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ABSTRACT This paper proposes an adaptive sliding mode control strategy based on RBF (Radial Basis
Function) neural network for the supercavitating vehicle system with model uncertainties and external
disturbance. Aiming at the unknown items in the model, the control strategy compensates the unknown
model uncertainty and external disturbance through the RBF neural network, and derives the neural network
weight update strategy according to the Lyapunov stability theorywhich can guarantee the closed loop system
asymptotic stability. The simulation results show that this control strategy can enable the supercavitating
vehicle to track reference signal when there are model uncertainties and external disturbance, and ensure the
convergence of the trajectory tracking error. Compared with the control input of the sliding mode control
strategy without RBF neural network, the control input of the adaptive sliding mode control strategy with
RBF neural network is also reduced, which further verifies the effectiveness of the RBF adaptive sliding
mode control strategy proposed in this paper.

INDEX TERMS Adaptive sliding mode control, RBF neural network, supercavitating vehicle, supercavity.

I. INTRODUCTION
With the continuous development and utilization of marine
resources by mankind, underwater unmanned vehicles have
become an important carrier for exploring the ocean. The tra-
ditional underwater unmanned vehicle is completely wrapped
by water, resulting in high resistance and low speed.
At present, supercavitation technology has been used to
develop a new generation of high-speed underwater vehi-
cles [1]. When the underwater vehicle is sailing at a high
enough speed, the fluid pressure drops below a specific
value that cannot maintain a liquid state, and the entire area
except the head and tail is wrapped by continuous bubbles,
so that the vehicle surface does not come into direct contact
with the liquid, thereby greatly reducing the viscous resis-
tance of water [2], this kind of vehicle is called supercavi-
tating vehicle. The supercavitating vehicle is surrounded by
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cavity envelope, which is different from the conventional
hydrodynamic distribution, only the front cavitator and the
fins are in direct contact with the liquid, so it is difficult to
maintain stability during the voyage. It is precisely because
of this characteristic of the supercavitating vehicle that its
dynamic modeling and controller design have brought great
challenges.

In recent years, there has been a lot of work about dynamic
modeling of supercavitating vehicle. Kirschner et al. [3]
proposed a nonlinear supercavitating vehicle dynamic model
with 12 state variables and 6 degrees of freedom. A new
type of supercavitating vehicle dynamics model was con-
structed based on experimental data, which simplified the
nonlinear model to a nonlinear feedback LTI system with
time delay and dead zone [4]. Dzielski and Kurdila [5] used
the semiempirical steady state cavitation model to establish
a simplified 2 degree of freedom classical longitudinal plane
dynamic model under a fixed cavitation number. Wang and
Liu [6] further studied the planing force of the fin based on

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 39873

https://orcid.org/0000-0001-9457-6059
https://orcid.org/0000-0001-7208-6374


W. Jinghua et al.: Design of RBF Adaptive Sliding Mode Controller for A Supercavitating Vehicle

the simplified model, and verified it through numerical calcu-
lations and experiments. Li et al. [7] considered the time delay
effect of cavitation changes and conducted related experi-
mental studies. Wei et al. [8] used the pole configuration
method to control the cavitator angle of the supercavitating
vehicle, the result shows that the stability of the supercavitat-
ing vehicle can be well maintained by controlling the rotation
angle of the supercavitating vehicle. Zhou et al. [9] also
considered the impact of angle of attack and other uncertain
factors during the movement, and analyzed the uncertainty
of the trajectory on this basis. Zhao et al. [10] established a
mathematical model of a turning supercavitating vehicle and
designed a complete state model, including a pitch channel
and a yaw channel. He et al. [11] used the finite element
method (FEM) to establish a two-way solid-liquid coupling
program to obtain the fins load of the supercavitating vehicle.
Wang et al. [12] andMao andWang [13] considered the time-
varying fins efficiency, and the result shows that the dynamic
equations established with consideration of the fins efficiency
have higher practical value.

In a series of papers, the control strategies of supercavitat-
ing vehicle are studied. Dzielski and Kurdila [5] established
a nonlinear model of supercavitating vehicle, and proposed a
feedback linearization controller. Shao et al. [14] proposed
a switching controller that can switch between two LQR
controllers according to whether there is planing force. On the
basis of Shao et al., Vanek et al. [15] designed another
feedback linearization switching controller, which switches
when there is planing force. Lin and Balachandran [16] and
Qiang [17] proposed a controller based on the circle crite-
rion to achieve the absolute stability of the supercavitating
vehicle. In order to deal with the catastrophic instability of
supercavitating vehicles, Zhao et al. [18] proposed a dynamic
flushing filter auxiliary feedback to control sudden changes.
Robust control methods are mentioned in literature [4], [9],
and the H-inf method and the LPV-H method are respec-
tively proposed. Mao andWang [13] designed a sliding mode
controller, at the same time, they also proposed a linear
parameter variable controller, and used an adaptive control
method to explain the unknown planing force effectiveness
parameter. Literature [20] proposed a fractional-order slid-
ing mode controller, which uses fractional-order integral to
calculate the non-integer integral or derivative in the sliding
mode control algorithm, seeking better control for the con-
trol of supercavitating vehicles ability. An adaptive control
law including adaptive fault-tolerant components is designed
based on the inversion method [21]. The bounded adaptive
law can estimate the upper limit of the unknown uncertainty,
thereby ensuring that the supercavitating vehicle is in stability
in case of failure.

Both the cavitation shape and the planing force formula
are based on experimental results, in the face of the ever-
changing external environment, the current technology can-
not accurately calculate the true value, so the established
dynamic model of the vehicle is uncertain. When the super-
cavitating vehicle is sailing at high-speed, turbulence and

other phenomena will occur at the tail of the cavitation.
The effects of these phenomena are difficult to express with
specific equations, so it will bring unknown interference to
the tail of the vehicle. An excellent controller should be able
to adapt and compensate when faced with these unknown
situations.

With the development of various fields of automation,
the application of modern mathematics in system modeling
and control is further promoted, which makes the control
of uncertain systems easier. Among them, Li used the new
numerical framework of Takagi-Sugeno (TS) – Tensor prod-
uct Model Transformation (TPMT) to complete the modeling
control design of the fuzzy system based on LMI [22]. In the
absence of PMSG’s ability to describe machine dynamics,
a simplified impedance model of PMSG-WT is proposed to
more accurately analyze the influence ofMSMon system sta-
bility [23]. Authors in [24] fully considered the nonlinear of
the DG system, developed the ET-PF filtering algorithm, and
used the information in the previous event triggering strat-
egy to enhance the estimated performance. Authors in [25]
studied the vulnerability analysis and identification of key
nodes of the power grid from the perspective of complex
networks. The fusion of neural network and control algorithm
further expands the research of uncertain systems. Among
them, the radial basis function (RBF) neural network relies
on its own powerful nonlinear mapping function, which can
quickly approximate any nonlinear function, significantly
improve the performance of the controller, and is particularly
suitable for handling uncertain control problems [26]. For the
unknown items of the biped robot, a control strategy based on
the full state feedback and output feedback designed based
on the RBF neural network is used, the result shows that
the proposed control strategy can ensure the stability of the
biped robot’s attitude [27]. Aiming at the problem of robot
trajectory tracking, an adaptive neural network switching
control strategy was proposed to make the trajectory track-
ing error converge to zero in an infinite time [28]. For the
tracking problem of uncertain link robots with full state con-
straints, adaptive neural network is used to deal with system
uncertainty and disturbance, by selecting appropriate design
parameters, the stability of the closed-loop system can be
ensured [29]. Li et al. [30] proposed an adaptive RBF neural
network control strategy based on global approximation for
the trajectory tracking problem of supercavitating vehicle,
and the network weights are designed and adjusted through
the Lyapunov stability theory, so that the trajectory tracking
error asymptotically converges to a small neighborhood of
zero. Aiming at the uncertainty of themanipulator with elastic
deformation, the RBF neural network is used to estimate and
compensate the uncertainty of the system, and the stability of
the system is proved by the Lyapunov stability theory [31].

This paper is mainly based on the RBF neural network to
design an adaptive sliding mode control strategy. This control
strategy is a nonlinear mapping composed of adaptive sliding
mode control and RBF neural network. Its characteristic is
that the neural network control is integrated into the adaptive
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FIGURE 1. Structure diagram of supercavitating vehicle.

sliding mode control system, which enhances the robustness
of the control system, and does not need to know the model
uncertainty and external disturbance of the dynamic model in
advance, but uses the RBF neural network to adapt learning
model uncertainty and external disturbances. At the same
time, the proposed control strategy can be updated online
to compensate the unknown dynamic uncertainty of the sys-
tem. The control system can ensure that under the condition
of model uncertainty and external disturbance, the vehicle
can track a reference signal and ensure the convergence of
tracking errors. The structure of this paper is as follows: In
the second part, the dynamic model of the supercavitating
vehicle is derived. In the third part, designed an RBF neu-
ral network adaptive sliding mode controller, and gave the
stability analysis proof. In the fourth part, simulation results
are given to verify the effectiveness of the proposed RBF
adaptive sliding mode controller. In the fifth part, give the
conclusion.

II. DYNAMIC MODELING
When a supercavitating vehicle sails in the water, most of
area of the vehicle is surrounded by cavity envelope, only
the cavitator, fins and the tail of the vehicle are in contact
with water, and the cavitator and fins provide lift and control
force. When the tail of the vehicle hits the cavity envelope,
a nonlinear planing force is generated. The structure of the
supercavitating vehicle is shown in Fig.1, where the center
of the cavitator O is the origin of the coordinate system, the
x-axis points to the horizontal direction, the z-axis points
to the earth, Fg is gravity and δc is the vertical line of the
cavitator and the center line of the vehicle. Fcav is the control
force generated by the cavitator, δf is the deflection angle of
the fin relative to the centerline of the vehicle, Ffin is the lift
generated by the fin, Fp is the nonlinear planing force, and
α’ is the angle between cavity envelope axis and the body,
h’ is the depth of the immersion of the body tail into the
water.

A. EQUATION OF MOTION
According to the literature [5], the inertia matrix is[

m −mxg
−mxg J

]
(1)

where the mass of the vehicle m = (7/9)kρπR2L, moment
of inertia J = (11/60)kρπR4L+(133/405)kρπR2L3, center
of mass coordinates xg = −(17/28)L, the vehicle’s length
L = 1.8m, ρ is the density of water, k is the density ratio, R
is the radius of the vehicle.

On the longitudinal plane, the attitude of the vehicle is rep-
resented by four parameters: depth z, pitch angle θ , vertical
speedw and pitch rate speed q. The relationship between them
is {

ż = w− V θ
θ̇ = q

(2)

where the travel speed V = 75m/s.

B. KINETIC MODEL
Because in the longitudinal plane, only the component force
along the z-axis direction of the coordinate system plays a
decisive role in the motion stability of the vehicle, so only
the force in the z-axis direction needs to be considered in the
dynamic equation. The state equation is{

Fcav + Ffin + Fg + Fp = mω̇ − mxgq̇− mVq
Mfin +Mg +Mp = −mω̇xg + J q̇+ mVxgq

(3)

where the sum of the lift force in the longitudinal plane
includes the force Fcav of the cavitator, the force Ffin of the
fin, the gravityFg and the planing forceFp. The pitchmoment
includes the fin momentMfin, the gravity momentMg and the
planing force momentMp.

The force of the cavitator is [5]

Fcav = Cxαc (4)
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where Cx = 0.5cx0(1 + σ )ρπR2nV
2, cavitation number σ =

0.03, drag coefficient cx0 = 0.82. Since the origin of the body
coordinate system is in the cavitator, the cavitator torque is
zero. The relationship between the cavitator angle of attack
αc and the cavitator deflection angle δc is

αc = tan−1
(w
V

)
+ δc (5)

Since the fin is essentially equivalent to a wedge-shaped
cavitator, the force of the elevator fin and the moment of fin
can be known as [5]{

Ffin = −nCxαf
Mfin = FfinL

(6)

where the relationship between the fin angle of attack αf and
the fin deflection angle δf is

αf ≈ tan−1
(
w+ qL
V

)
+ δf (7)

The component force of gravity in the z-axis direction of the
body coordinate system is Fg =mgcosθ , and the momentMg
caused by gravity is

Mg = −mg cos θxg (8)

It can be seen from the literature [5] that the planing force
Fp generated by the fin of the vehicle against the cavity
envelope isFp = −ρπR2V 2

[
1−

(
R′

R′ + h′

)2
](

1+ h′

1+ 2h′

)
α′

Mp = FpL

(9)

h′ =


0 |w| ≤

V (Rc − R)
L

L
R

∣∣∣w
V

∣∣∣− Rc − R
R

|w| >
V (Rc − R)

L

α′ =


w− Ṙc
V

w > 0

w+ Ṙc
V

w ≤ 0
(10)

whereR′ = (Rc − R)/R, Rc is the cavitator radius, R is the
vehicle radius.

Rc = Rn

(
cx0

1+ σ
σ

) 1
2

κ2 (11)

The rate of change of cavity radius Ṙc is

Ṙc =
−

20
17

(
cx0 1+σσ

) 1
2
V
(
1− 4.5σ

1+σ

)
κ

23
17
1

κ2

(
1.92
σ
− 3

) (12)

κ1 =
L
Rn

(
1.92
σ
− 3

)−1
− 1, κ2 =

[
1−

(
1− 4.5σ

1+σ

)
κ

40
17
1

] 1
2

.

Where cavitator radius Rn = 0.0191m.
Bring all the forces andmoments into Eq. (3), the final state

equation is

ẋ(t) = Ax(t)+ Bu(t)+ Cg + DpFp

=


0 −V 1 0
0 0 0 1
0 0 a33 a34
0 0 a43 a44

 x(t)+


0 0
0 0
b31 b32
b41 b42

 u(t)

+


0
0
g
0

+


0
0
d3
d4

Fp (13)

where x(t) = [z, θ,w, q]T , u(t)= [δf , δc]T the parameters are
as follows

a33 =
nCV

k
(
aS − b2

) [3
4
b−

S
L

]
a34 =

nCV

4k
(
aS − b2

) [9
4
bL − 3S

]
+ V

a43 =
nCV

k
(
aS − b2

) [ b
L
−

3
4
a
]

a44 =
nCV

4k
(
aS − b2

) [3b− 9
4
aL
]

b31 =
nCV 2

k
(
aS − b2

) [3
4
b−

S
L

]
b32 =

SCV 2

k
(
aS − b2

)
L

b41 =
nCV 2

k
(
aS − b2

) [ b
L
−

3
4
a
]

b42 =
−bCV 2

k
(
aS − b2

)
L

d3 =
S − bL

kρπR2L
(
aS − b2

)d4 = aL − b

kρπR2L
(
aS − b2

)
τf =

Lf
V
C =

1
2
cx
R2n
R2
cx = cx0(1+ σ )cx0 = 0.82

n = 0.5 a =
7
9

b =
17
36
L k = 2

S =
11
60
R2 +

133
405

L2

III. RBF NEURAL NETWORK ADAPTIVE
SLIDING MODE CONTROL
This part proposes an adaptive sliding mode control strategy
based on RBF neural network. The characteristic of this
control strategy is that it is not necessary to know the model
uncertainty and external disturbance of the supercavitating
vehicle model, in addition, the powerful fitting ability of the
RBF neural network is used for dynamic compensation of
system uncertainties.

First, an adaptive sliding mode controller is designed for
the kinetic model of a supercavitating vehicle with uncertain-
ties. The sliding mode switching function s(t) = 0 is used to
obtain the equivalent control ueq, and the uncertainties in ueq
the term E(x, t) is replaced by the unknown term γ and the
sign function sgn(s)/||sgn(s)||, and then the switching control
uvss is obtained. TheM1 andM2 in the uvss are replaced with
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FIGURE 2. Flow chart of adaptive sliding mode control based on RBF neural network.

M̂1(t) and M̂2(t), the estimated value and the adaptive control
law with the uncertainties term is obtained. The RBF neural
network is used to estimate uncertain term E(x, t), and the
state variable x(t) of the supercavitating vehicle is transmitted
to the input of RBF neural network. By deriving the adaptive
weights of the neural network through the Lyapunov stability
theory, the uncertainty term E(x, t) can be finally estimated.
By making a difference between the reference signal

and the state variable of the supercavitating vehicle model,
the error e(t) is obtained which is regarded as the input of the
sliding mode controller. Then the unknown item is estimated
by use of the adaptive control law, RBF neural network,
adaptive weights and etc. Finally, the closed-loop control
system is showed in Fig.2.

A. PROBLEM DESCRIPTION AND ASSUMPTIONS
There is a big difference between a supercavitating vehi-
cle and a conventional underwater vehicle. There are model
uncertainties and external disturbance in supercavitating
vehicle kinetic model. Uncertain changes in drag coefficient
bring uncertainties to the kinetic model of the vehicle, the tail
of vehicle will also be disturbed by unknown forces. It is
impossible to have an accurate kinetic model, so it is neces-
sary to design a suitable controller to compensate the uncer-
tainties and disturbance.

According to the above analysis of uncertainties, consid-
ering the model uncertainties and external disturbance of the

supercavitating vehicle, the vehicle kinetic model Eq. (13) is
rewritten as the following nonlinear uncertainty system.

ẋ(t) = (A+1A)x(t)+ (B+1B)u(t)+ Cg + DpFp + f (t)

where 1A represents the model uncertainty in matrix A,1B
represents the model uncertainty in matrix B, f (t) repersents
the external disturbance received by the vehicle. For the con-
venience of the state equation processing, the model uncer-
tainty 1A, 1B, external disturbance f (t) are written together
to become E(x, t) = 1Ax(t)+1Bu(t)+ f (t).

Therefore, the modified state equation of supercavitating
vehicle is

ẋ(t) = Ax(t)+ Bu(t)+ Cg + DpFp + E(x, t) (14)

where x(t) = [z, θ,w, q]T , u(t) = [δf ,δc]T , A ∈ R4×4,
B ∈ R4×2, E(x, t) ∈ R4 is the system model’s nonlinear
uncertainty and external disturbance, the E(x, t) is bounded.

The state equation of the reference signal is

ẋd (t) = Adxd (t)+ Bdud (t)+ Cg + DpFp (15)

where xd (t) = [zd , θd ,wd , qd ]T , ud (t) ∈ R2,Ad ∈

R4×4,Bd ∈ R4×2 are derived from the reference signal.
Suppose the matrix M1 ∈ R4×2 and the invertible matrix

M2 ∈ R2×2 satisfying{
A = Ad − BMT

1

B = BdM
−1
2

(16)
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The task of control is to design a feedback control law
u(t) for the state equation, so that the state variable x(t)
asymptotically tracks the given reference signal xd (t).

B. ADAPTIVE SLIDING MODE CONTROLLER
The tracking error e(t) is defined as

e(t) = x(t)− xd (t) (17)

The derivative of e(t) with respect to time is

ė(t) = Ax(t)+ Bu(t)+ E(x, t)− Adxd (t)− Bdud (t)

= (A− Ad )x(t)+ Ade(t)+ Bu(t)− Bdud (t)+ E(x, t)

(18)

The sliding mode switching surface s(t) is defined as

s(t) = Ge(t)− GAd

∫ t

0
e(τ )dτ (19)

The sliding mode matrix G ∈ R2×4.

ṡ(t) = Gė(t)− GAde(t)

= G(A− Ad )x(t)+ GBu(t)− GBdud (t)+ GE(x, t)

(20)

Let ṡ(t) = 0 get the equivalent control as

ueq(t) = (GB)−1G(Ad − A)x(t)+ (GB)−1GBdud (t)

−(GB)−1GE(x, t)

= MT
1 x(t)+M2ud (t)− (GB)−1GE(x, t) (21)

where MT
1 = (GB)−1G(Ad − A),M2 = (GB)−1GBd .

Switch control uvss is

uvss(t) = MT
1 x(t)+M2ud (t)− (GB)−1Gγ

sgn(s)
‖sgn(s)‖

(22)

where γ is the model uncertainty and external disturbance.
According to Eq. (22), the adaptive control law uadp is

proposed is

uadp(t) = M̂T
1 (t)x(t)+ M̂2(t)ud (t)− (GB)−1Gγ

sgn(s)
‖sgn(s)‖

(23)

M̂T
1 (t) and M̂2(t) are the estimated values ofMT

1 and M2.
Define the parameters error M̃T

1 (t) and M̃2(t) as{
M̃T

1 (t) = M̂T
1 (t)−M

T
1

M̃2(t) = M̂2(t)−M2
(24)

Substitute Eq. (16), (23) and (24) into the system state
equation Eq. (14)

ẋ(t) = Ax(t)+ B
[
M̂T

1 (t)x(t)+ M̂2(t)ud (t)

− (GB)−1Gγ
sgn(s)
‖sgn(s)‖

]
+ E(x, t)

=

[
Ad − BMT

1

]
x(t)+ BdM

−1
2

[(
M̃T

1 (t)+M
T
1

)
x(t)

FIGURE 3. RBF neural network structure diagram.

+

(
M̃2(t)+M2

)
ud (t)

]
− B(GB)−1Gγ

sgn(s)
‖sgn(s)‖

+E(x, t)

= Adx(t)+ Bd
[
M−12 M̃T

1 (t)x(t)+M
−1
2 M̃2(t)ud (t)

]
+Bdud (t)− B(GB)−1Gγ

sgn(s)
‖sgn(s)‖

+ E(x, t) (25)

Substitute Eq. (16), (23) and (24) into Eq. (18) to get

ė(t) = (A− Ad )x(t)+ Ade(t)

+Bd
[
M−12 M̃T

1 (t)x(t)+M
−1
2 M̃2(t)ud (t)

]
+BdM

−1
2 MT

1 x(t)+ Bdud (t)− B(GB)
−1Gγ

sgn(s)
‖sgn(s)‖

−Bdud (t)+ E(x, t)

= Ade(t)+ Bd
[
M−12 M̃T

1 (t)x(t)+M
−1
2 M̃2(t)ud (t)

]
−B(GB)−1Gγ

sgn(s)
‖sgn(s)‖

+ E(x, t) (26)

Substitute Eq. (26) into Eq. (20) to get

ṡ(t) = Gė(t)− GAde(t)

= GBd [M
−1
2 M̃T

1 (t)x(t)+M
−1
2 M̃2(t)ud (t)]

−Gγ
sgn(s)
‖sgn(s)‖

+ GE(x, t) (27)

C. RBF NEURAL NETWORK ADAPTIVE
DING MODE CONTROLLER
Suppose the upper limit of ‖E(x, t)‖ is γ̄ (x, t), the value
of γ̄ (x, t) is unknown, γ̄ (x, t) can be obtained through the
powerful approximation ability of the RBF neural network.
The structure of RBF neural network consists of three layers,
the structure is shown in Fig.3. The first layer is the input
layer, the second layer is hidden layer and the third layer is
output layer.

Where x1 = [z, θ]T , x2 = ẋ1 = [w, q]T , x = [x1, x2]T =
[z, θ,w, q]T , is the input of the RBF neural network, ϕi(x) is
the output value of the i-th hidden layer node.
The estimated value of ˆ̄γ (x, t) is

ˆ̄γ (x, t) = ŵTϕ(x) (28)
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where ŵ ∈ R9 is the weight estimation vector, ϕ(x) =
[ϕ1, ϕ2, . . . , ϕ9]T , the radial phase basis function ϕi(x) of
each layer in the hidden layer selects the Gauss function

ϕi(x) = exp

(
−
‖x − ci‖2

2σ 2
i

)
i = 1, 2, . . . , 9 (29)

ϕi(x) is the output value of the i-th hidden layer node, ci is
the center vector of the i-th hidden layer, σi is the width of
the i-th hidden layer, the center of the hidden layer ci and the
width σi iterative algorithm adopts literature [32]{
ci(t) = ci(t − 1)+ η1ci + α [ci(t − 1)− ci(t − 2)]
σi(t) = σi(t − 1)+ η1σi + α [σi(t − 1)− σi(t − 2)]

(30)

where η is the learning rate, α is the momentum factor.
In order to compensate for external disturbance effectively,

the best fit value of the RBF neural network is required
to cover the upper limit of disturbance, the best weight w∗
satisfies

w∗Tϕ(x)− γ̄ (x, t) = ε, 0 < ε < ε1 (31)

The upper limit of disturbance, γ̄ (x, t), needs to be no
less than external disturbance E(x, t), so γ̄ (x, t) and E(x, t)
satisfies

γ̄ (x, t)− ‖E(x, t)‖ ≥ ε0, ε0 > ε1 (32)

Define the Lyapunov function

V =
1
2

{
sT s+ tr

[
M̃10

−1M̃T
1

]
+ tr

[
M̃20

−1M̃T
2

]
+ ξ−1 ‖G‖ w̃T w̃

}
(33)

w̃ = w∗ − ŵ, ξ = ε0 − ε1, 0 = M2Q = 0T > 0, 0 is a
positive definite matrix.

The derivation of the Lyapunov function is

V̇ = sT ṡ+ tr
[
M̃10

−1 ˙̃MT
1

]
+ tr

[
M̃20

−1 ˙̃MT
2

]
−ξ−1 ‖G‖ w̃T ˙̂w

= sT
{
GBd

[
M−12 M̃T

1 (t)x(t)+M
−1
2 M̃2(t)ud (t)

]
+GE(t)− Gγ

sgn(s)
‖sgn(s)‖

}
+tr

[
M̃10

−1 ˙̃MT
1

]
+ tr

[
M̃20

−1 ˙̃MT
2

]
− ξ−1 ‖G‖ w̃T ˙̂w

= sT
[
GF(t)− Gγ

sgn(s)
‖sgn(s)‖

]
+

{
sTGBdM

−1
2 M̃T

1 (t)x(t)

+tr
[
M̃10

−1 ˙̃MT
1

]}
+

{
sTGBdM

−1
2 M̃2(t)ud (t)+ tr

[
M̃20

−1 ˙̃MT
2

]}
−ξ−1 ‖G‖ w̃T ˙̂w (34)

Let Eq. (34)


sTGBdM

−1
2 M̃T

1 (t)x(t)+ tr
[
M̃10

−1 ˙̃MT
1

]
=0

sTGBdM
−1
2 M̃2(t)ud (t)+ tr

[
M̃20

−1 ˙̃MT
2

]
=0

,

to get the control law parameters ˙̃MT
1 (t),

˙̃M2(t) and
˙̂MT
1 (t),

˙̂M2(t) {
˙̃MT
1 (t) =

˙̂MT
1 (t) = −Q

TBTdG
T sxT

˙̃M2(t) =
˙̂M2(t) = −QTBTdG

T suTd
(35)

Substitute Eq. (31), (32) and (35) into Eq. (34) to get

V̇ = sT
[
GF(x, t)− Gγ

sgn(s)
‖sgn(s)‖

]
− ξ−1 ‖G‖ w̃T ˙̂w

≤ ‖s‖
[
‖G‖ · ‖E(x, t)‖ − ‖G‖ · γ ·

∥∥∥∥ sgn(s)
‖sgn(s)‖

∥∥∥∥]
−ξ−1 ‖G‖ w̃T ˙̂w

= ‖s‖ [‖G‖ · ‖E(x, t)‖ − ‖G‖ · γ + ‖G‖ · γ̄ − ‖G‖ · γ̄ ]

−ξ−1 ‖G‖ w̃T ˙̂w

= −‖s‖ · ‖G‖ (γ̄ − ‖E(x, t)‖)

+‖s‖ · ‖G‖ (γ̄ − γ )− ξ−1 ‖G‖ w̃T ˙̂w

= −‖s‖ · ‖G‖ (γ̄ − ‖E(x, t)‖)

+‖s‖ · ‖G‖
[
w∗Tϕ(x) − ε −ŵTϕ(x)

]
− ξ−1 ‖G‖ w̃T ˙̂w

= −‖s‖ · ‖G‖ (γ̄ − ‖E(x, t)‖)− ‖s‖ · ‖G‖ ε

+‖G‖
[
‖s‖ w̃Tϕ(x)− ξ−1w̃T ˙̂w

]
(36)

Adaptive weight is

˙̂w = ξ ‖s‖ϕ(x) (37)

Substitute Eq. (31), (32) and (37) into Eq. (36) to get

V̇ = −‖s‖ · ‖G‖ (γ̄ − ‖E(x, t)‖)− ‖s‖ · ‖G‖ · ε

≤ −‖s‖ · ‖G‖ (γ̄ − ‖E(x, t)‖)+ ‖s‖ · ‖G‖ · ε

≤ −‖s‖ · ‖G‖ · ε0 + ‖s‖ · ‖G‖ · |ε|

≤ −‖s‖ · ‖G‖ · ε0 + ‖s‖ · ‖G‖ · ε1
= −‖s‖ · ‖G‖ (ε0 − ε1) ≤ 0 (38)

Therefore, the Lyapunov stability theory proves that
the system has asymptotic stability. From the inequal-
ity (38), s(t) can be integrated as −

∫ t
0 ‖s(τ )‖dτ ≤

[V (t)− V (0)]
/
[‖G‖ (ε0 − ε1)], when V (0) and V (t) are both

bounded, lim
t→∞

∫ t
0 ‖s(τ )‖ dτ is also bounded, from Barbalat’s

lemma lim
t→∞

s(t) → 0, therefore, it can be known from the
sliding mode switching surface s(t), lim

t→∞
e(t)→ 0.

IV. SIMULATION ANALYSIS
In order to verify the effectiveness of the proposed RBF
neural network adaptive sliding mode control strategy, this
part uses the RBF neural network adaptive sliding mode
control strategy to simulate the kinetic model with model
uncertainty and external disturbance of the supercavitating
vehicle. The trajectory tracking performance, tracking error,
response of each state variable and planing force are obtained
through simulation, and the results show that the control
strategy using RBF neural network to compensate for model
uncertainty and external disturbance has achieved excellent
tracking performance. Finally, by comparing the control input
with and without the uncertainty estimated by the RBF neural
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FIGURE 4. Supercavitating vehicle actual depth.

network, the effectiveness of the proposed control strategy is
illustrated.

By the proposed control strategy to control the kinetic
model of the supercavitating vehicle. At a depth of 0m, the
supercavitating vehicle tracks a reference signal zd (t) =
2 sin(t) + 20 with a depth of 20m and an amplitude of 2m
with the initial state x(0) = [0, 0, 2, 0]T , the state equation of
the reference signal can be obtained by calculation

ẋd (t) =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 xd (t)+


0 0
0 0
1 0
0 0

[ 20
0

]

The sliding mode matrix G of the sliding mode surface is
selected as

G =
[
5.5 −75 1 0
0 4 0 1

]
The selected RBF neural network structure is 4-9-1. The

initial weightω is arbitrary, the initial hidden layer width σ =
5, the initial hidden layer center c is

c =


−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4


The hidden layer width σ and center c are iteratively updated
according to Eq. (30).

Model uncertainty is mainly caused by changes in drag
coefficient. In order to verify the effectiveness of the proposed
RBF neural network adaptive sliding mode control strategy
against model uncertainty and external disturbance, drag
coefficient is changed by ±10%, the external disturbance
takes 10% of the planing force,1cx0 = ±10%cx0, || f (t)|| =
10%Fp.
The simulation results are shown in Fig.4 and Fig.5. It can

be seen from Fig.4 and Fig.5 that the supercavitating vehicle
can dive into a predetermined depth of 20m in about 0.5s.
It can be seen from Fig.4 that in about 1s the applying
±10% uncertainty model and the nominal model can track
the reference signal. It can be seen from Fig.5 that applying
±10% uncertainty model and the nominal model tracking
error drops rapidly in the first 0.5s, and finally converges
to zero. Therefore, it can be concluded that by using the
RBF neural network adaptive sliding mode control strategy,

FIGURE 5. Supercavitating vehicle tracking error.

FIGURE 6. Pitch angle θ , vertical speed w and pitch rate speed q status
response.

FIGURE 7. Planing force.

the supercavitating vehicle can track the reference signal
under the condition of model uncertainty and external dis-
turbance.

It can be seen from Fig.6 and Fig.7 that the curves of
pitch angle θ , vertical speed w, pitch rate speed q and planing
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FIGURE 8. Switch function.

force Fp almost coincide, indicating that the supercavitating
vehicle can control its status well in the face of±10% uncer-
tainty. θ , w, q and Fp have all undergone major changes in the
first 1s, the reason is that the initial stage of sailing is in the
rapid dive stage, which caused a drastic change in the state.
In the subsequent stages, the response of each state tends to
be generally stable, the reason for the small oscillation is that
the trajectory of the vehicle tracking is a nonlinear sinusoidal
curve, the navigation state of the vehicle needs to be adjusted
at any time, which causes the various state quantities and
planing forces to follow, small fluctuations in the stage.

It can be seen from Fig.8 that the switching functions
s1(t) and s2(t) of the state variables z and θ have changed
drastically in the initial stage, the reason is that the supercav-
itating vehicle is in rapid decline at this time. In the latent
phase, there is a big difference between the actual state and
the predetermined state. The subsequent switching function
s1(t) almost approaches zero, indicating that the vehicle has
tracked the predetermined trajectory; the switching function
s2(t) still oscillates slightly, because the deflection angle of
the vehicle needs to adjust at any time when tracking the
nonlinear trajectory. The adjustment in a small range causes
the switching function s2(t) to oscillate in a small range, but
the oscillation amplitude is within a controllable range.

The result of using RBF neural network to compensate
the ±10% uncertainty model and nominal model is shown
in Fig. 9. The RBF neural network is used to adjust the gain
of the switch part of the adaptive sliding mode control input.
Fig.10 is the control input with the uncertainty estimated by
the RBF neural network, Fig.11 is the control input without
the RBF neural network. Comparing Fig.10 and Fig.11, it can
see that the control input of the former is better, because
whether it is during the dive stage at 0∼1s or the stable track-
ing stage afterwards, at the same moment, the control input
amplitude in Fig.10 both are smaller than those in Fig.11,

FIGURE 9. The result of using RBF neural network to compensate model
uncertainty and external distrubance.

FIGURE 10. The control input with the uncertainty estimated by the RBF
neural network.

FIGURE 11. The control input without the RBF neural network.

that is at this moment the deflection angle of the fin and the
cavitator are smaller. In the same time, a smaller deflection
amplitude can reduce the difficulty of designing the control
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FIGURE 12. Time-varying estimation parameter M̂1(t) and M̂2(t) in
adaptive control law.

mechanism and greatly reduce the load on the deflection
mechanism.

Fig.12 is the parameter estimation matrix and values in the
adaptive control strategy proposed in Eq. (23). The various
variables in the matrix changed drastically in the early stage
because the supercavitating vehicle was diving rapidly and
its navigation attitude changed drastically. In the later stage,
when the vehicle tracks the reference signal, the various
parameters gradually stabilized. Although there are small
changes in individual parameters, the reason for small-scale
changes is that the control matrix of the controller needs to
be adjusted in real time when faced with model uncertainty
and external disturbances.

Therefore, it can be concluded that the dynamic system
response of the supercavitating vehicle in line with expec-
tations. The simulation results show that under the adaptive
sliding mode control strategy based on RBF neural network,
the supercavitating vehicle has excellent tracking perfor-
mance, the tracking error asymptotically converges to zero.
The proposed intelligent control strategy can compensate the
model uncertainty and external disturbance of the supercavi-
tating vehicle model, and make the system more robust.

V. CONCLUSION
This paper proposes an adaptive slidingmode control strategy
based on RBF neural network for supercavitating vehicle
model. This control strategy can be obtained through the
powerful fitting ability of the RBF neural network without

knowing the model uncertainty and the external disturbance
from the outside. This control strategy can be obtained
through the powerful fitting ability of the RBF neural network
without knowing the model uncertainty and external distur-
bance of the kinetic model. The output of RBF neural network
is used as uncertainty compensation parameter, which can
eliminate the influence of model uncertainty and unknown
external disturbance. The stability of the proposed RBF neu-
ral network adaptive sliding mode control strategy is proved
by Lyapunov theory. The effectiveness and convergence of
the proposed RBF neural network adaptive sliding mode
control strategy are verified by simulation. The simulation
results show that the tracking error almost asymptotically
converge to 0.
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