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ABSTRACT Redundant number systems (RNS) are a well-known technique to speed up arithmetic circuits.
However, in a complete CPU, arithmetic circuits using RNSwere only included on subcircuit level e.g. inside
the Arithmetic Logic Unit (ALU) for realization of the division. Still, extending this approach to create a CPU
with a complete data path based on RNS can be beneficial for speeding up data processing, due to avoiding
conversions in the ALU between RNS and binary number representations. Therefore, with this paper we
present a new CPU architecture called RISC-V3 which is compatible to the RISC-V instruction set, but
uses an RNS number representation internally to speed up instruction execution times and therefore increase
the system performance. RISC-V is very suitable for RNS because it does not have a flags register which
is expensive to calculate when using an RNS. To present reliable performance numbers, arithmetic circuits
using RNSwere realized in different semiconductor technologies. Moreover, an instruction set simulator was
used to estimate system performance for a benchmark suite (Embench). Our results show, that we are up to
81% faster with the RISC-V3 architecture compared to a binary one, depending on the executed benchmark
and CMOS technology.

INDEX TERMS Arithmetic and logic units, processor architectures, RISC, ternary arithmetic.

I. INTRODUCTION
For building fast and energy efficient computer systems, one
possibility is to consider alternative number representations
other than traditional 2’s complement. An approach proposed
in the past is to use redundant number systems [1]. These
number systems allow the usage of more than r values per
digit for a radix r > 1. While this looks very inefficient
on the first glance in terms of hardware resources especially
for storing data, arithmetic calculations can be performed
asymptotically faster with regards to the word width when
using these numbers. The reason for this improvement lies
within the limited carry propagation of arithmetic circuits
implementing such number systems.

Parhami [2] proposed GSD (General Signed-Digit) num-
ber systems as a framework for different redundant number
representations and its arithmetic operations (e.g. additions)
on it. As special cases for radix-2 based systems (r = 2) BSD
(binary signed-digit), with the values {−1, 0,+1}, and BSC
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(binary stored-carry) with the values {0,+1,+2} are covered
by this framework. By utilizing these number representations,
additions can be executed in constant time, independent of
the word length. This fact can be exploited to speed up
arithmetic in modern CPUs. Moreover, addition can be seen
as the basis of most arithmetic operations. Optimizing this
operation is potentially able to increase a CPUs performance
dramatically. For example some floating-point units are uti-
lizing RNS in their internal architecture to perform the SRT
division algorithm [3], [4]. Finally, limiting carry propagation
and increasing data locality decrease CMOS net activity for
sufficiently large word sizes and is therefore able to save
energy.

In this paper, especially BSD and BSC number represen-
tations are used, because these systems allow the implemen-
tation with traditional full adder structures. Using full adder
cells promises a short critical path because highly optimized
versions are often provided in most standard cell libraries.
Fig. 1 shows an example for the addition of two numbers
in BSC representation. As discussed, a number in this num-
ber representation may not only contain ‘‘1’’s and ‘‘0’’s as
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FIGURE 1. Addition example in BSC. The reason that this example can be
calculated in constant time is that the carries can only affect at most two
digits in the result. Note that is possible to continue calculating with the
resulting number without eliminating ‘‘2’’s from the result and still
retaining the constant time delay, as shown in section II.

digits; additionally, we allow the ‘‘2’’ as digit value here.
Consequently, instead of propagating a carry, the carry will
be included in the appropriate digit, which will be possible by
allowing a ‘‘2’’ as digit for the number representation. Due to
the possibility to allow three different states per digit, we will
call these number representations in this paper ternary num-
ber systems.

In the area of redundant number systems a lot of research
has been done. Parhami [5] first proposed a recode mecha-
nism for BSD numbers, to allow a carry free-addition. For
BSC,Weinberger [6] proposed the 4-2-Adder Module, which
was re-analyzed several times in context of GSD [7], [8]. This
circuit is usually known as a carry-save adder. Based on these
fundamental findings more recent work has been done: For
example in [9] and [10] new FPGA implementations of arith-
metic circuits using RNS have been developed. Moreover,
various applications could be sped up using RNS. Exam-
ples inclue complex DSP calculations using CORDIC [11]
or the fast computation of cryptographic functions [12].

As shown, redundant number representationsmight be able
to increase arithmetic subcircuit performance significantly
and are therefore used in rare cases, e.g. for the SRT division
in the arithmetic logic unit (ALU) of a CPU. However, due to
the non-unique representation of a number in RNS meaning
that a value z can be represented by different bit vectors
in RNS, a time-consuming (non-constant time) conversion
becomes necessary for further arithmetic operations using
this value in classical 2’s complement. For example, in a CPU
that uses classical 2’s complement representation in general
but also a RNS-based arithmetic subcircuits for division, a
conversion is needed for each division instruction inside the
ALU. As Parhami already stated, ‘‘Whenever long sequences
of computations are to be performed on particular pieces of
data, the one-time conversion and reconversion effort to/from
the OSD [ordinary signed digit] representation is more than
compensated for by the gain in computation speed.’’ [2].
Hence, it is useful to increase the length of these sequences.
Therefore, for a further performance increase, this implies
not only using RNS based arithmetic subcircuits, but rather
to completely rely on ternary encodings on the data path in
the CPU. Consequently, conversions between/to registers and
the ALU in a CPU will be avoided. Finally, all instructions in
a CPU are working on words in RNS representation which
avoids the conversation completely (except of Input/Output
of the CPU). In Fig. 2 a comparison between a traditional
CPU and a ternary CPU as presented in this paper is shown.
While in the traditional CPU only a small subcircuit (SRT)
inside the ALU works with RNS (marked in red), in the

FIGURE 2. RNS CPU compared to traditional ones. The upper part shows
a conventional CPU data path where only a few functional units (like SRT)
use a RNS (marked in red). In the lower part a CPU is depicted that uses
uses RNS as the default number representation (also marked in red) and
only converts back for certain operations (like logical operations).

ternary CPU the complete data path is implemented based
on RNS. There are still circuits relying on binary representa-
tions, as they are unavoidable, e.g. bit-wise operations such as
bit-wise and, but signals between functional units are encoded
entirely in RNS.

Although, the above mentioned method promises a huge
performance gain, different challenges arise:

1) Due to more bits having to be stored for RNS numbers
than actually required for conventional binary ones,
register files inside the CPU increase in size as well as
energy consumption.

2) While arithmetic circuits such as addition and multi-
plication will become faster and more efficient using
RNS, other operations such as shifts, bit-wise logical
operations, and sign detection are more complex than
their counterparts using 2’s complement.

3) By executing several consecutive arithmetic operations
using RNS, results might need more digits to be stored.
While this might look as an integer overflow, the corre-
sponding value is still in the valid range. This topic was
covered in previous works by different authors and the
problem was coined pseudo-overflow by Timmermann
and Hosticka [13].

To really benefit from the ternary CPU, the above shown
challenges (1) to (3) need to be addressed in detail and will
be analyzed in this paper. Therefore, we want to investigate
the additional overhead which is needed to solve these prob-
lems. Fortunately, research activities to address problem (1)
have been done before. To overcome it, the authors of [14]
propose to use novel emerging memories technologies such
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as ReRAM, which are able to store multiple states in one
memory cell and therefore drastically improve the memory
density.

However, problem (2) is a crucial limitation for processor
designers and one of the main reasons, why this number
representation is not used more often. While addition and
other operations based on addition can be executed very
fast in redundant number representations as seen before,
other operations such as bit-wise logic operations, overflow
detection as well as sign detection cannot be executed in
constant time, i.e. independent of the word length. In most
cases a so-called renormalization becomes necessary which
can be simply described as the conversion back into a conven-
tional number respresentation. However, this needs the same
amount of time as an addition in traditional 2’s compliment
representation. Nevertheless, even if a few operations cannot
be sped up, a performance improvement of programs running
on the system as a whole is still possible. We will prove
this claim in this paper by providing a system simulator
which evaluates the overall performance of the ternary CPU
compared with a binary one.

In ternary arithmetic subcircuits with binary external inter-
faces, problem (3) does not occur, because the number is
converted back to the traditional 2’s complement represen-
tation after the calculation which is equivalent to a complete
renormalization. Unfortunately, in a CPU with a ternary data
path an arbitrary number of arithmetic operations can be done
on a register without any renormalization process. Due to
their redundant behavior, this will result in a large number of
leading digits [15] which does not fit in the digits provided by
the registers although the corresponding binary value would
fit. In this paper, we will propose an adapted normalization
process to solve this problem. It can be executed in constant
time inside the adder circuit, independent from the word
length.

As one can see, a deep analysis of ternary CPU archi-
tectures is needed. On the one hand side, RNS promises a
huge performance gain due to optimized arithmetic, on the
other hand side, new drawbacks arise which did not exist
in traditional computers using 2’s complement computers.
Therefore, in this paper we will provide an extended analysis
of RNS data paths and their impact on complete CPUs. This
will include a methodology on how to address the above men-
tioned challenges. Finally, we create a new CPU architecture,
based on RISC-V, with a ternary data path, utilizing BSC and
BSD RNS as well as an evaluation methodology to evaluate
chances and risks of using RNS in CPUs.

This paper contains 6 Sections, organized in an order, that
follows a bottom-up approach. In this Section, we provided an
introduction and gave a historical background. In Section II,
we first design and present our basic arithmetic circuits using
RNS (including conversion functions to 2’s complement) and
show their performance. This enables a quantitative analysis
of these RNS in terms of timing. Afterwards, in Section III,
we present our RISC-V system architecture using a ternary
data path and map the determined timings, found in the

previous section, to this architecture. Using this approach,
we are able to run simulations to estimate timing behavior of
the whole processor. This will be focused on in Section IV.
There, we present our complete simulation environment and
how it is possible to run real (benchmark) programs on the
new ternary architecture. Finally, in Section V, we do an
extended evaluation and compare the measured results using
our new processor architecture with traditional ones using 2’s
complement. Section VI will summarize and conclude this
paper.

Summarizing, our contributions in this paper are:

• A study on ternary circuit implementations containing
arithmetic circuits for different RNS and their mapping
to different CMOS technologies. This resulted in a char-
acterized VHDL IP library.

• A concept of a CPU architecture with ternary data path
based on the RISC-V ISA.

• A simulation environment to execute benchmark pro-
grams on the ternary CPU architecture.

• An evaluationmethodology, i.e. providing a set of exper-
iments to estimate the overall system performance. This
methodology is able to translate knowledge about arith-
metic performance to system level performance metrics.

II. CIRCUIT DESIGN FOR RNS ARITHMETIC
As described above, in this chapter we will design our arith-
metic circuits in different redundant number systems. Due to
the fact that conventional CMOS technology does not offer
the means for processing ternary values, the functionality has
to be realized using binary signals. Thus, we first present
different encoding schemes to realize numbers in RNS with
conventional binary technologies. After that, we derive the
arithmetic circuits for addition on these number represen-
tations and finally we present our synthesis results, which
shows the benefits regarding timing behavior over the binary
representation.

A. NUMBER REPRESENTATIONS AND ENCODINGS
The BSD and BSC number representations are both based on
the radix r = 2. Due to the redundant nature of these number
representations, each digit di in a BSC or BSD number z,
has to hold one out of three possible states, which needs
to be encoded with binary signals (bits). For the encoding
of three possible states, at least two bits are required. With
an encoding table we will define, how a set of two bits is
interpreted in their respective number representation. This
encoding heavily influences the arithmetic circuits as well as
the synthesis results.

In BSD representation each digit di is defined as di ∈
{−1, 0,+1, }, resulting in a BSD number

zBSD = (dn−1, dn−2, . . . , d0). (1)

Now, each di needs to be encoded by two bits

di =
(
d (1)i , d (2)i

)
, d (1)i , d

(2)
i ∈ {0, 1} (2)
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TABLE 1. Encoding table for BSC and BSD number representation.

FIGURE 3. Example for different encodings with different in RNS.

which leads us to three encodings: (i) the so called posi-
tive/negative (BSD-PN) encoding, (ii) sign/value (BSD-SV)
encoding and (iii) encoding we called the BSD-SUM encod-
ing, as described by [2], [16]. The name BSD-SUM is used,
because its encoded value can be derived directly from the
sum of both individual bits (i.e. d (1)+d (2)), which means that
d = (0, 1) and d = (1, 0) encoding the same encoded value
(namely 0). For our experiments we will only use BSD-PN
and BSD-SUM encoding, as it has the advantage, that the
inversion of the number is simply done by inversion the bits
of the digit. BSD-SV is not further investigated in this paper.

For BSC representation a number z is defined similarly
with

zBSC = (dn−1, dn−2, . . . , d0) . (3)

Further, each digit di is defined as di ∈ {0,+1,+2}.
As encoding we choose here the sum of the two representing
bits, leading to di = d (1)i + d (2)i . We will call this encoding
BSC-2C in the following. All of the discussed encodings
are formally described in Table 1. In Fig. 3 an example is
shown, how a number z can be described in different RNS
with different encodings. Furthermore, we define z(1) and z(2)

as bit vectors in the following way:

z(1) =
(
d (1)n , d (1)n−1, . . . , d

(1)
0

)
z(2) =

(
d (2)n , d (2)n−1, . . . , d

(2)
0

)
. (4)

While for BSD numbers, it is easy to represent negative
numbers due to the presence of negative digits, for numbers
in BSC representation an additional explanation how to repre-
sent negative numbers is needed. According to the fact, that
in BSC-2C encoding, a digit is encoded as the sum of the
two corresponding bits, also the overall number zBSC can be
interpreted as the sum of the two vectors z(1) and z(2) resulting
in zBSC = z(1) + z(2). By interpreting the numbers z(1) and

FIGURE 4. Adder circuit for BSD-PN encoding.

z(2) in two’s complement, it becomes possible to represent
negative numbers.

B. BASIC ARITHMETIC CIRCUITS (ADDERS)
Based on the three different encodings (BSD-PN, BSD-SUM
und BSC-2C) adders can now be defined on circuit level.
In Figure 4, Figure 5 and Figure 6 the resulting adder circuits
are shown for performing a calculation of z = a + b.
As basic element a classical full adder (FA) is used with
some inverters. In contrast to a traditional adder (like a ripple
carry adder) carry chains are limited to only one connection
between FAs of one result digit in this implementation, result-
ing in the aforementioned constant critical path independent
of the word length. Nevertheless, two additional bits (carry-
in) c(1) and c(2) are also defined, which can be used for addi-
tional arithmetic operations (e.g. subtractions). Furthermore,
it can be seen that the circuit for BSD-SUM and BSC-2C
encoding looks very similar except of the most significant
digit.

While the presented arithmetic circuits allow performing
an addition, the subtraction can also be implemented. Based
on the knowledge of traditional adders, a subtraction is per-
formed by adding the negated number, i.e. z = a−b =
a+(−b). Defining the negation of a number z as neg(z) = −z,
the calculation of neg(zBSD) can, as mentioned previously for
BSD-PN and BSD-SUM, easily be performed by evaluating

z(1) =
(
d (1)n , d (1)n−1, . . . , d

(1)
0

)
(5)

and z(2) respectively which can be performed by using sim-
ple XOR gates. The negation of zBSC will be slightly more
complex. As defined zBSC = z(1) + z(2) results in

neg(zBSC) = neg(z(1))+ neg(z(2))

= (z(1) + 1)+ (z(2) + 1) (6)

by applying two’s complement for the negation of z(1) and
z(2). The constant values (1) can be used as input c in the
represented adder circuit.
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FIGURE 5. Adder circuit for BSD-SUM encoding.

FIGURE 6. Adder circuit for BSC-2C encoding.

An even more efficient variant exists for BSD-PN,
by swapping the constituent bits of each digit:

neg(zBSD−PN) = neg(z(1)BSD−PN, z(2)BSD−PN)

= (z(2)BSD−PN, z(1)BSD−PN) (7)

C. DESIGN AND CHARACTERIZATION OF ADDERS
In order to get quantitative results we characterized the delay
of the presented circuits in standard cell based designs by
post-synthesis static timing analysis (STA). Themethodology
of this characterization is as follows: First the designs were
synthesized and afterwards analyzed by static timing using
an industry-standard synthesis tool. This is done by applying
different constraints to force the tool to yield delay-optimal
results. These timing constraints for finding the lowest critical
path were found by binary search: this search is stopped after
a number of steps where the maximum error of the search
was smaller than 3 picoseconds, which is well within the
error margin of the STA and synthesis. We found that due
to the nature of the optimization algorithms in the synthesis
tool, we do not get a constant delay for different word length.
Nevertheless, the uncertainties are minor and therefore can be
ignored.

FIGURE 7. Speedup of RNS adders compared to a binary adder.

Our experiments are carried out utilizing different PDKs:

• Vendor A at 150nm (Low Vt (High Speed), High Vt
(Low Power))

• Vendor B at 250nm, 130nm
• Skywater 130nm (Medium Speed, Low Speed, High
Density)

Due to contractual obligations we cannot disclose the iden-
tity of Vendor A and Vendor B, but we are using regular
standard cell libraries provided to us.

The results of this delay characterization can be found in
Figure 7. It shows the speedup relative to the fastest binary
adder circuit for different word widths for each technology
(design kit). Due to the fact, that the adders for BSC-2C
and BSD-SUM result in a similar circuit with the same crit-
ical path these two graphs are merged. It can be seen, that
speedups up to 2.5x are possible for 128 bit word width in
Skywater PDK.

In contrast to intuition, counting gates in the critical path
is not representative for the delay of the associated timing
arcs, as this is highly dependent on standard cell properties
and capacities of interconnects between cells and input ports.
These synthesis results suggest that e.g. the BSD-PN adder
is faster than the BSD-SUM/BSC-2C adder although it has
additional inverters.

D. CONSECUTIVE ADDITIONS AND NORMALIZATION
While in the previous chapters a simple addition was realized,
the question arises whether such circuits can now be placed
easily in the ALU of a CPU. Therefore, in this chapter we
want to elaborate on consecutive additions and their impact
on the corresponding adder circuits.

In Figure 8 an example is shown for two consecutive
additions in BSC representation for n = 5 digits. Initially
a and b are given by a = 1 and b = −1 and shown
in their corresponding representation with a(1) and a(2), and
b(1) and b(2) respectively. After calculating c = a + b with
the aforementioned adder circuits, the corresponding vectors
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FIGURE 8. Example of consecutive additions in a BSC-2C encoding with
the initial values a = 1 and b = −1. In the first step c = a+ b, in the
second d = c + a = 1+ (−1)+ 1 = 1 is calculated. The results contains
two leading digits (underlined), which cannot be omitted.

c(1) and c(2) are also shown, which are yielding the correct
result. In order to stress the effects to be obvious here, c(1)

and c(2) contain two leading digits which are not necessary
for the result to be correct. Finally, d = c + a is calculated.
Also here, d (1) and d (2) has two leading digits. In contrast to
the calculation of c it can be seen, that these two digits cannot
be omitted without altering the resulting value of the number.

This example leads to a problem which was already
described before in [15] as ‘‘carries may ripple out into
positions which may not be needed to represent the final
value of the result and, thus, a certain amount of leading
guard digits are needed to correctly determine the result’’.
This means, that although if n digits are enough to encode
a value, the result of an addition is a number z with the same
value, but which requires n + 2 digits due to the structure
of the adder circuit and the redundant nature of the number
system.

For building a CPU with ternary data path this fact will
cause a problemwhich has to be analyzed very carefully:Will
the effect of leading digits accumulate over consecutive addi-
tions? This question is analyzed by a second example, shown
in Figure 9. The two leading digits (underlined) for c cannot
be removed easily: to remove them, a total renormalization
of the whole number is needed. Total renormalization means,
to convert the result completely to its non-redundant binary
form and therefore allow storing the information in a binary
compatible form in one of the vectors. Unfortunately, this is
of course expensive and should be avoided. The delay of the
total renormalization circuits is dominated by the adder or
similar component used for the conversion to binary. To put
these costs into perspective: The ternary adder is up to 4 times
faster than the renormalization circuit.

Summarizing, it is clear, that it is not useful to perform
a total renormalization after each addition. Therefore, it is a
good idea to accept the additional generated leading digits for
now, but investigate if they will increase after an additional
addition step. Fortunately this is not the case as they will
not accumulate over consecutive additions, after performing a
so-called partial normalization after each addition step, taking
only a constant amount of time. Referring again to Figure 9

FIGURE 9. Example of consectuively additions in BSC representation with
handling of leading digits. Initially the constants are set to a = −116 and
b = −8. Afterwards c = a+ b = −124 is calculated by needing two leading
digits (underlined). Finally, we set d = −3 and calculate e = c + d = −127.
It can be seen, that e requires again two additional leading digits (double
underlined). Fortunately, the four additional leading digits (two
underlined and two double underlined) can be condensed to only two
leading digits, by performing a so-called constant-time partial
normalization en = norms(e) and manipulating only the four leading bit.

the leading digits (underlined, as shown in the number e)
can be condensed by a constant-time normalization (en =
norms(e)) which only needs to consider a constant number
of leading digits, independently of the word width.

For a formal description, two functions are introduced:
head(z(i)) provides the four leading digits of a given vector
z(i) while tail(z(i)) provides the remaining ones. Furthermore,
if ++ is defined as the concatenation of two bit-vectors, then
we can define zn = norms(z) as follows and apply it to
determine en as shown in the example.

zn = (z(1)n , z(2)n ) = norms(z)

= (head(z(1))+ head(z(2)))++ tail(z(1)),

0000++ tail(z(2))) (8)

In [15] the leading-digits problem and its normalization is
addressed in a mathematical way; also [13] shows a specific
algorithm for SD numbers. Unfortunately, to our best knowl-
edge, an RTL or lower level implementation is missing but
needed for the investigation of these adders in a ternary CPU.
Therefore in addition to the basic adder circuits, we provide
normalization circuits for dealing with leading digits in this
paper. Nevertheless, in the work of [15] and [13] multiple
mathematical descriptions for constant-time normalization
are shown, so the following three different circuits were
implemented:

1) Adder-Normalization: as defined by norms(z);
A generic method by us, which requires two lead-
ing digits. Can be used for BSD-PN, BSD-SUM and
BSC-2C representation. This is loosely based on the
proofs of [15].
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FIGURE 10. Adder-based normalization scheme.

FIGURE 11. XOR-normalized adder for BSC-2C.

2) XOR-Normalization: Method presented in [15] (Corol-
lary 9, similar to [17], [18]) which requires only one
leading digit. Can only be used for BSC-2C.

3) MUX-Normalization: Method presented in [13] which
requires also one leading digit. Can only be used for
BSD-PV and BSD-SUM.

The described normalization circuits are shown
in Figures 10, 11 and 12. Finally the MUX-Normalizer and
the Adder-Normalizer need to be placed directly behind the
basic adder circuit to reduce the length of n+3 (three leading
digits) to n + 1 (one leading digits) after each addition. The
XOR-Normalizer is placed after each layer of FAs inside of
the adder circuit and is therefore integrated into it.

TABLE 2. Overview about all investigated circuits. Left different RNS and
its encodings, at the top different normalization circuits. A checkmark
means that this combination will be considered.

Our findings result in Table 2. Here, all investigated circuits
(combination of an adder and a normalization method) are
shown. Summarizing, a constant time normalization should
be performed after each addition step to make further calcula-
tions possible. However, full renormalization takes very long
but is only needed in some special cases, especially when the
binary representation of a number is exactly needed. That will
be the case for example, if the result of an addition will be
used by bit manipulating operators.

Finally, as presented before, the resulting circuits (adder
with constant time normalization) have been evaluated in the
same way, as the basic adder circuits. In Fig. 13 the results are
shown. It is clear, that the speedup decreases by using these
normalization circuits. However, such circuits are needed
and definitively have to be considered when constructing a
ternary CPU. Nevertheless, even a speedup of around two
is still achievable for 128 bits registers. It can be seen, that
BSD-SUM and BSD-PN with MUX-Normalization will give
the best results, especially for Vendor B 130nm process.
Therefore, we will focus on these numbers for building the
ternary CPU.

When analyzing the other technologies, the results are
worse compared to Vendor B 130nm technology. The main
reason for these discrepancies are differences in standard cell
libraries optimized for speed or other metrics: Here especially
the delays incurred from gates and their output nets are
different. This is hard to analyse since delays are affected
by capacitances, but we saw this effect rather consistently.
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FIGURE 12. Mux-based normalization scheme.

FIGURE 13. Speedup over binary adder for normalized redundant adders.

Thereby, the greater speedup of Vendor B 130nm can be
explained.

E. IP LIBRARY
As one contribution of this paper, we build our own IP library
containing the presented arithmetic circuits (with different
encodings) and their corresponding total and partial normal-
ization as RTL code in VHDL. Using this IP library, it is
easily possible, to ‘‘ternarize’’ a given circuit to benefit from a
redundant number representation. Due to high configurability
of the arithmetic IP cores, the internal encoding of them
can be changed easily. This can be used for design-space
exploration, which number representation/encoding fits best
for a given application. Converter IPs from/to classical
2’s complement are also available for easy using of these
IPs.

III. RISC-V3: A TERNARY RISC-V ARCHITECTURE
In the previous section, the ternary arithmetic used in this
paper was presented and characterized. Now, the application
of the ternary arithmetic within a CPU is of interest. Thus,
a detailed discussion about the challenges of integrating a
ternary data path into a conventional processor pipeline is
needed and presented in this chapter. As shown, the presented
arithmetic circuits are especially efficient for performing
additions and subtractions. Unfortunately, additional over-
head is required for comparison operations since determina-
tion of the sign from the two bit vectors of a ternary number
is not possible in constant time. Moreover, logical operations
which are working on single bits need a conversion to 2’s
complement (in other words: a complete renormalization).
In summary, while most arithmetic operations of the CPU
become faster, additional time has to be spent for total renor-
malization, if an instruction needs the binary representation
of a number. Thus, it is expected that a ternary processor
pipeline is capable of executing some instructions faster but
some slower than a binary processor pipeline. In Fig. 14 a
pseudo assembler code is shown that implements a simple
loop as it could be found in real-world applications. Here,
the shown instructions are grouped in three annotated cat-
egories describing if they can be efficently implemented in
a ternary CPU pipline. Consequently from our findings on
which operations are efficient and which are inefficient with
ternary arithmetic, it can be for example identified, that condi-
tional branches aremostly inefficient due to the determination
of the sign which implies a full renormalization. On the other
hand, the arithmetic operations really benefit from a ternary
data path. It is expected that the improvements of the arith-
metic operations carry more weight than the slowness of the
conditional branches. The efficiency of stores is depending
on the memory system and whether it is capable of handling
ternary addresses and data. When using ternary data paths the
data to store and the addresses must be converted back to a
binary representationwhen using a conventional binarymem-
ory system making it more expensive than before. Avoiding
this conversion is done by assuming a ternary memory system
for the processor.
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FIGURE 14. An example pseudo code of a simple loop showing
instructions that benefit and that don’t benefit from ternary arithmetic.

Calculating condition codes, e.g. if a number is greater or
smaller than another number or if a number is equal to zero
has more complexity when using a ternary data path. Hence,
instructions set architectures (ISAs) using a flags register
which has to be updated for every arithmetic operation are
more difficult to extend with a ternary data path. For this
paper, the RISC-V ISA is used which only needs condition
codes calculated for conditional branch instructions. It is an
open ISA that makes it very suitable for utilizing it within
research [19], [20]. The RISC-V processor architecture of this
paper with the adjusted arithmetic is called RISC-V3 since it
is compatible to the RISC-V ISA but contains a ternary data
path. Since themain focus of this paper lies on the integer data
path, the RV64IMC variant of the instruction set is realized.
It includes the basic integer instructions with a register width
of 64 bits (RV64I), multiplication and division operations
(M), and implements the compressed instruction extension
(C) that allows instructions to have different byte lengths.
With this ISA variant, it is possible to run many real-world
applications or benchmarks that use integer arithmetic. In the
following, an analysis about the effects of these changes on
the instructions offered by a RISC-V CPU is presented.

A. IMPACT ON INSTRUCTIONS
Table 3 groups the instructions offered by RV64IMC into
categories that define how a traditional RISC-V pipeline is
affected when adding support for a ternary data path. Similar
instructions that differ only depending on their operand type
(like add, addi, addw and so on) are abbreviated by a
star (*).

Instructions that do not read a register are unaffected by a
changed data path. Writes to the register file without reads
from it can directly be realized due to binary numbers being
also valid ternary numbers. This allows setting the target
register with just the binary number as it would be done in
case of a binary data path.

As soon as an instruction uses the contents of a register
as an address to memory, it depends on the memory sys-
tem whether a special handling is required. Additionally, for
stores the data that is saved has to be in a format that is com-
patible with the memory, in addition to the address. Loads do
not suffer from this disadvantage because all numbers in 2’s
complement representation are trivially convertible to our
representations. For example for BSC-2C this is done by the
means of constant 0’s and direct wiring without incurring any
significant latency. Due to the fact that the program counter

FIGURE 15. A decoder for a ternary memory system, here shown for BSD.

addresses instructions, the source operand register used by
jalr might have to be converted to binary, if a memory
system is used that does not support ternary addresses. But
for this paper, it is assumed that a ternary addressablememory
is present for the RISC-V3 processor that also allows saving
ternary data. This can be achieved for example by offering
additional memory cells.

Additionally for the memory being able to use ternary
numbers as addresses, we assume an approach based on a
ternary memory decoder from [21], as shown in Fig. 15.
The depicted decoder selects a ternary memory cell from
the available memory cells. In comparison to a conventional
decoder, it requires multiplexers with three inputs to build
the multiplexer tree instead of multiplexers with two inputs.
The only exception are the bottom-most multiplexers that
can still be left with only two inputs, since we assume
only non-negative memory addresses. In the figure, two
example paths are displayed that point to the same mem-
ory cell. While the effective address is exactly the same,
the actual ternary number representation is different. Still,
this decoder is capable of finding the correct cell with only
the small overhead of using bigger multiplexers. Due to
the fact that this kind of memory system benefits a ternary
CPU tremendously, we assumed the usage of it within this
work.
Directly Changed Arithmetic includes the basic arithmetic

operations (addition and subtraction) including the auipc
instructions that adds an immediate to the program counter.
These instructions do not need special treatment and can be
directly realized with a ternary ALU. Since RISC-V does
not require a flags register, like e.g. aarch64 and x86_64 do,
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the information about whether a result is zero, less than zero
or greater than zero is not required to be computed during
these operations. This would require an additional on-demand
calculation of the register bits as soon as the flags register is
read. Therefore, RISC-V is a good fit for using a ternary data
path internally.

When a condition has to be evaluated (e.g. for a conditional
jump), the information if a number is greater than, less than
or equal to another number might be necessary. With a binary
data path, greater or less comparisons against zero usually
mean checking the sign bit and if all bits of a number are zero.
In case a number has to be compared against another number,
a subtraction can be done beforehand to reduce the problem
again to a comparison against zero. If it is of importance
if two numbers are equal or not equal, all bits can pairwise
be compared with AND gates. A ternary data path does not
allow checking a sign bit or comparing bits pairwise since
multiple representations might represent the same number.
Additionally, the ternary number representations introduced
in this paper do not offer a separate sign bit. Adding a sign bit
is also not possible without detriment to the complexity class
of the circuit delays of the ternary arithmetic. Thus, a final
conversion back to a binary number needs to be done. To
still benefit from the fast ternary additions, this transforma-
tion should be done after the comparing subtraction if it is
required. Since a real world program generally contains more
arithmetic instructions than jumps, the additional overhead
should not make the RISC-V3 CPU much slower. In Sec. V
a detailed analysis of the speedup for diverse benchmark
programs is performed.
Logical instructions and shifts cannot easily be executed

on ternary numbers. They have to be converted to binary
numbers due to a different bit representation. This conversion
is more expensive than the usual binary logic operation would
be. However, especially shifts are often used to avoid the
usage of a multiplication instructions which are very slow on
a binary processor. On a ternary processor, multiplication can
be used since it can be faster than the logical instructions (it
has a smaller slowdown).

Moreover, left shifts can be realized for ternary numbers
with some limitations. Small shift lengths that do not over-
flow the number can easily be done. Since many shifts only
have shift lengths up to three (meaning a multiplication with
eight which is the word length on RV64I), shifts on ternary
numbers can oftentimes safely be executed. Only in case
of an overflow, the calculation would be wrong. To pre-
vent this problem, it is possible to use larger word widths
for small shifting lengths. When adding 4 digits, all shifts
resulting from offset calculations which are performed in the
benchmarks used in this paper can be efficiently realized. By
generating instruction logs that give exact statistics for which
benchmarks this assumption is correct, it can be concluded
that this optimization can be performed on most programs in
our benchmark suite. In fact, all the cases for which this was
not possible fall into similar categories of programs relying
on bit-wise operations and shifts, e.g. cryptography routines.

In the evaluation section (V) these cases are handled sepa-
rately as logic intensive benchmarks to make sure that pro-
gram correctness is not affected.

The focus of this paper lies on integrating ternary addi-
tion and subtraction into processor architectures. Optimiz-
ing multiplication and division instructions is not the target
because there is already much prior work that analyzed these
operations in great detail [22]–[24]. Some of the division
algorithms are even based on the same circuit structures as the
adders presented in this paper. For example, dividers relying
on the BSD number system are available [25]. Regardless,
these operations are necessary in many programs making
an integration of function units for them essential. To still
have the functionality available, an efficient binarymultiplier
and divider with conversion stages for the input and output
numbers are deployed. This approach reaches a speedup
of 0.77 and 0.97 for multiplication and division respectively.
An implementation adjusted for the use case with ternary
numbers is expected to yield a slight improvement over a pure
binary circuit. Therefore, the speedup results presented in
Sec. V can be seen as a lower bound on the optimal improve-
ment possible with a ternary data path while still being rather
accurate. Even without further optimization, the results show
an overall speedup for arithmetic-intensive algorithms, since
the addition and subtraction instructions in these benchmarks
make a greater impact than the branches, logical instructions,
multiplications, and divisions. An optimized version investi-
gated in future work is capable of increasing the speedup even
more.

Another considered possibility is to use a software imple-
mentation for multiplication and division. Since the com-
monly used approaches are either very logic intensive (using
many shifts and bit-wise and) or inefficient (using many
additions), these were not considered for this paper in order
to avoid skewing the final results.

B. SIMPLE PROCESSOR PERFORMANCE MODEL
With the knowledge of the impact on each instruction, a sim-
ple performance model for the RISC-V3 CPU can be defined
allowing a performance comparison later on. Since the model
should be used to find speedups between processors based
on binary and ternary data paths, different arithmetic circuits
(as defined in Sec. II) were synthesized and the delay of
their critical paths determined. With this data, a speedup (or
slowdown in some cases) can be assigned to each group of
instructions. For the Vendor B 130nm PDK, the correspond-
ing speedups are shown in the last column of Tab. 3. Address
and Store instructions are considered to be unaffected due
to the assumed ternary memory. Left shifts are given in the
unoptimized (equal to the other logical instructions) and opti-
mized (for small constant shift widths) version as described
above. It is apparent again that ternary arithmetic outperforms
the binary one for basic calculation operations. Only in the
case of logical operations, a binary data path is still faster than
the ternary variant. The overall speedup S of a program under
test with ci instructions of type i is determined by (9) where
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TABLE 3. Grouping of RV64IMC instructions (based on [19]) and the effects on the data path. The stars (*) abbreviate different instruction variants (like
add, addi, addiw, etc).

FIGURE 16. Components of the simulator and their interactions.

si is the speedup of an instruction of this type:

S =

∑
i
cisi∑

i
ci

(9)

With this abstract processor model, no exact runtime can be
determined. Nevertheless, it is used to find out if the approach
of ternary data paths would be beneficial in principle.
A detailed analysis of this model applied to a benchmark suite
is given in the evaluation section of this paper.

IV. SIMULATION ENVIRONMENT
After the introduction of the abstract architecture model,
the next step is to integrate RISC-V3 into a processor sim-
ulator to get more exact information about the timing behav-
ior. This includes effects like pipeline hazards that reduce
the benefits obtained by instruction parallelism. Simulation
can be done on different levels of accuracy trading speed
against more accurate results [26], [27]. Therefore, for the
investigation presented here, an instruction-accurate proces-
sor simulator based on QEMU [28] is extended with a custom
cycle-approximate model. Using simulators is a well known
technique to estimate nonfunctional properties like the run-
time of hardware systems. When using QEMU prediction
errors of 8% [29] to 20% [30] on average were previously
published. This allows a good estimation of the effects intro-
duced by the changes applied to the microarchitecture.

A. SIMULATION INFRASTRUCTURE
As a basic infrastructure for simulating the RISC-V3 pro-
cessor, a Just-In-Time compiling emulator called QEMU is
deployed [28]. It translates the instructions executed on the

simulated CPU into instructions for the processor running the
simulator making the emulation very fast in comparison to
interpreting the simulated instructions one by one. However,
by default it does not contain any means of determining the
runtime a real RISC-V3 processor would take for a certain
program. Thus, callback mechanisms are utilized to track
the executed instructions and update the architectural state
of a timing plugin as shown in Fig. 16. This approach is
well-known and was already applied before in different kinds
of research projects [27], [29], [31]. The mechanism is usu-
ally used to execute a callback when a complex instruction is
encountered that is not easily implemented with the help of
the Tiny CodeGenerator (TCG) is responsible to dynamically
translate guest to host instructions that can be natively run
on the host processor. These callbacks tell the timing plugin
that a new instruction is encountered requiring updating its
internal state. It is responsible for finding out how much time
elapsed since the last instruction entered the pipeline and
modify the timing information of the frontend, the function
units, and the write back stage which contains a reorder
buffer. These units are implemented separately and keep track
of the details of specific architectural components (like the
instruction fetch in the frontend, the ALU in the function
units and the common data bus in the writeback stage). The
concept of this simulator and its architecture is agnostic
with regard to the arithmetic used for the data paths which
makes it predestined for the analysis of ternary processors.
Unfortunately, instrumenting each instruction by introducing
a callback leads to a tremendous slow-down in emulation
speed, that is not avoidable, as analyzed before [27]. But it
is still much faster than a full RTL-level simulation.

The timing plugin implements a so-called mechanistic
model meaning the knowledge about the internal layout
of a processor is used instead of a statistical black box
approach [32, chap. 4]. It extends the simple architectural
model shown in Fig. 2 with an execution scheme that is
based on Tomasulo’s algorithm [33]. Thereby, the simula-
tor correctly takes timing behaviors of data dependencies,
jumps and occupied function units into account. Additionally,
the different function units can be modelled and exchanged as
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required. This allows the creation of ‘‘split’’ function units
with special subunits for logical operations, ternary arith-
metic and so on. With the exception of the level 1 caches
which are oftentimes part of the actual processor pipeline,
the latency of the memory hierarchy is currently disregarded.
These features allow the implementation of a ternary data
path which is described in the following.

B. TERNARY ARITHMETIC
The simulation infrastructure was extended with additional
function units that can be configured to use binary arith-
metic or ternary arithmetic depending on the investigated
arithmetic. Challenges regarding overflow handling and
sign detection (required for comparisons and conditional
branches) are taken care of as described in the sections above.
Additionally, a ternary register file is implemented next to the
binary registers in QEMU. This allows a functional verifica-
tion of the ternary processor due to having binary reference
registers but working on ternary arithmetic in the timing
plugin. Thereby, it is possible to show that the proposed
RISC-V3 architecture is capable of correctly running
unchanged RISC-V programs.

Equipped with advanced logging mechanisms, the simu-
lator was used to create detailed statistics about the instruc-
tion mixes of the executed programs. These build also the
foundations of the previously introduced abstract processor
model of Sec. III that requires the instruction counts to
calculate a rough speedup estimation. The logs can also be
taken advantage of to investigate in more detail about why a
benchmark performs well or poorly with ternary arithmetic.
An analysis of this aspect is done in Sec. V. Moreover, with
the results of this analysis, future optimizations with regard
to the code generation of compilers for ternary processors can
be implemented. The newly introduced ternary arithmetic is
also evaluated to find out potential speed improvements or
degradations.

C. TIMING PARAMETERS
The mechanistic model that is used in the simulation frame-
work is a generic model that can be configured by parameters
to change its timing behavior. Configurable features include
well-known architectural components that are usually found
in CPUs exhibiting instruction level parallelism [34, chap. 2].
It is possible to define different properties of the frontend
like its width (when a multi-issue system is simulated) and its
length (the latency until an instruction reaches its reservation
station). The parameters of Tomasulo’s algorithm can also be
defined. These include the size of the reservation stations,
the reorder buffer but also allows disabling elements like the
register renaming in case no real out-of-order processor is
simulated.

Timings of the function units can also be given to the
simulator. These include latencies for binary and for ternary
arithmetic which can be switched as required. This allows
evaluating different latencies that might result from a differ-
ent design kit in a real-world processor. While the results

FIGURE 17. Brief design of the functional units of the processor
architectures with binary and with ternary data paths.

TABLE 4. The amount of pipeline stages of the functional units.

created with the simulator are only theoretical, a good esti-
mation about the behavior can be given for the function units
with the new arithmetic.

The resulting architectures are depicted in Fig. 17. The
focus of this paper lies on the function units while the
frontend and backend are used without any changes. On
the top part of the figure, the processor with a binary data
path can be seen. It is assumed that the binary ALU needs
multiple pipeline stages (pictured as rectangles) to calculate
basic arithmetic, comparisons for branches and the logic. In
contrast, the ternary data path shown at the lower part of the
figure requires only one pipeline stage for basic arithmetic,
but more stages than the binary variant for comparisons
and logic. Special function units are not affected in such a
great manner and are only displayed for completeness. The
amount of stages required for each operation is determined
by the circuit delay results of Sec. II when trying to reach
a frequency of 2 GHz using the Vendor A 130nm PDK and
is given in Tab. 4. These results are utilized for binary and
for ternary data paths making the results comparable and
allowing the speedup to be calculated. However, this means
that the functional units might run in a higher frequency than
the surrounding components of the processors. Instructions
that calculate an address like auipc are also capable of
using the function unit for addition and subtraction due to
an assumed ternary memory which makes them also more
performant on the RISC-V3.

The remaining parts of the CPU are configured roughly
based on the Ariane CPU [35] which contains a single-issue
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out-of-order execute and in-order commit pipeline. Ariane is
very suitable for our investigation because it is not a very
complex design but still contains important components like
a scoreboard. Additionally, a comparison with real hardware
(at least for the binary microarchitecture) is possible due to
having the Verilog sources of Ariane available. The configu-
ration of the simulated frontend and backend is adjusted for
the results of the Vendor A 130nm technology as analyzed
in Sec. II which were already utilized to create the relative
runtimes for the simple model in Sec. III and the stage count
of the function units. In comparison to the 22nm FDSOI
technology used by Zaruba and Benini [35], it is a rather big
PDK but still allows determining the increased performance
of a ternary data path.With the selected parameters, a speedup
evaluation was done in the following section.

V. EVALUATION
In this section, an evaluation of our idea of a ternary data path
in a processor based on the circuit and arithmetic algorithms
presented in Sec. II is performed. For this, the simplemodel of
Sec. III and the simulation model of Sec. IV are investigated.
In order tomeasure performance, we do not rely on static met-
ric such as peak operations per second, but on benchmarks.
This allows us to assess the performance in different scenarios
and create the opportunity for qualitative investigations (i.e.
why are some sequences of operations performed faster or
slower in comparison to pure binary microarchitectures).

A. EMBENCH
The benchmarking suite used for the evaluation is
Embench [36]. Its main advantage is the diverse set of bench-
marks implementing real-world algorithms, which can be
analyzed independently. This allows identifying applications
that benefit from ternary arithmetic and applications that are
executed slower on such a processor. In Tab. 5 the bench-
marks are listed and a small comment about their underlying
algorithm is given. Since the ternary data path approach only
focuses on the integer pipeline of a processor, the minver,
nbody, st, and cubic benchmarks could not be analyzed
since they require floating point arithmetic.

By running the suite in the simulator with its logging facili-
ties, it is possible to create a histogram of instructions. Differ-
ent instructions are impacted in different ways by the changes
to the processor arithmetic (compare Sec. III). Therefore,
the first step is to look into the ratio of instructions performing
better (giving a speedup), worse (resulting in a slowdown),
or without a difference (not affected) with the new arithmetic.
Fig. 18 shows these portions for each benchmark.
With the exception of aha-mont64 most benchmarks

exhibit more instructions with a speedup than instructions
with a slowdown. This facilitates the hypothesis that an over-
all speedup of these programs is possible with the presented
approach. However, since the slowdown and speedups are not
the same for all kinds of instructions, no accurate projection
about the exact behavior can be given. Interestingly, some
benchmarks like the nettle algorithms which are expected

TABLE 5. Benchmarks of Embench and their implemented algorithms.

FIGURE 18. Ratios of instructions for each benchmark.

to perform worse due to being logic-intensive algorithms
still have a lot more instructions with a speedup than with a
slowdown. Since the slowdown of a logic instruction is bigger
than the speedup of an arithmetic one, it might still come to
a slowdown in total.

B. PERFORMANCE ESTIMATION (SIMPLE MODEL)
With the extracted instruction counts, the simple model pre-
viously introduced can be applied. Since it does not take
hazards into account, a simple multiplication of the delays
of a certain instruction and the amount of occurrences of it
is enough to determine the overall runtime introduced by the
opcode. The summation of all of these products gives an over-
all runtime. Since the delays for the binary and ternary data
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TABLE 6. Speedups of the logic intensive algorithms on the simple model.

path are different (see Sec. III), a speedup of the ternary data
path in comparison to the binary data path can be calculated.

Due to the expectation that logic intensive algo-
rithms perform worse on the RISC-V3 processor than
arithmetic-intensive algorithms, the results are divided into
two groups: In Tab. 6 the speedups for all logic intensive
algorithms of Embench are shown for the different tech-
nologies. It confirms the hypothesis of bad results for this
benchmark class. The Vendor B 130nm technology gives
the best results when switching from a binary to a ternary
processor. However, the aha-mont64 only reaches around
half the speed. As can be seen in Tab. 18, this benchmark has
one of the worst beneficial and detrimental instruction ratio.
For picojpeg even a small speedup for one of the used
technologies can be observed.

Although the first results do not showmuch improvements,
in Tab. 7a) the remaining benchmarks are shown. As dis-
cussed before, they are arithmetic intensive meaning that the
advantages of the ternary arithmetic can be demonstrated. By
using the Vendor B 130nm libraries, all of the benchmarks
experience a speedup greater than one with a ternary arith-
metic in comparison to a binary one. This means that with
this simple model, the presented approach is beneficial for the
speed of a processor. Yet for the other technologies, much less
speedup can be observed. Still in case of a slowdown as e.g.
it happened to wikisort for all other libraries, the numbers
are not far away from one.

A noteworthy observation is the fact that slre,
nsichneu, and statemate receive the greatest speedups.
These algorithms are no classical arithmetic benchmarks (as
e.g. matmult-int would be), but contain state machines
with complex state transitions. While they do not have a
compact loop kernel, they have more conditions and random
memory accesses. They benefit tremendously from the fast
ternary address calculation. The more well-known arithmetic
algorithmswith usual loop kernels also profit from the ternary
memory but have more offset calculations including left
shifts. Thus, they directly follow these state machines (like
edn). Due to the unoptimized multiplication instructions,
matmult-int does not perform as well as other algorithms
on the ternary CPU. But on the best technology, a speedup can
still be observed. Still, sorting has the worst speedup of these
benchmarks due to a short loop bodywith many comparisons.

In Sec. III an optimization was presented that allows left
shifts directly on the ternary bit vectors. When realizing
this adjustment, much better results can be observed as seen
in Tab. 7b). Usually, left shifts are used to calculate byte
offsets that are multiples of a power of two. These small
shifts can be implemented efficiently even with ternary arith-
metic as long as no overflow occurs which is most of the
time the case. Especially matmult-int and ud benefit
tremendously from this improvement which are very arith-
metic intensive and access series of addresses that have
to be calculated. But also the other benchmarks have an
increased speedup. Now, only qrduino is left with slow-
downs on certain technologies. On the other hand, the pre-
viously very well performing algorithms statemate,
nsichneu, and slre are only slightly affected. How-
ever, they already perform great without this optimization
when running them on a ternary data path. From these find-
ings, it can be concluded, that there are some algorithms
that do not benefit from the proposed approach while oth-
ers experience a noteworthy boost in speed. Thus, using
a ternary data path can be seen as an application-specific
acceleration.

C. PERFORMANCE ESTIMATION (SIMULATION MODEL)
While the simple performance model already gives a rough
estimation of the expected speedups, it still does not com-
pletely map real-world challenges within processors like
pipeline hazards or out-of-order execution. Thus, the more
accurate simulation model presented in Sec. IV is applied.
For this model, only the latencies of the best performing
technology (Vendor B 130nm)were employed. Likewise with
the simple model, the binary and ternary results were inde-
pendently determined and then the speedup was calculated.
Tab. 7c) shows the results given by the simulation. The left
shift optimization is already used.

The results are similar to the results of the simple models
with some benchmarks experiencing higher and other lower
speedups. However, the numbers are more realistic since
processor characteristics like pipelining, hazards, branch pre-
diction, caches and out-of-order execution are implemented
in the simulation model. The simulator used for this com-
parison has an average error of 10% for the used binary
configuration in comparison to the Verilog model of the
Ariane CPU. This error was determined by manually com-
paring the runtimes determined by the Verilog model with the
runtimes estimated by the simulator for a binary data path.
Since only the parameters affected by the ternary data path
are adjusted, the comparison between the binary and ternary
CPUs gives a very good estimate about the runtime changes
that can be expected in a real CPU when performing the
proposed change to the processor architecture. This can be
assumed because the same error affects the binary as well as
the ternary data path. Most benchmarks that were perform-
ing very well with the simple model exhibit less speedup
since the dependencies dominate the maximum achievable
speed while some of the worse performing benchmarks get
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TABLE 7. Speedup of arithmetic intensive algorithms on a) Simple model with binary shifts, b) Simple model with ternary shifts and c) Cycle-approximate
simulation with ternary shifts.

a higher speedup because of the architectural optimizations
as mentioned before. Hence, the ternary data path results in
an improved runtime in comparison to a binary data path for
the selected algorithms.

We believe that with larger word widths the speedups
and slowdowns when using our operations increase, since
conventional binary addition becomes more expensive, while
ternary addition is unaffected. An equivalent binary system is
affected in a way that makes the critical path of all additions
longer. Thus, processors made with a ternary data path allow
a much wider word width without having any impact on
the clock frequency. This allows special purpose CPUs for
digital signal processors that have to work on very wide
data registers with the same performance as already available
processors.With the increased accuracy this makes it possible
to replace for example floating point units with ternary integer
arithmetic.

VI. DISCUSSION AND CONCLUSION
In this paper, we presented a RISC-V based CPU called
RISC-V3 that uses a ternary data path internally. Beginning
with basic arithmetic circuits, we made quantitative eval-
uations about the performance gain in contrast to binary
arithmetic. Afterwards, we constructed a complete processor
and presented different performance models. Finally we eval-
uated the performance of our RISC-V3 architecture using a
benchmark suite and applied these models. It was possible to
show the strengths as well as the challenges of a complete
ternary data path inside a processor pipeline.

Our experiments show that on one hand, ternary arith-
metic can really boost a CPU’s performance, especially if
arithmetic intense programs are executed on the architecture.
While on the other hand, when logic- and branch-intensive
applications run, a slowdown is experienced. We proof this
claim by providing quantitative results derived from an RTL
implementation.

This paper can be seen as a baseline for a first CPU
architecture with ternary data path. For further performance
improvements, in this chapter we would like to discuss
some approaches how to deal with slowdowns especially for
branch- and logic-intensive algorithms. The ideas presented
here, will be a good starting point for further investigations.

A. EXTRAPOLATE RESULTS
While in this paper we use benchmarks to evaluate our
ternary architecture, a holistic evaluation for more advanced
use cases is still missing. We plan to measure speedup also
for complex applications such as image processing or video
decoding algorithms. Moreover, the focus on this paper was
mainly on timing. For a complete implementation also area
and energy have to be considered as well.

B. HYBRID NUMBER REPRESENTATIONS
As the results show, branches and logic operations are very
slow. Therefore, one possibility would be to provide a hybrid
number representation within the CPUwith two different data
paths. The goal is to use a set of binary registers which are
only used for the control path (e.g. variables for counting
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in a loop), while all other data registers will be ternary as
presented in this paper.

C. FLEXIBLE SIMD INSTRUCTIONS
Due to the fact, that the critical path remains constant by
changing the word width, more flexible SIMD processing
units in the ALU become possible. Today’s SIMD units
are only able to work on data with a fixed size (e.g. 8,
16 or 32 bit). Obviously, different applications such as the
inference of deep neural networks can benefit from more
fine grained SIMD parallelization by increasing the speedup
while remaining a constant clock frequency for all data
widths.

D. ADDITIONAL TERNARY INSTRUCTIONS
Benefiting from a ternary data path also requires providing
specialized instructions that exploit the new circumstances.
For example, arithmetic shifts can also be done on a ternary
number when the digits that are shifted out of range are
preserved and can be inspected. This would provide the possi-
bility to create a fast software multiplication implementation.

E. TERNARY AWARE COMPILERS
Current compilers are optimized to benefit from traditional
2’s complement arithmetic. E.g. multiplications will be
replaced by shifts if possible or bit operations will be used to
speed up complex arithmetic calculations. When introducing
ternary CPUs also compilers need to be changed: As the
results show different kinds of instructions take more time
while others become faster. Compilers need to prefer the fast
instructions over the slow ones if they can be exchanged.
When additional ternary instructions can be provided, they
should also be taken into consideration.

With this paper, a good baseline for further investigations
was created. Using ternary arithmetic inside RISCCPUs has a
great potential to improve the performance of modern CPUs.
Other applications of the ternary data paths include acceler-
ators that don’t need to use the bad performing instructions.
But due to comprehensive impact of the introduced ternary
data path, further investigations as described are required.
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