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ABSTRACT This paper addresses an electric vehicle routing problem with time window (E-VRPTW) under
time-of-use (TOU) pricing where retail prices vary hour-by-hour to reflect changes in wholesale prices. The
proposed solution aims to minimize the electricity-cost as well as traditional objectives: number of used
vehicles and total travel distance. In particular, the proposed solution cleverly shifts battery charging to
off-peak periods and adjusts the charging duration in order to reduce costs. First, the problem is carefully
carved in a mixed integer linear programming model. Second, a constraint programming model is built.
Third, a combined model is constructed to exploit the strengths of both models. The computational study
based on the well-known benchmarking test instances demonstrates we can reduce the electricity cost
by 3.1% on average while not compromising other objectives. We provides benchmarking instances and
CPLEX source codes, in order to promote related-research, thus expediting the adoption of energy-efficient
scheduling by autonomous taxi company.

INDEX TERMS E-VRPTW, battery, TOU, MIP, CP.

I. INTRODUCTION
Autonomous vehicle (AV) or self-driving is an emerging
technology expected to bring fundamental shifts in trans-
portation. In this coming self-driving car era, one conceivable
scenario is for people to rely on an autonomous taxi instead
of owning a personal vehicle. Some predicted that owning
a car will soon be as quaint as owning a horse [26]. There
are several reasons. Firstly, solely using autonomous taxis
for transportation could cost the same as owning a car [8],
although the prediction seems to not be realized yet. Sec-
ondly, most accidents are caused by driver error, explaining
94 percent of the crashes [35]. Therefore, more passengers are
predicted to depend on autonomous taxis in a form of shared
service instead of owning personal vehicles in the coming
self-driving car era.

Followed by NuTonomy’s debut as a robotaxi (also known
as a self-driving taxi or a driverless taxi) service in Singa-
pore, Tesla announced to launch robotaxi as part of broader
vision for an autonomous ridesharing network in 2020 during
the company’s Autonomy Day [34]. Similar efforts have
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FIGURE 1. Charging stations (Courtesy of TELSA and IONITY).

been made virtually by all major auto makers and countless
start-ups.

This inevitable shift creates an urgent need of efficiently
orchestrating a fleet of electric AV that are limited by short
driving range and slow charging time, once dubbed as an
Achilles’ heel by Bruglieri et al. [21]. To respond to this
challenge, researchers have studied a new variant of classi-
cal vehicle routing problem (VRP) and termed E-VRP. The
E-VRP includes a route with planned detours to charging
station (CS) as depicted in Fig. 1, covering arrival times
and charging durations. The partial/full and linear/nonlinear
charging mechanisms have been extensively studied along
with vehicle capacity and time window (TW) constrains.

However, varying electricity prices have not been
fully considered, although this would offer an extensive
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opportunity for cost saving. Under time-of-use (TOU) elec-
tricity pricing, retail prices vary hour-by-hour to reflect
changes in wholesale prices, which are typically announced
a day ahead or an hour ahead. Fig. 2 depicts the hourly
day-ahead TOU pricing/kWh on January 30, 2019. By simply
shifting the charge from 8 pm to 4 am, we could save 68%
on electricity costs. The key is to shift the battery charging to
off-peak periods in order to minimize the cost in conjunction
with other costs: the number of used EVs and the total travel
distance.

FIGURE 2. Hourly TOU pricing (https://hourlypricing.comed.com/).

The contributions of this paper are threefold. First, we for-
mally formulate E-VRPTW under TOU pricing as an MIP
model without explicitly employing a vehicle index for the
first time. Second, we devise a constraint programming (CP)
model using an intensity function so that energy cost can be
effectively calculated. Third, we develop a combined model
of MIP-CP to exploit the strengths of both, all for the first
time, which performs better than using either of two models
alone.

II. LITERATURE REVIEW
A. E-VRP
The most related work has been pioneered by Bard et al. [17]
where vehicles visit satellite replenishment centers to load
depleted items after delivering all preloaded, thus permitting
extended tours. They presented a formal MIP model and
solved it with the branch and cut method. They introduced a
decision variable to track the load of a vehicle when it arrives
at customer. A similar approach was later used to track the
remaining battery level in E-VRP.

Erdoğan and Miller-Hooks [29] introduced the green
(G)-VRP, where alternative fuel-powered vehicles with a lim-
ited fuel capacity visit at fuel stations along the route with a
fixed refueling time. Although neither partial refueling, load-
ing capacity, nor time window constraints were considered,
this well-defined G-VRP served a precursor of E-VRP where
a refueling (battery-charging) becomes the critical restriction.

Finally, Schneider et al. [25] introduced E-VRP that incor-
porates CS within a route in addition to the conventional VRP
constraints (capacity restrictions and time windows). Due to
the battery capacities, EVs need to visit to CS during delivery
tours. The aim was to find feasible tours satisfying battery
restriction (the level of battery may never fall below zero).

Table 1 contains the selected articles related to E-VRP.
Column 4 shows if the article considered the partial charge
since the partial charge is realistic requirement, difficult to
model, and computationally expensive. In particular, we have
to decide how long to recharge as well as where and when,
for each vehicle (Felipe et al. [5]). Since recharging at the
depot is cheaper than recharging en route, vehicles choose
the partial charge en route and making zero battery level
when vehicles arrive at the depot. Columns 5-6 mark if the
article considered the vehicle load capacity and customer time
windows, respectively.

TABLE 1. Selected articles related to E-VRP.

The partial/full, linear/nonlinear charging, varying charg-
ing speed mechanisms, and varying battery consumption
rates have been extensively studied along with vehicle capac-
ity and time window constraints as Table 1 presents. For read-
ers interested in E-VRP, see survey papers Pelletier et al. [30],
Erdelic and Caric [32], and Schiffer et al. [24].

B. SCHEDULING UNDER TIME-OF-USE PRICING
Electricity cannot be efficiently stored so it must be gener-
ated, transmitted and consumed simultaneously. In addition,
electricity demand is imbalanced over time, which causes
a difficulty for electricity suppliers to regulate peak load
(Mitra et al. [31]). As a result, electricity price varies, accord-
ing to the market demand over time. There are three types of
time dependent electricity pricing: time-of-use (TOU) pric-
ing, real-time pricing (RTP) and critical peak pricing (CPP)
(Sharma et al. [6]). In the TOU pricing (the most widely used
among the three), the electricity price schedule is predefined,
but it may vary by hour, day, and season. This pricing policy
motivates consumers to save cost by shifting their energy
consumption from on-peak to off-peak periods. That creates a
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new research stream called energy-aware production schedul-
ing (Wu et al. [28]) where the total energy-cost is minimized
in conjunction with other traditional objectives in clas-
sical manufacturing environments: single-stage, job-shop,
flexible-job-shop, flow-shop, batching, etc.

Dubey and Santoso [1] and Afzalan and Jazizadeh [20]
considered TOUpricing and studied the impacts of residential
electric vehicle (EV) charging on distribution system.

However, TOU pricing has not been fully studied in
E-VRP. To the best of our knowledge, Yang et al. [16]
and Ferro et al. [12] are the only two articles that
considered the electricity-price as a time-varying factor.
However, Yang et al. [16] did not consider the time win-
dow constraint and formulated the problem as a nonlinear,
nonconvex, and discrete model, which is difficult to solve.
Hence, they proposed a learnable partheno-genetic algorithm
which combines conventional intelligent algorithms (such as
genetic algorithm and tabu search) and a knowledge model.
Ferro et al. [12] proposed an MIP model which considers
several speed levels of EVs and several recharging modes
at recharging stations, but it is inefficient due to the explic-
itly employing a vehicle index in all decision variables.
Hence, in this paper, we formally formulate E-VRP with
time window constraint under TOU pricing as an MIP model
without explicitly employing a vehicle index for the first
time.

C. CONSTRAINT PROGRAMMING
Researchers often formally present scheduling problems in
an MIP in order to exactly capture the problems (exact
method) and prove optimality of small-sized test instances.
Then, heuristic models that are equipped with the same objec-
tives and constraints are proposed for a rapid calculation of
large-sized instances.

Recently, the CP (IBM CPLEX) has received lots of
attentions from both practitioners and researchers as an alter-
native and/or complementary of MIP and heuristics, owning
to its following strengths: conciseness, natural-language like,
flexibility, and performance and successfully applied to VRP
problems (Shaw [27]; Backer et al. [7]; Ham [2], Ham 2020).
However, CP has not been seen in E-VRP literature.

Recently, Booth and Beck [19] applied CP to E-VRP. How-
ever, they did not consider the partial charge. We propose a
full CP formulation for E-VRP under TOU.

D. HOME ENERGY MANAGEMENT SYSTEM
This study is primarily for the emerging robotaxi service
providers that employ a fleet of EVs. However, the home
energy management system (HEMS) connected to microgrid
can contribute to reduction of energy cost and improvement
of voltage stability (Ganjehlou et al. [14]) by efficiently
orchestrating energy consumptions of EVs, heating and air
conditioning, and home appliances. We can further seek a
global optimization and maximize the benefits by connecting
neighborhood HEMSs (Gholinejad et al. [15]).

E. COMBINED MODEL OF MIP-CP
The two-index MIP model for homogeneous vehicles
(Schneider et al. [25]) does not explicitly employ a vehicle
index, but it successfully determines the number of used vehi-
cles. This efficient modelling technique with valid inequali-
ties successfully solves quite large-sized instances. However,
the MIP model for E-VRP under TOU relies on lots of
binary variables to determine the energy-cost at the time of
charging, making the model intractable even for small-sized
instances.

We develop a combined model to use the complemen-
tary strengths of MIP and CP for solving problems that
are otherwise intractable using either of these two methods
alone. For these problems, both pureMIP- and pure CP-based
approaches may not perform well (Jain and Grossmann [39]).
The combined model inherits most of the efficient MIP equa-
tions and replaces TOU related variables/equations with CP.

III. PROBLEM DESCRIPTION AND SOLUTIONS
This paper considers E-VRPTW under TOU which finds the
optimal delivery tour, delivery time, and recharging time for a
set of homogeneous EVs with a loading capacity. We assume
the following situations. All customers with known demand
must be serviced within a desired delivery time window
by exactly one vehicle. Every EV starts delivery from a
depot at time zero and comes back to the same depot after
delivery. An EV can serve multiple customers whose total
demand does not exceed EV’s load capacity. The battery level
decreases in proportion to the travel distance, and electricity
is consumed only during travel. EV’s battery must always be
above zero. EV can visit the CS to recharge its battery within
maximum capacity. In addition to the standard E-VRPTW,
a total energy cost is considered in this paper. In particular,
the prices of electricity vary over discrete time intervals. The
key is to shift the recharging time to off-peak periods in order
to minimize the energy cost.

Fig. 3 contrasts the conventional E-VRPTW with
E-VRPTW under TOU with a small benchmark instance
(C103-5) having 1-EV, 2-CS, and 5-customer. Fig. 3(a)
shows a tour when TOU electricity-price was not considered.
The proposed model found the minimum traveling distance
of 177 Km with a cost of $2.7930 for recharging. On the
other hand, Fig. 3(b) represents a tour when TOU was
considered. The proposed model reduced the energy-cost by
8.7% by adjusting the recharging amount and duration at
CSs according to TOU pricing. Note the total amounts of
recharging (98 MW) in both scenarios are equal, but the
costs are different. The EV starts from the depot (D) at
time 0, serves customer 65 at 67 (note the time windows
are successfully met), and visits the CS (S) for 35 time units
for partial charging. Then, the EV visits customer 98 at time
236 and returns to the CS for full charging, spending 268 time
units. The EV resumes the tour serving customers 20, 24, and
57 in order and visits the CS at 1090 for 39 time units. Finally,
the EV arrives at the deport at 1169.
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FIGURE 3. Energy-aware scheduling: Energy cost minimization (C103-5 instance).

In this paper, we have three objectives. The first is to mini-
mize the number of used EVs. The second is to minimize total
travel distance of EVs. The third is to minimize total energy
cost for recharging. This paper proposes a lexicographic opti-
mization approach using mixed integer linear programming,
constraint programming and combined models.

A. MIXED INTEGER PROGRAMING MODELS
Table 2 summarizes parameters and decision variables ofMIP
model.

The mathematical model of E-VRPTW under TOU pricing
is formulated as a mixed-integer program as follows:

Minimize M1 · TV +M2 · TD+ TC (A1)

s.t. TV =
∑
oj∈E

X0j (A2)

TD =
∑
ij∈E

dijXij (A3)

TC =
∑
i∈F ′

∑
t∈T

ctLit (A4)∑
ij∈E

Xij = 1 ∀i ∈ V (A5)

∑
ij∈E

Xij ≤ 1 ∀i ∈ F ′ (A6)

∑
ij∈E

Xij =
∑
jk∈E

Xjk ∀j ∈ V ′ (A7)

si + Ai + tijXij + s
(
Xij − 1

)
≤ Aj ∀ij ∈ Ev (A8)

Di + tijXij + s
(
Xij − 1

)
≤ Aj ∀ij ∈ Ef (A9)

ei ≤ Ai ≤ li ∀i ∈ V (A10)

Uj ≤ Ui − uiXij + u
(
1− Xij

)
∀ij ∈ E (A11)

A0 = 0,U0 = u,Y0 = y (A12)

Yj ≤ Yi − (h · dij)Xij + y
(
1− Xij

)
∀ij ∈ Ev (A13)

Yj ≤ Yi + Zi − (h · dij)Xij + y
(
1− Xij

)
∀ij ∈ Ef

(A14)

Di ≥ Ai + g · Zi ∀i ∈ F ′ (A15)

Yi + Zi ≤ y ∀i ∈ F ′ (A16)∑
t∈T

Sit = 1 ∀i ∈ F ′ (A17)∑
t∈T

t · S it = Ai ∀i ∈ F ′ (A18)∑
t∈T

Fit = 1 ∀i ∈ F ′ (A19)∑
t∈T

t · F it = Di ∀i ∈ F ′ (A20)

Lit =
∑t

r=0
(Sir − Fir ) ∀i ∈ F ′, t ∈ T (A21)

Objective (A1) is the weighted sum of the number of
used EVs, total travel distance, and total energy cost,
each of which is computed in constraints (A2)-(A4),
respectively. Constraints (A5)-(A16) denote constraints for
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TABLE 2. Parameters and decision variables of MIP.

original E-VRPTW while constraints (A17)-(A21) represent
the TOU pricing. In details, constraints (A5)-(A7) establish
the bound of number of visits and flow conservation of each
vertex. Constraints (A8)-(A9) guarantee relation between
departure and arrival times of two consecutive vertices visited
by the same EV. Constraint (A10) enforces the time win-
dow constraint. Constraint (A11) computes load level of the
EV when it arrives at any vertex. Constraint (A12) guaran-
tees initial conditions of the depot. Constraints (A13)-(A14)

guarantee relation of battery levels of two consecutive ver-
tices visited by the same EV. Constraint (A15) enforces that
departure time is no less than arrival time plus recharging
time. Constraint (A16) enforces battery capacity of EV. Con-
straints (A17)-(A18) and constraints (A19)-(A20) discretize
the arrival and departure times at the recharging station,
respectively. In details, constraints (A17)-(A18) force Sit = 1
if an EV arrives at vertex i at time t(that is,Ai = t) and Sit = 0
otherwise and constraints (A19)-(A20) force Fit = 1 if an EV
departs from vertex i at time t(that is, Di = t) and Fit = 0
otherwise. Finally, constraint (A21) captures the recharging
time interval, that is, Lit = 1 if Ai ≤ t ≤ Di − 1 and Lit = 0
otherwise. We term this proposed model as MIP-1.

This MIP-1 can be improved by adding valid inequality.
Let W be the set of triples which cannot be contained in a
feasible route as follows:

W = {ijk ∈ V ′0 × V
′
× V ′N+1 ∧ (W1 ∨W2 ∨W3) ,

where

W1 =
{
ijk | ui + uj + uk > u

}
,

W2 =
{
ijk | h

(
dij + djk

)
> y

}
, and

W3 =
{
ijk | ei + si + tij + sj + tjk > lk

}
.

Then, for a triple ijk ∈ W , two arcs ij and jk cannot be taken
simultaneously and the following constraint is valid:

Xij + Xjk ≤ 1 ∀ijk ∈ W (A22)

We term the model in which the constraint (A22) is added as
MIP-2.

B. CONSTRAINT PROGRAMMING MODEL
E-VRPTW can be formulated in a CP by utilizing a cumu-
lative function that tracks a resource usage (battery-level in
our application) over time. A vehicle is forced to visit a CS
for recharging to keep the battery-level from below zero.
On the other hand, the TOU pricing can be captured by a step
function that tracks the efficiency of a resource over time.
In particular, the relation between the size and the length of
an interval variable (the size is the sum of the intensity step
function between the start and end of the interval variable) can
be used to represent the total cost at the time of recharging.

A CP formulation looks very different with an MIP. There
is a standard notation inMIP formulation, however there is no
standard in CP formulation until IBM team has very recently
proposed a standard typesetting. We make our best effort
to follow the standard. Table 3 summarizes parameters and
decision variables of CP model.

The E-VRPTW under TOU pricing is formulated as a CP
as follows:

Minimize staticLex (TV ,TD,TC) (B1)

s.t. TV =
∑
k∈K

Zk (B2)

TD =
∑
k∈K

∑
i∈V ′0,N+1

dtypeOfPrev(Seqk ,Xi,k),i (B3)
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TABLE 3. Parameters and decision variables of CP.

TC =
∑
i∈F ′

sizeOf (Ii) (B4)

Zk ≥
∑
i∈V

presenceOf
(
Xi,k

)
∀k ∈ K (B5)

startOf (Ii) = startOf (Ni) · 100 ∀i ∈ F ′ (B6)

endOf (Ii) = endOf (Ni) · 100 ∀i ∈ F ′ (B7)

noOverlap
(
Seqk , τ

)
∀k ∈ K (B8)

ei ≤ startOf (Ni) ≤ li ∀i ∈ V (B9)

sizeOf (Ni) = si ∀i ∈ V (B10)

first
(
Seqk ,X0,k

)
∀k ∈ K (B11)

last
(
Seqk ,XN+1,k

)
∀k ∈ K (B12)∑

i∈V

presenceOf
(
Xi,k

)
· ui ≤ u ∀k ∈ K (B13)

Yk = step (0,y)−
∑

i∈V
′

0,N+1

stepAtStart
(
Xi,k , 0,y

)
+

∑
i∈F ′

stepAtEnd(Xi,k , 0,y) ∀k ∈ K (B14)

height At Start
(
Xi,k ,Yk , 0

)
= −h · dtypeOfPrev(Seqk ,Xi,k),i ∀k ∈ K , i ∈ V

′

0,N+1

(B15)

heightAtEnd
(
Xi,k ,Yk , 0

)
= g · sizeOf (Xi,k )

∀k ∈ K , i ∈ F ′ (B16)

Objective (B1) sequentially minimizes the number of used
EVs, total travel distance, and total energy cost, each of
which is computed in constraints (B2)-(B4), respectively.
Constraint (B5) determines whether each EV is used or
not. Constraints (B6)-(B7) synchronize two interval variables
to calculate the total energy price during the charging by
using intensity function. The size of an interval variable
must be smaller than its length, so we rescale the inter-
val variable by multiplying a hundred. Constraint (B8) pre-
vents intervals in a sequence from overlapping on each EV.
Constraints (B9)-(B10) enforce the time window constraint

and service time, respectively. Constraints (B11)-(B12) force
the vehicle to start from a depot and return to the same depot
at the end of the tour. Constraint (B13) ensures the cargo
capacity restriction. Constraints (B14)-(B16) ensure vehicle
battery-level stays within limits. The constraints collectively
set the initial battery-level at time 0, consume the battery as
each vehicle operates, and charge the battery at CS, through-
out the tour, by using a cumulative function with negative
impact for travel and a positive impact for recharging.

C. COMBINED MODEL OF MIP AND CP (MCP)
The preliminary results showed that the two-index MIP
model for E-VRPTW turned out to be inefficient for this
variant with TOU, due to the large number of binary variables
to compute the energy-cost at the time of charging. The pre-
liminary results also showed that the CP model that explicitly
describes each EVwas not efficient either. Here we propose a
combined model to use the complementary strengths of MIP
and CP for solving E-VRPTW under TOU that was otherwise
intractable using either of these two methods alone.

The combined model (MCP) inherits most of the efficient
MIP equations and replaces TOU related variables/equations
with CP. The proposed MCP model does not use binary
variables Sit ,Fit ,Lit and equations (A4), (A17)-(A21) which
were essential to calculate TOU pricing in a pure MIP model.
Instead, the intensity function Ii and its associated constraints
are borrowed from CP and some constraints are appropriately
modified.

Decision variables:
Xij : interval variable representing each arc ij ∈ E , 0 other-

wise (note there is no vehicle index).

Minimize (A1)

s.t. (A2)− (A3), (B4), (A5)− (A16)

replace Xij with presence Of
(
Xij
)

startOf (Ii) = Ai · 100 ∀i ∈ F ′ (C17)

lengh Of (Ii) = (Di − Ai) · 100 ∀i ∈ F ′ (C18)

Constraints (C17)-(C18) synchronize interval variable (Ii)
of CP and MIP variables (Ai and Di) to calculate the total
energy price during the charging by using intensity function.
The size of an interval variablemust be smaller than its length,
so we rescale the interval variable by multiplying a hundred.
We term this combined model MCP-1. In addition, MCP-2 is
a model with the following constraint (C19) added toMCP-1.

presenceOf
(
Xij
)
+presence Of

(
Xjk
)
≤1 ∀ijk ∈ W

(C19)

IV. COMPUTATIONAL EXPERIMENTS
All experiments including MIP, CP, and flow control mod-
els are implemented in OPL 12.10.0 on an Intel R©Core
i7-4770 CPU with 16 GB of RAM. The Cplex codes, test
instances and results are available at the following link:
https://github.com/hamcruise/eVRP_TOU
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TABLE 4. Comparison of models in terms of costs based on benchmark instances proposed by Schneider et al. (2014).

A. PROBLEM INSTANCES
Schneider et al. [25] generated E-VRPTW benchmark
instances based on the instances of VRPTWby Solomon [23].
These instances are divided into three classes, depending
on the geographical distribution of the customer locations:
random customer distribution (R), clustered customer distri-
bution (C), and a mixture of both (RC). They located one
recharging station at the depot. They limited the charging
locations to be reachable from the depot using atmost two dif-
ferent recharging stations. The battery capacity was set to the
maximum of the following two values: (1) the charge needed
to travel 60% of the average route length of the best-known
solution to the corresponding VRPTW instance, and (2) twice
the amount of battery charge required to travel the longest arc
between a customer and a station. Finally, we have added the
hourly day-ahead TOU pricing/mWh (ct ) that was retrieved
from hourlypricing.comed.com and duplicated for the rest of
the planning horizon.

B. RESULTS
1) PERFORMANCE OF PROPOSED MODELS
Table 4 compares the results based on the benchmark
instances. Column 1 identifies the name of the instance and

TV ,TD,TC are total number (units) of used EVs, total travel
distance (Km) of EVs, and total energy cost ($) for recharging
of the solutions found within 600 seconds time limit, respec-
tively, for each model.

When the proposed model could not find a feasible solu-
tion, the column shows the symbol –. The optimality gaps
and the counts of binary variables are recorded in Gap and
Bin columns, respectively. The bold font indicates the optimal
solution. The big-M method in MIP and lexicographic objec-
tive in CP led to an incorrect optimality gap calculation so we
set the number of used EVs as a hard constraint to obtain a
meaningful optimality gap.

The results show the pure MIP and CP models were not
efficient, failing finding feasible solutions in many instances.
It is observed that MIPmodels could not produce any feasible
solution when the number of binary integer variables exceeds
around 24000. On the other hand, the combined models
(MCP-1 andMCP-2) successfully found feasible solutions of
all instances. In terms of solution quality, combined models
outperformed MIP and CP models. We can concluded that
combined models exploited the complementary strengths of
MIP and CP for solving E-VRPTWunder TOU.We think this
was possible because the following two reasons: (1) adopting
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FIGURE 4. A proposed two-stage method to access the potential
cost-saving.

TABLE 5. Comparison of conventional scheduling (minimizing number of
used vehicles and total travel distance without considering energy-cost)
and energy-aware scheduling (minimizing energy-cost as it maintains the
same number of used vehicles and travel distance.

efficient two-index formulation from MIP model that does
not explicitly model each vehicle and (2) borrowing effi-
cient energy-cost calculation at the time use from CP model
that does not use a binary variable. When comparing the
results of MCP-1 and MCP-2, we could not find a significant
difference.

2) EFFECT OF AWARENESS OF ENERGY-COST
We were interested in quantifying the potential amount of
cost-saving from this proposed model. A two-stage opti-
mization approach was adopted to demonstrate the proposed
method can reduce the energy-cost without compromising
other conventional objectives (Fig. 4). At the first stage,

the proposed MCP-2 generates a solution that minimizes the
number of used EVs and the total travel distance without
being aware of energy-cost. The solution is passed to the sec-
ond stage where MCP-2 resumes a search for a solution that
minimizes energy-cost within a solution space that is limited
by the calculated conventional objective values at the first
stage (X́ij, TV ′,TD′). Namely, when MCP-2 starts a search at
the second stage, it refers to the solution from the first stage
(warm-start).

Table 5 contrasts the conventional scheduling vs. the
energy-aware scheduling. The conventional scheduling min-
imizes the number of used EVs and the total travel
distance without being aware of energy-cost, whereas the
energy-aware scheduling minimizes the energy-cost as it
maintains the same number of used EVs and the total travel
distance. The results show a 3.1% saving on average. This
mild savings can be largely explained by the time-window
restriction that forces a vehicle to visit a customer at the pre-
scribed time, mitigating an opportunity of cost-saving. How-
ever, 15.6% and 13.1% savings on RC201-10 and R203-5
instances, respectively, demonstrated a significant potential.

Note we can still use the proposedMCPmodels to handle a
dynamic order. The proposed models will generate an initial
schedule for a static order. Then the samemodels can resched-
ule for a dynamic order in real-time based on warm-start
method to reduce a run-time and a service disruption.

V. CONCLUSION
This paper directs an electrical vehicle routing problem with
time window (E-VRPTW) toward the energy-aware schedul-
ing by considering time-of-use (TOU) pricing, aiming to
minimize the electricity costs as well as the number of used
vehicles and total travel distance, for the emerging robotaxi
service providers. The proposed method exploits the hour-
by-hour varying electric prices and shifts battery charging to
off-peak periods and adjusts the charging duration in order
to reduce the cost. First, the problem is carefully carved in
a mixed integer programming model. Second, a constraint
programming model is built. Third, combined models are
constructed to exploit the strengths of both models. The com-
putational study demonstrates that combined models outper-
formed a mixed integer programming model and a constraint
programming model. The proposed method reduces the elec-
tricity cost by 3.1% on average. It also shows a significant
potential for energy-saving.

In future research, we will study the home energy man-
agement system to efficiently schedule energy consumptions
by EVs, heating and air conditioning, and home appliances
under the dynamic TOU pricing.
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