in the training set and the testing set of the D_China data
set. Then the MAPE values of the results of the two sets
were calculated and were grouped into 10 equal intervals
respectively. The distributions of the MAPE values of the
training set and the testing set were used as the expected
and actual distributions respectively. Then the PSI can be
calculated by:

10
PSI =) " [(Ac; — Exi) x In(Aci/Ex;)]

i=1

(12)

Tabel 6 lists the statistical values and the PSI values of all
intervals. The PSI value of the proposed model is 0.0497,
illustrating that the model is very stable. Figure 12 shows
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FIGURE 11. Comparison of the prediction performance of different prediction models on holidays in the D_US data set.

TABLE 6. The statistical values and the PSI values of all intervals.

Intervals Actural | Expected Ac-Ex In(Ac/Ex) Index
0-1% 0.0047 0.0021 0.0027 0.3624 0.0010
1.01%-2% 0.1943 0.2078 -0.01351 -0.02918 0.0004
2.01%-3% 0.3128 0.3992 -0.0864 -0.1059 0.0091
3.01%-4% 0.2512 0.2490 0.0022 0.0038 8.51e-06
4.01%-5% 0.1090 0.0823 0.0267 0.1220 0.0033
5.01%-6% 0.0616 0.03086 0.03075 0.3002 0.0092
6.01%-7% 0.0237 0.0165 0.0072 0.1582 0.0011
7.01%-8% 0.0095 0.0041 0.0054 0.3624 0.0019
8.01%-9% 0.0095 0.0062 0.0033 0.1863 0.0006
>9% 0.02369 0.0021 0.0216 1.0613 0.0229
FSI value 0.0497
0.4 7
H Actual
u Expected
0.3 1

N S° aF S8 g S0
A A S S S LA TN T
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FIGURE 12. The histogram of the percentages of the MAPE values
in 10 intervals.

the actual and expected histograms of the percentages of the
MAPE values in 10 intervals.

IV. DISCUSSION

In this paper, a novel hybrid STLF model is proposed. The
core of this model is that an advanced clustering algorithm is
utilized for the discovery of the load consumption patterns.
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The IFCM clustering algorithm was combined with four
regression models and the performance has been improved as
compared to the traditional FCM clustering algorithm. The
percentages of relative improvements by combining I[FCM
with SVM and DNN models were calculated and were plot-
ted in Figure 13. There are two interesting findings can be
observed. First, the extent improvements by utilizing IFCM
on the D_China data set are much larger that on the D_US
data set. We infer that this is caused by the different number
of holidays in the testing sets of the two data sets. There are
15 holidays in the testing set of the D_China data set, but only
8 holidays of the D_US data set. [IFCM is a powerful cluster-
ing algorithm for imbalanced data sets. As mentioned above,
the load consumption pattern of holidays has been identified
by IFCM, which could improve the prediction performance
for holidays. As there are much more holidays in the testing
set of the D_China data set than that of the D_US data set,
the overall performance improvements of the D_China data
set is greater than that of the D_US data set.

Secondly, the IFCM+DNN model is better than the
IFCM+SVM model for the D_China data set and on the
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contrary for the D_US data set. This is probable caused by the
different number of clusters determined by the IMI index for
the two data sets. The samples in the D_China data set were
partitioned into 5 clusters, while the samples in the D_US data
set were partitioned into 7 clusters. Therefore, in the D_US
data set, the number of samples in each cluster used to train
the DNN model is much less than that in the D_China data set.
The under-fitting may happen when training the DNN models
for the D_US data set, and may affect the overall prediction
performance.

V. CONCLUSION
In this paper, a novel STLF model is proposed by combining
IFCM, RF method and DNNs. The core contributions of
the proposed model are the consideration of the imbalanced
property of a historical load data set, and the application of
an advanced clustering algorithm to perform load profiling.
Compared with the traditional FCM, IFCM could provide
better results of load profiling. Experimental results on two
data sets have showed the superior performance of the pro-
posed model than that of other methods. Additionally, it’s
worth noting that the prediction performance of holidays
has been significantly improved by using IFCM. Therefore,
the proposed STLF model is a powerful model and can be
applied to the load forecasting in other region of worldwide.
IFCM can be used to discover the load consumption patterns
from smart meter data and to improve the performance of the
meter-level load forecasting.

There are several promising directions in our future study:
1) whether some external factors can be considered in the
prediction model to improve the forecasting accuracy, such
as the economic data and the population size of a city; 2) how
to determine the optimal combinations of meteorological
features; 3) how to combine IFCM with other deep neural
networks, such as the RNN.
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