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ABSTRACT Location information of nodes in Wireless Sensor Networks (WSN) is essential to identify
the origins of events and to act on them. Several localization algorithms are developed for this purpose.
In this work, we have considered hop based localization algorithms, which are popularly used in WSN
applications. These algorithms use a few reference nodes with location information and localize other nodes
with reference to these nodes. But, in practical scenarios, some reference nodes may turn faulty and report
incorrect location information to other nodes. This reduces the localization accuracy of the entire network.
Therefore, it is essential to identify and filter out faulty reference nodes from the localization process. But,
in Heterogeneous Wireless Sensor Networks (HWSN), since both faulty nodes and heterogeneous nodes
modify hop distances, it becomes even more challenging to identify only faulty nodes among a set of
heterogeneous nodes. In this work, we have reported a fault filtering method that can be used with any
of the existing hop based localization algorithms for fault-tolerant localization. This method first normalizes
the distance estimations using the communication radius of nodes and then uses the Jenks Natural Breaks
algorithm for filtering out the nodes producing inconsistent distance estimations. The reported method is
incorporated into existing localization algorithms and tested in 2D/3D, isotropic/anisotropic environments.
The results show an improvement of 14%, 52%, and 51% in localization accuracy when tested with DV-Hop,
Weighted DV-Hop, and HHO-AM algorithms, respectively.

INDEX TERMS 3D field, anisotropy, fault tolerant, heterogeneous wireless sensor network, Jenks natural
breaks algorithm, localization.

I. INTRODUCTION
Wireless Sensor Networks (WSN) are formed using a large
number of sensor nodes that communicate with each other
through wireless channels [1]. The deployed sensor nodes
collect required information about the surrounding events and
share the collected data through other nodes to a central loca-
tion for further processing [2]. Applications of WSN range
from military tasks to civilian tasks such as surveillance,
intruder detection system, fire detection, oil explorations, and
volcanic monitoring systems [3]–[6]. In many of these appli-
cations, WSN needs to be deployed in harsh and unreachable
fields of interest [7]. For these applications, sensor nodes are
usually deployed by random scattering in the required fields
of interest using an aerial vehicle. In such cases, the loca-
tions of nodes will be unknown. But, location information
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of nodes is essential for these applications to identify the
origins of sensed data and to act on them [8]. Attaching
Global Positioning System (GPS) receivers with every node
is not a possible option because of increased cost, power
consumption, and lower accuracy due to shadowing effects.
Hence, several localization algorithms have been developed
by researchers to estimate the locations of nodes [9].

The developed localization algorithms use few refer-
ence nodes with location information, and locations of
unknown nodes are estimated with respect to these reference
nodes [10]. Various measurement techniques such as Time
of Arrival (TOA), Angle of Arrival (AOA), Received Signal
Strength (RSS), connectivity, etc., are used for this pur-
pose [11], [12]. Among the available techniques, connectivity
based localization does not need any additional hardware and
hence is popularly used forWSN applications [13], [14]. Hop
based localization is one such type of method where prox-
imity to reference nodes is measured using the Average Hop
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Distance (AHD) between any two neighboring nodes [9],
[15]. The obtained proximity measures are processed in dif-
ferent ways to get improved localization results.

In reality, it is possible that a few reference nodes do not
have correct information about their locations. This may be
because of hardware failures, environmental effects, manual
errors, or changes in location of a few reference nodes after
deployment because of unexpected human or animal move-
ments in those regions. In such situations, they report faulty
locations to other nodes, and this results in error propaga-
tion [10]. In hop based localization, the faulty locations cause
erroneous hop distance estimations affecting the AHD and
hence, the localization accuracy of the entire network. There-
fore, it is required to identify and filter out the faulty refer-
ence nodes causing erroneous hop distance estimations from
the localization process for efficient localization. A possible
solution is to identify a threshold range for AHD and con-
sider the nodes producing AHD values outside this range as
faulty [16]. But, this solution does not work when the network
is heterogeneous with sensor nodes of different transmission
powers. In HWSN, a node with higher transmission power
can communicate to larger distances, whereas a node with
lower transmission power will have a smaller communicate
range [17], [18]. Hence, the problem becomes more challeng-
ing in Heterogeneous Wireless Sensor Networks (HWSN)
because the heterogeneity of nodes results in varying hop
sizes. Since both faulty nodes and heterogeneity result in non-
uniform hop distances, identifying only faulty nodes among
the heterogeneous set of nodes is a challenging task.

In this paper, we have reported a fault filtering method that
can be used with any of the existing hop-based localization
algorithms for accurate localization of a heterogeneous set
of sensor nodes in the presence of faulty reference nodes.
In this method, the influence of heterogeneity on AHD is
overcome by replacing AHD with Average Communication
Distance (ACD), which is a function of the communication
radius of nodes. This way, errors introduced by the hetero-
geneity of nodes on the distance estimations are reduced.
Next, the nodes causing erroneous distance estimations are
identified by checking for inconsistencies using the Jenks
Natural Breaks algorithm. The Jenks Natural Breaks algo-
rithm is a standard method for dividing a dataset into a certain
number of homogenous classes. The classification is achieved
by maximizing the variance between classes and minimizing
the variance within classes [19], [20]. The nodes causing
inconsistent distance estimations are filtered out from the
localization process. The improved distance estimations from
the non-faulty reference nodes are then processed by local-
ization algorithms for estimating the positions of unknown
nodes. The reported method is tested with various existing
localization algorithms in 2D/3D fields, and the results show
an improved performance of localization algorithms.

The main contributions of this paper can be summarized
as follows. First, an improved distance estimation method
based on ACD is reported. This uses the communication
radius of nodes to overcome the effect of heterogeneity

on distance measurements. Secondly, a faulty node filtering
method based on the consistency of ACD is reported. Third,
the reported fault filtering method is tested with various hop
based localization algorithms, and the obtained results show
an improved localization accuracy when tested in 2D and 3D,
isotropic and anisotropic fields.

This paper is structured as follows: Section II gives
an overview of the related work and the research gaps.
Section III contains the problem description and Section IV
describes the proposed fault filtering method. Section V con-
tains the analysis of the results and the paper is concluded in
Section VI.

II. RELATED WORKS
Several localization techniques have been proposed for WSN
which make use of distance measurements based on RSS,
TOA, AOA, hop lengths, etc., [11]. Among these, hop based
localization techniques have gained the interest of researchers
for their simplicity, ease of use, and reduced hardware
requirements. Researchers have reported several hop based
algorithms aimed at improving different practical problems
of WSN. Distance Vector Hop (DV-Hop) [21] is a classic hop
based algorithm that uses AHD and the hops between nodes
to evaluate the distance among them. The nodes are then
localized using the least squares method. Another framework
called DV-Hop based genetic algorithm is reported in [22] for
situations where few nodes become dead due to depletion of
battery with time. This requires the deployment of additional
nodes to fill the communication gap. The algorithm only esti-
mates the positions of newly deployed nodes with the help of
already localized nodes. Usually, in most cases, localization
is a onetime task. But, in scenarios such as landslides, nodes
get dislocated within the network. Reference [23] reported
a new DV-Hop framework with particle swarm optimization
to handle the scenario of node displacement. To improve
the positioning accuracy in the case of non-uniform deploy-
ment of nodes, an improved DV-Hop localization called
MMSDV-Hop is reported in [24]. These algorithms have been
developed by assuming homogeneous WSN.

But, in reality, sensor nodes can have different transmission
powers forming heterogeneous WSN. Heterogeneity affects
the hop lengths and localization accuracies. For localization
in HWSN, [25] reported an algorithm based on expected
hop progress for HWSN where all nodes’ communication
ranges are different. Here, an elliptical distance correction
method is proposed to calculate the distance between nodes
and uses the maximum likelihood estimation method to
compute the location information without increasing over-
head. Reference [26] reported Harris Hawks Optimization
based Area Minimization (HHO-AM) localization algorithm
to overcome the effects of heterogeneity and anisotropy. Here,
neighbors are classified as incoming and outgoing neigh-
bors, and the positions are estimated using the harris hawks
optimization method. Reference [27] reported expected hop
progress based analytical algorithm tailored for multi-hop
HWSN where nodes have different transmission capabilities.
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Most of the developed localization algorithms depend on
the accuracy of reference nodes [28], [29]. But, nodes are
prone to failures in harsh and unreliable environments. Faulty
nodes are likely to report arbitrary readings that do not
reflect the true state of environmental phenomena or events
under monitoring. Reference [30] reported a localization
error detection and correction algorithm for long thin WSN.
This algorithm utilizes RSSI and AOA information of radio
messages with neighbor nodes for relative estimation of loca-
tions. Then, by comparing the difference in location esti-
mation among neighbor nodes against an error threshold,
malicious nodes are identified. Reference [31] reported a
graph-mining based defect-localization approach called sen-
sor network defect localization. Here, the nodes are sorted
according to their suspiciousness from a database of routing
trees. Reference [32] reported a super cross-check algorithm
that allows location-unknown nodes to successfully detect
adversaries within their communication range. Here, after
location estimation using a range-based method, a cross-
check list containing a series of verification lists is exchanged
between neighbor nodes. The nodes sending cross-check list
with wrong information are identified as colluder nodes. Ref-
erence [33] reported another location discovery method that
tolerates faulty reference nodes based on consistency among
node signals. This is a range based method that makes use
of measurement signals such as RSS to estimate distances.
For fault tolerance in hop based localization methods, [16]
reported a hop based range-free localization algorithm devel-
oped to eliminate the effect of malicious reference nodes. The
outliers are removed based on the dynamic threshold obtained
via the Pauta criterion.

In the literature, there are only a very few fault-tolerant
algorithms that are applicable for hop based localization
algorithms. But, these methods have assumed homogeneous
network conditions. The algorithms have not been analyzed
in heterogeneous networks. In this work, we have reported a
fault filtering method for HWSN which can be incorporated
with any of the existing hop based methods for better local-
ization accuracies.

III. PROBLEM DESCRIPTION
A WSN of N sensor nodes denoted as N1,N2, . . . ,NN is
deployed randomly in the required field of interest. In this
network, let L be a small fraction of nodes which are
assumed to know their locations. This can be through GPS
receivers attached to them or manual placement of nodes
at predefined locations. They act as reference nodes. These
reference nodes are denoted byR1,R2, . . . ,RL and their loca-
tions are represented as (xR1, yR1, zR1), (xR2, yR2, zR2),. . . ,
(xRL , yRL , zRL). The other N-L nodes which are denoted as
UL+1,UL+2, . . . ,UN are unaware of their locations. The
localization algorithms can be used to estimate the locations
of unknown nodes, i.e., (xUi, yUi, zUi), where i = L + 1,L +
2, . . . ,N .
The deployed nodes in the network will have different

sensing as well as communication capabilities. Fig. 1 shows

FIGURE 1. Illustration of a HWSN.

an example of a HWSN with nodes of different communi-
cation capabilities. Here rc1, rc2 and rc3 are communication
radius of nodes N1,N2 and N3.
After the deployment, localization algorithms are executed

for location estimation. These algorithms make use of loca-
tions of reference nodes and the proximity of unknown nodes
to reference nodes. Proximity to nodes is measured using
RSSI, TOA, connectivity, etc., [34]. In hop based localization
algorithms, connectivity information among nodes is used
to measure the proximity to reference nodes. Here, initially,
every node identifies and stores the minimum hops required
to communicate with every reference node and the locations
of reference nodes in the network through the broadcast
mechanism. In the next stage, reference nodes measure the
AHD in the network. AHD for a reference node Ri is defined
as in (1).

AHDRi =

L∑
j=1

dRiRj

L∑
j=1

HRiRj

, j 6= i (1)

where dRiRj is the distance between nodesRi andRj, andHRiRj
is the minimum number of hops required by Ri to receive a
packet from Rj.

The measured AHD is then used to estimate the distance
between nodes which is further utilized by nodes to localize
themselves. This method works under the assumption that
hop distances are uniform throughout the network. But, in a
HWSN, as shown in Fig. 2, the hop distances vary due to
the different communication radii of nodes [25]. Assuming
uniform hop distance throughout the network will deteriorate
the localization accuracy substantially in a HWSN [35].

In addition to this, sometimes it is possible that few ref-
erence nodes report their locations incorrectly. This may be
because of hardware failures, manual errors or unexpected
movement of nodes. Erroneous locations reported by refer-
ence nodes affects the localization accuracy of algorithms.
For example, consider a reference node N1 which is at a
distance d from reference nodes N2 and N3. If both nodes N2
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FIGURE 2. Multihop communication in a HWSN.

FIGURE 3. WSN with a faulty node.

and N3 are at hop length 1 from N1, node N1 calculates AHD
as (d + d)/(1 + 1) = d . But, if N3 reports its location as N ′3
which is at distance 2d from N1, AHD is calculated wrongly
as (d + 2d)/(1+ 1) = 3d/2. This is illustrated in Fig. 3.

This error value of AHD is then used by all the location
unknown nodes to estimate distances to reference nodes.
The error gets propagated to further steps of the localization
process. To avoid this, nodes reporting faulty location values
need to be filtered out from localization. But, filtering out
only faulty nodes in a HWSNwhere hop distances vary due to
both heterogeneity of nodes and faulty nodes is a challenging
task.

IV. FAULT FILTERING ALGORITHM
To enhance the localization accuracy in erroneous situations,
we have developed a fault filtering method. This algorithm
works under the assumption that the maximum number of
faulty nodes is less than L/2. Here, first, the distance mea-
surement between nodes is improved by measuring the dis-
tance as a function of the communication radius of nodes. The
obtained distance measurements are then checked for consis-
tency using the Jenks Natural Breaks algorithm [20]. This is

an optimal data classification algorithm for one-dimensional
values that are not uniformly distributed. The classification
is achieved by minimizing the variance within classes and
maximizing the variance between classes. The nodes pro-
ducing inconsistent distance estimations are removed from
the localization process. The improved distance estimations
from genuine nodes are further used with various localization
algorithms. This fault filtering method is found to improve
the localization accuracy when used with various hop based
localization methods. The details of the algorithm are dis-
cussed here.
Step 1 - (Measurement of ACD) : The hop based dis-

tance estimations performed using minimum hop counts and
AHD suffer greatly in HWSN because of varying hop dis-
tances. Also, it becomes difficult to identify the nodes with
faulty locations producing inconsistent distance estimations
in such environments. In this step, instead of hop distances,
communication radius rc of nodes are considered. Nodes
are assumed to know their communication capability from
their transmission power. We have used log normal path loss
model to measure the communication radius of nodes. In this
algorithm, initially, reference nodes broadcast their location
and rc to the neighbor nodes. The neighbors will check if
the received reference node details are already stored. If it
is not stored, the neighbors store the received data, update the
received rc by adding their rc value and broadcast this to their
neighbors. If it is already stored, the newly received sum of rc
information is compared with the saved value and the saved
value is updated with the minimum value of the sum of rc.
This process is repeated till every node in the network has the
information on locations of reference nodes and theminimum
sum of rc required to reach them.
After this, reference nodes in the network measure the

ACD as a ratio of the distance between reference nodes and
the sum of rc between them. ACD for two reference nodes N1
and N2 is defined in (2).

ACDN1N2 =
dN1N2

rcN1N2
(2)

where rcN1N2 is the sum of rc stored in node N1.
This step is illustrated with an example. Consider a WSN

with reference nodes R1,R2, . . . ,R10 and other unknown
nodes U1,U2, . . . ,U100. Let their communication radius
be rcR1, rcR2, . . . , rcR10, and rcU1, rcU2, . . . , rcU100 respec-
tively. Locations of reference nodes are (xR1, yR1, zR1),
(xR2, yR2, zR2), . . . , (xR10, yR10, zR10) which are already
known. To estimate the locations of unknown nodes,
i.e., (xU1, yU1, zU1), (xU2, yU2, zU2), . . . , (xU100, yU100,

zU100), their distances to reference nodes need to be
measured.

For this, every reference node Ri, i = 1, . . . , 10 broad-
casts its location information and communication radius to
the neighbor nodes. The neighbor nodes store the received
information, add their rc values to the received rc values, and
broadcast them again to their neighbors. This is repeated until
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FIGURE 4. Multipath communication.

the information on the location of reference nodes and the
minimum sum of rc in the path reaches every node.
Suppose R2 can send a packet to R1 through multiple paths

which are R2−R3−U11−U10−R1, R2−U1−U2−R1,
R2 − U1 − U5 − R1, as illustrated in Fig. 4. The shortest
path from R2 to R1 is identified by comparing the received
rc values. If minimum among rcR2 + rcR3 + rcU11 + rcU10,
rcR2 + rcU1 + rcU2 and rcR2 + rcU1 + rcU5 is rcR2 + rcU1 +

rcU2, then the shortest path from R2 to R1 is identified as
R2− U1− U2− R1.

Similarly, the shortest paths from nodes R3,R4, . . . ,R10
to R1 are found to be,

R3− U3− U4− U5− R1

R4− U10− R1

.

.

.

R10− U93− U84− U75− R1

R1 stores the below information.

(xR2, yR2, zR2) and rcR2 + rcU1 + rcU2

(xR3, yR3, zR3) and rcR3 + rcU3 + rcU4 + rcU5

.

.

.

(xR10, yR10, zR10) and rcR10 + rcU93 + rcU84 + rcU75

After this, ACD is calculated by making use of the known
locations of reference nodes. ACD for R1 is calculated as
follows.

ACDR1R2 =

√
((xR1−xR2)2+(yR1−yR2)2+(zR1−zR2)2)

rcR2+rcU1+rcU2

ACDR1R3 =

√
((xR1−xR3)2+(yR1−yR3)2+(zR1−zR3)2)

rcR3+rcU3+rcU4+rcU5
.

.

.

ACDR1R10=

√
((xR1−xR10)2+(yR1−yR10)2+(zR1−zR10)2)

rcR10+rcU93+rcU84+rcU75

Similarly, ACD at every other reference node is measured.

Step 2 - (Consistency Check): In this step, the previously
obtained ACD values are analyzed to identify faulty nodes.
Since ACD values give a measure of the distance per unit
communication radius of nodes, they are not affected by the
heterogeneity of the network. The measured ACD values will
be uniform at any given node. But, if there exists any node
in the network with faulty location information, this data
gets propagated to other nodes in the network. In such cases,
the measured ACD value for this node will deviate from other
ACD values in the network.

From the previous example discussed in Step 1, if node R2
reports its location wrongly as R2′ = (x ′R2, y

′

R2, z
′

R2), ACD at
R1 is measured as,

ACDR1R2′ =

√
((xR1−xR2′ )2+(yR1−yR2′ )2+(zR1−zR2′ )2)

rcR2+rcU1+rcU2

ACDR1R3 =

√
((xR1−xR3)2+(yR1−yR3)2+(zR1−zR3)2)

rcR3+rcU3+rcU4+rcU5
.

.

.

ACDR1R10=

√
((xR1−xR10)2+(yR1−yR10)2+(zR1−zR10)2)

rcR10+rcU93+rcU84+rcU75

The measured ACDR1R2′ will deviate from the rest of ACD
values, ACDR1R3, ACDR1R4, . . . , ACDR1R10.

The inconsistencies among the obtained ACD values are
identified using a clustering method called Jenks Natural
Breaks algorithm [19]. This algorithm is more suitable for
univariate data and finds the best way to categorize the values.
This is achieved by searching for the minimum distance
between data points and centers of clusters they belong to
and maximizing the difference between cluster centers. The
algorithm is executed at every reference node. The inputs to
the algorithm are the list of measured ACD values and consis-
tency threshold. The consistency threshold is set as a smaller
value in ideal network scenarios and in networks affected by
noise and irregularities, a larger value is considered. If the
difference in the maximum and minimum value of ACD at a
reference node exceeds the defined threshold value, the ACD
list is considered to be inconsistent. For inconsistent data,
the Jenks Natural Breaks algorithm is applied.

In the first part of this algorithm, ACD values are sorted in
ascending order and the Sum of Squared Deviations (SSD)
for ACD values is calculated. SSD for node R1 is defined
in (3).

SSDR1 = (ACDR1R2 − ACDR1mean)2

+ (ACDR1R3 − ACDR1mean)2 + . . . (3)

where ACDR1mean is the mean of measured ACD values at
node R1.

In the next part, ACD values are classified into two groups
with classification index incrementing from 1 to (number of
ACDvalues-1). For classification index i, Group1 isACDR1R2
to ACDR1Ri+1 and Group2 is ACDR1Ri+2 to ACDR1R10. For
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every combination of classification, the Sum of squared Class
Deviation (SCD) for class means is calculated as in (4).

SCDR1i = (ACDR1R2 − ACDGmean1)2

+ · · · + (ACDR1Ri+1 − ACDGmean1)2

+(ACDR1Ri+2 − ACDGmean2)2

+ · · · + (ACDR1R10 − ACDGmean2)2 (4)

where ACDGmean1 and ACDGmean2 are class means for
Group1 and Group2.
Next, the goodness of variance fit (GF) is measured as,

GF(i) = (SSDR1 − SCDR1i )/SSDR1 (5)

The value with the highest GF gives the best classification.
From the obtained two groups with the highest GF, the group
with the highest entries is chosen as the consistent group and
the nodes corresponding to these are marked as consistent
nodes with a value of 1.

The steps are discussed in Algorithm 1.

Algorithm 1 Clustering of ACD Values Using Jenks Natural
Breaks algorithm

Input: List of ACD values, consistency threshold.
Output: Consistent ACD values.
1. While (ACDmax - ACDmin) > consistency threshold.
2. Sort ACD values.
3. Jenks Step1:
4. Find ACDmean, which is mean of ACD
5. Find sum of squared deviation SSD as shown in

(3)
6. Jenks Step2:
7. For i = 1 to (number of ACD values − 1)
8. Classify ACD into two groups ; (1 : ACDi)

and (ACDi+1 : ACDend )
9. Find class mean for Group1 and Group2,

ACDGmean1 and ACDGmean2
10. Find SCDi from (4)
11. Find GF(i) from (5)
12. End for
13. The value with highest GF is the best

classification and i is the classification index
14. Retain cluster with majority of values
15. End While

The reference nodes broadcast the consistency values and
the average of ACDvalues obtained from consistent reference
nodes. After receiving this, every unknown node will add
the received consistency values from every reference node.
Only the reference nodes with higher consistency values are
utilized in the localization process. The distance to these
reference nodes is estimated as shown in (6).

d̃UxRx = ACDavgRx × rcUxRx (6)

where ACDavgRx is the average of ACD values at node Rx
and rcUxRx is the sum of rc values received from reference
node Rx at unknown node Ux.

Various localization algorithms can use the obtained dis-
tance estimation to consistent reference nodes for the local-
ization of unknown nodes.

V. RESULTS AND ANALYSIS
In this section, the performance of various localization algo-
rithms such as traditional DV-Hop algorithm [21], the recent
Weighted DV-Hop [36] and HHO-AM [26] are evaluated
with and without fault filtering method under various error
scenarios. For this, multiple WSN are simulated by the ran-
dom deployment of location unknown sensor and reference
nodes in various 2D and 3D, isotropic and anisotropic fields
as shown in Fig. 5. Various types of deployment fields are
chosen to eliminate the impact of field properties on the
behavior of the algorithm. The path loss factor in these fields
is assumed to be 4 [37]. Sensor nodes are heterogeneous with
the transmission powers varying from −5dBm to −15dBm.
Tests are conducted at various node densities.

Performance of the proposed algorithm is assessed by Root
Mean Square Error (RMSE) [38]. RMSE is defined as,

RMSE =

√√√√√ n∑
i=1

(̃xi − xi)2 + (̃yi − yi)2 + (̃zi − zi)2

n
(7)

where (xi, yi, zi) is the actual node location, (̃xi, ỹi, z̃i) is the
measured node location and n is the number of localized
nodes.

A. INFLUENCE OF FAULTY NODES
Here, the impact of faulty nodes on various localization algo-
rithms and the effectiveness of the fault filtering method in
such scenarios is evaluated. A set of 500 sensor nodes and
50 reference nodes are deployed in a square shaped field
as shown in Fig. 6. Node density is maintained at 0.01/m2

and the reference node ratio is at 10%. The o shaped nodes
are location unknown nodes and X shaped nodes are refer-
ence nodes. Localization algorithms estimate the locations
of unknown nodes by making use of locations of few refer-
ence nodes. Sometimes few reference nodes report erroneous
locations. In Fig. 6, four reference nodes have reported their
locations wrongly. The lines indicate the errors in the reported
locations of these nodes.

The nodes are then localized using HHO-AM and
HHO-AM with the fault filtering method. Fig. 7 shows
the estimated locations of unknown nodes and the error in
estimation using HHO-AM and HHO-AM with the fault
filtering method. The symbol o indicates the actual loca-
tions of sensor nodes and the square symbols indicate the
estimated locations. The lines show the error in location
estimation. The localization errors are observed to be very
high in the HHO-AM algorithm with RMSE of 69.3m as
in Fig. 7a. But, by incorporating the fault filtering method to
HHO-AM, localization errors were reduced drastically with
RMSE of 13.5m, which is shown in Fig. 7b.

Next, the influence of faulty reference nodes on three dif-
ferent hop based algorithms is evaluated here. The algorithms
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FIGURE 5. Deployment of nodes in (a) square shaped field (b) C shaped field (c) mountain terrain shaped field.

FIGURE 6. Deployment of nodes with errors in locations.

are then updated with the fault filtering method and the local-
ization results are analyzed. The results are shown in Fig. 8.
An increase in faulty node percentage from 0% to 12%

reduced the accuracy of localization algorithms drastically
in all three fields. Even though Weighted DV-Hop and
HHO-AM algorithms performed better than DV-Hop at 0%
faulty nodes, their performance deteriorated rapidly with an
increase in faulty nodes. But, the fault filtering method was
able to filter out faulty nodes effectively in all types of fields
and this improved the localization results. An improvement
of 14%, 52%, and 51% in localization accuracy was observed
with DV-Hop, Weighted DV-Hop, and HHO-AM algorithms
respectively.

B. INFLUENCE OF VARYING NODE DENSITY
The reported algorithm is evaluated at varying node and
reference node densities. Sensor node densities are varied
from 0.01/m2 to 0.02/m2 in square and C shaped fields. The
reference node ratio is set at 10% of node density. Around
10% of the reference nodes are assumed to be reporting faulty
locations. Sensor nodes when localized in such scenarios
using the DV-Hop algorithm, an average RMSE of 21m
was observed. But, after using the fault filtering method
with the DV-Hop algorithm average RMSE was reduced
to 10m. The fault filtering method resulted in an improve-
ment of 50% RMSE in localization accuracy. This is shown
in Fig. 9.
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FIGURE 7. Localization errors with (a) HHO-AM (b) HHO-AM with fault filtering.

FIGURE 8. Influence of faulty nodes on RMSE.

FIGURE 9. Comparison of localization results at varying node densities (a) 2D square field (b) 2D C
shaped field.

Next, the reference node density is varied by keeping
node density fixed. With the increase in reference nodes,
faulty node count also increases. When nodes are localized

using DV-Hop, an average RMSE of 21m was observed.
The fault filtering method with the DV-Hop algorithm was
able to filter the faulty nodes effectively and improve the
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FIGURE 10. Comparison of localization results at varying reference node densities (a) 2D square field
(b) 2D C shaped field.

localization accuracy by 45%. The results are illustrated
in Fig. 10.

C. ENERGY CONSUMPTION
Energy consumption depends on the communication over-
head generated in the network and the computational com-
plexity of the algorithm [39]. The fault filtering method
works in two parts. In the first part, reference nodes measure
ACD values. The complexity of this part is equivalent to
the process of obtaining AHD. Since, in hop based algo-
rithms, the original step of obtaining AHD is replaced by
ACD, this doesn’t add any additional overhead to the existing
algorithms. The second step of the algorithm is to identify
inconsistent ACD at the reference nodes using the Jenks
natural breaks algorithm. This step makes use of the obtained
data from step 1 and hence doesn’t add any communication
overhead. However, this requires additional computations and
the computational complexity of this is O(k × L2) where k
is the number of classes and L is the number of reference
nodes which is a small fraction compared to the overall count
of sensor nodes N. Also, since Jenks algorithm is executed
only in the reference nodes, additional computation overhead
is added only to the reference nodes. If O(L) is the compu-
tational complexity of DV-Hop algorithm, by incorporating
the fault filtering method, the computational complexity at
reference nodes will beO(L)+O(k×L2). The computational
complexity at sensor nodes will remain to be O(L).

VI. CONCLUSION
Localization algorithms are developed to estimate the loca-
tions of randomly distributed nodes in the required fields of
interest. These algorithms use few location-aware nodes, and
the positions of other nodes are estimated with reference to
these nodes. But, in reality, sometimes few nodes can turn
faulty and report erroneous location information. This gets

propagated and results in inaccurate localization of the entire
network. The problem becomes more challenging in HWSN
because of varying hop distances. To improve the accuracy of
localization algorithms in such scenarios, we have reported
a fault filtering method. This method can be integrated with
other existing localization algorithms to identify and filter out
faulty nodes and make the localization process fault-tolerant.
The reported method has been tested with many localization
algorithms at various error ratios and node densities in 2D and
3D fields. Simulation results show an improvement of 14% to
52% in RMSE values when tested in error scenarios.
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