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ABSTRACT Modern Information and Communication Technology (ICT)-based applications utilize current
technological advancements for purposes of streaming data, as a way of adapting to the ever-changing
technological landscape. Such efforts require providing accurate, meaningful, and trustworthy output from
the streaming sensors particularly during dynamic virtual sensing. However, to ensure that the sensing
ecosystem is devoid of any sensor threats or active attacks, it is paramount to implement secure real-time
strategies. Fundamentally, real-time detection of adversarial attacks/instances during the User Feedback
Process (UFP) is the key to forecasting potential attacks in active learning. Also, according to existing
literature, there lacks a comprehensive study that has a focus on adversarial detection from an active
machine learning perspective at the time of writing this paper. Therefore, the authors posit the importance of
detecting adversarial attacks in active learning strategy. Attack in the context of this paper through a UFP-
Threat driven model has been presented as any action that exerts an alteration to the learning system or
data. To achieve this, the study employed ambient data collected from a smart environment human activity
recognition from (Continuous Ambient Sensors Dataset, CASA) with fully labeled connections, where we
intentionally subject the Dataset to wrong labels as a targeted/manipulative attack (by a malevolent labeler)
in the UFP, with an assumption that the user-labels were connected to unique identities. While the dataset’s
focus is to classify tasks and predict activities, our study gives a focus on active adversarial strategies from
an information security point of view. Furthermore, the strategies for modeling threats have been presented
using the Meta Attack Language (MAL) compiler for purposes adversarial detection. The findings from
the experiments conducted have shown that real-time adversarial identification and profiling during the UFP
could significantly increase the accuracy during the learning process with a high degree of certainty and paves
the way towards an automated adversarial detection and profiling approaches on the Internet of Cognitive
Things (ICoT).

INDEX TERMS Adversarial detection, user-feedback-process, active machine learning, monitoring indus-
trial feedback.

I. INTRODUCTION
While many Internet-of-Things (IoT) technologies are apply-
ing Machine Learning (ML) in implementing security solu-
tions, it has become apparent that most sophisticated attacks
are propagated against machine learning-based systems [1].

The associate editor coordinating the review of this manuscript and
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Furthermore, most of the IoT infrastructure-based attacks
succeed as a result of varying adversary intentions and expec-
tations. Targeted or manipulative attacks where a ML model
may be deliberately tuned to take in altered training sets,
inputs, and to provide false output are particular examples
how these adversarial attacks are propagated. While tar-
geted attacks are assumed to be deliberate or intentional in
nature [2], it is imperative to note that the success of targeted
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attacks is mainly dependent on the threat and vulnerability
surface of the machine learning model, IoT infrastructure,
or the nature of the attack.

Even though it is important to ensure that a machine
learning model’s accuracy is maintained or achieved during
classification, there is also a possibility of having malicious
content in form of adversaries (targeted, unintentional etc),
that can influence the outcome of machine learning systems
during active learning. This, is owing to the fact that, there
are instances an oracle/human agent may be needed to pro-
vide expert labels. Hence, it becomes important to priori-
tize the probabilities of an oracle/human agent exacerbating
malicious content [3], or having reluctant fallible users [4]
based on existing vulnerabilities. As a result, vulnerabilities
may easily be used by an adversary to intentionally obstruct
the learning process, which may result to an interference
with the output’s accuracy. Obscurity, among other targeted
attacks in the author’s perspective, could occur during the
User-Feedback Process (UFP) through an active learning
strategy, for example, where a Dynamic Intelligent Virtual
Sensor (DIVS) is deployed. In this context, DIVS is presented
as a virtual sensor within a heterogeneous environment that
consists of an abstraction layer that overlays the physical
infrastructure [5].

During the UFP (See Fig. 1), the user/oracle/human agent’s
behavior being queried during continued learning may dif-
fer based on their perceived intentions or motives. In some
circumstances these intentions could either be deliberate
or unintentional. Deliberate intentions sometimes may be
assessed in situations where an oracle/ human agent may be
a malicious labeler or a normal uncoordinated attack by an
adversary. The prevalence of adversarial attacks inML, in this
context, presents a significant challenge that is worth explor-
ing. Also, based on the ever-rising complexity of attacks
and integration to real world applications, there is need,
from an information security standpoint to realise desirable
approaches that can defend the learning system against the
varying intentions of a potential attacker. An attacker, in the
context of this study has been used to portray any human
profile or agent that interacts with the system—with the sole
aim of altering the learning system or data particularly during
UFP. We argue that characterizing the identities and actions
of potential attackers or IoT devices during the process of
continued learning is a viable step towards the creation of a
suitable threat model that can be used to develop automated
adversarial detection and profiling approaches.

As a step towards identifying baseline attacks that
can succeed in this context, we have identified a gen-
eral knowledge-base adversary tactics based on MITRE
ATT&CK, which have also been used as a foundation for
detecting adversarial attack points. Notably, from a prelim-
inary perspective, we coin the term Generic Induced Attacks
(GIA) that has relevance to potential attacks that emanates
from unique identities, which also forms the generic or funda-
mental attacks from the documented novel CAPEC/MITRE
ATT&CK matrices. CAPEC/ MITRE ATT&CK matrices are

presented as standard adversarial attacks that can prevail
in any vulnerable environment. From these generic attacks,
we map the GIA’s behavior to the UFP threat model [6]
in order to identify different assumptions that are modeled
as a step towards the detection of potential security goals
violations in the perspective of secure online learning. These
assumptions could easily be exploited by an adversary, which
plays a vital role in threat and attack detection.

Therefore, this paper sets a precedence in exploring hurdles
that exist due to the presence of adversarial active attacks
on the ML model (with a focus on interactive and online
learning), specifically during theUFP.We have countered this
by employing (Human activity recognition from continuous
ambient sensors Dataset, CASA) with fully labeled connec-
tions by intentionally falsifying the labels as a targeted/ma-
nipulative attack.

Furthermore, we have employed nineML algorithms in our
experiments to aid in detecting potential attacks, this has been
evaluated before the attack, after the attack and also during the
attack with interactive learning, UFP. It is important to note
that nine ML algorithms have been used to check the influ-
ence that an attack can have during active learning strategy
and to also show the performance of various classifiers. In the
long run, we aim to investigate whether a ML model can be
improved in a fashion that it allows secure learning. Notably,
we assess situations that can allow compromise-where a ML
model can be subjected to exacerbate potential vulnerabilities
based on the existing general adversarial tactics (MITRE
ATT&CK) in active learning. By identifying this, it would
ultimately guarantee secure learning for a ML algorithm
during UFP.

The remainder of this paper is organized as follows:
Section II briefly presents the Background and Related Lit-
erature followed by Adversarial Detection Approaches in
Section III. Section IV presents Modeling Attacks in UFP
Process alongside the threat modeling. Experimental evalu-
ations are presented in Section V while comparative analysis
is presented in Section VII. We conclude and make mention
of the future research work in Section VIII.

II. BACKGROUND AND RELATED LITERATURE
A. UFP THREAT MODEL
The UFP relates to a querying strategy in uncertain sam-
pling [8], where in active learning, an oracle or a human
agent is considered to be in the loop and the learning model
is able to query this oracle or a human agent to give labels.
Generally, active learning assumes that the DIVS is able to
expect some feedback when requested (precisely, when labels
are requested durng active learning), while there is continuous
interaction with other users [7], [9]. The important aspect
of the DIVS is that, it is able to adjust based on the chang-
ing nature of IoT environment. For example, during online
learning, there is need for the DIVS to query the user/oracle
during data labeling in a UFP as is shown in Figure 1, in the
DIVS processing pipeline [7], [9]. We make assumptions
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FIGURE 1. DIVS processing pipeline [7].

that for a case of multiple oracles, they may posses unique
identities which gives labels to the learning model. Fur-
thermore, the UFP-TM has been modeled to assume that
an adversary’s attempt are basically aimed to capitalize on
the non-robustness of machine learning algorithms through
targeted attacks (Logical and physical), thus leading to the
assumption that, there always may exist a vulnerability that
can be exploited. Based on this premise, we argue from this
context that, it is possible for a trained classifier, C to be
able to correctly classify an instance x ∈ X , where the actual
goal of an adversary is to influence the classifier to classify
an instance x ′ ∈ X wrongly based on a vulnerability, as a
targeted attack as (x ′ ∈ X )′–> oracle. From this perspec-
tive, deliberate false labels injection to the DIVS could, for
example, be an aspect that interferes with online learning.
Consequently, while existing researches mainly have a focus
on howmachine learning models can be fooled, the UFP-TM,
from an information security stand point assumes based on
classification (object , activity) in a setting, and restrictions
can prevent the human oracle/agent that poses as an adversary
from manipulations.

That notwithstanding, it is essential to anticipate poten-
tial attacks on DIVS and to identify respective countermea-
sures on the DIVS. As a result, we explore the UFP Threat
Model (UFP-TM) [6], which mainly is focused on addressing
major security assumptions in continued learning of theDIVS
which is shown in Figure 1. Basically, the DIVS utilizes
online strategies that allows a ML model to undergo training
by way of labelled instances in order to give the desired
output. Apart from that, the context of this study concentrates
on considering active learning [7], [9] strategies with the
involvement of a user/oracle that allows the DIVS to be
able to provide the user feedback, which together in this
study has been used to model the threat model [6]. The
UFP-TM address some security assumptions, which, may
hamper proper learning of the DIVS or the output when the
oracle/user that is queried by DIVS can, for instance, decide
to falsify or tamper with the labels based on streaming sensor
data or if the learning model itself is attacked. It is worth
noting that tampering can also be directed to the input data

when the model is learning or after the learning model has
been trained. Consequently, it is always important that there
is continued learning while the user is queried during the
UFP. Based on the UFP-TM [6], the author highlights the
threat assumptions in Table 1 that have been identified in the
buildup of the UFP threat model.

B. RELATED WORK
Machine Learning has made great strides in recent years,
with an impressive performance on many applications such
as real-time feedback analysis. Although ML systems can
be useful when deployed in an iterative supervised learning
realm, they are not perfect. Especially that most exciting
advances in ML require large-scale volumes of data, making
data labeling the new bottleneck. Hence, a new adaptive and
incremental learning algorithm and strategies that combine
concepts from the field of ML is required to improve the
quality of the classification model and decrease the complex-
ity of training instances. This learning strategy proactively
selects the subset of available examples to be labeled next
from a pool of yet unlabeled instances in what is called
active ML [10], [11]. This approach is well-motivated in
many modern ML problems, in particular, when labels are
complicated, time-consuming, or expensive to collect [12].
Also studies have highlighted continued research on activity
recognition techniques based on interactivemachine learning,
for example in dynamic sensor environment where streaming
data is able to be used to measure accuracy [9], [13], [14].

Aiming to optimize the active learning with semi-
supervised feature extraction, [15] proposed to tackle the
high-dimensional features’ problems by selecting the most
representative samples in the low-dimensional space. Their
study conduct sample selection and feature extraction recur-
sively at each iteration of the process to learn more accurate
models. Another effort to tackle the difficulties of data col-
lection in activity recognition pipelines is [16] that suggests
an activity recognition model using active learning. On the
other hand, the work in [17] assumes that the attacker can
access a subset of sensors in a white box set and maliciously
manipulate the controller’s commands to the actuators. In this
technical note, the effect of false data injection actuator
attacks was reported [18] in the face of the adversarial sen-
sor and actuator attacks that are time-varying and partial
asymptotic stability when the sensor and actuator attacks are
time-invariant. However, all previous studies did not con-
sider a typical UFP deployment architecture with adequate
in-depth analysis, as this study proposes for the streamed
sensor. Also, it is imperative to highlight that most literature
assumes that attacker’s knowledge precedes the attacks [19],
however, our assumptions for the adversary model based on
the UFP-TM [6] had Dolev-Yao model as a baseline, which
in numerous situations assumes the presence of adversarial
defences. Other research on adversarial detection and security
mechanism have been realised by [20] where blockchain has
been utilised to create computationally infeasible blocks to
prevent contaminating data during incremental training.
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TABLE 1. UFP threat model assumptions [6].

III. ADVERSARIAL DETECTION APPROACHES
This section gives approaches towards realizing adversarial
detection approaches. It mainly encompasses various funda-
mental techniques that can be used to detect adversarial attack
techniques during active ML process.

A. PROBLEM STATEMENT
Security during activity recognition in smart environments is
still a concern and this concern is incredibly genuine due to
the activities conducted by users, data, nature of devices, their
interoperability, and administration. The core problem that is
explored in the context of this paper is inclined on realizing
attacks exhibited during active ML, for example, in the case
of the UFP, a subprocess of the DIVS [7], [9]. It is possible
(during active learning) that the accuracy of the DIVS could
deliberately be influenced or induced by way of providing
false labels by an adversary during the UFP in order to tamper
with the input, training sets, and output. A significant disad-
vantage or challenge that may lead to a fall in the accuracy
or deterioration of the learning model, in this context, is if
a powerful targeted attack against the ML model succeeds.
Based on these shortcomings, it is imperative to identify,
profile adversaries at the same time limit adversarial motives
to ensure that in continued learning, the output generated by
the DIVS is reasonably accurate.

During the UFP, attacks can be initiated by an adversary
as targeted attacks or unintentionally giving a wrong set of
labels. In an intentional or targeted attack, the attacker may
use an existing service deliberately to target the learning
system by abusing or subverting the ML model’s expected
output. An unintentional attack may be a wrong label given
without knowledge, wrong input, bug, or failure that may
be witnessed either in the software’s sensors running the
model or the physical hardware. Attackers can quickly launch
an attack on the learning system using diverse approaches
to compromise the learning system to give false outputs.
Also, to detect adversarial patterns during active learn-
ing, it is paramount to understand the adversaries’ tech-
niques and motives during the adversarial attack. In this
context, an adversarial attack could either be exploitative
or manipulative attacks, and detecting this kind of attack
generally requires one to understand the different stages of

compromise, especially during the UFP, before the system
can fully be considered to be compromised or before a poten-
tial attack can be detected. It is worth noting that this needs
identification of behaviors of the learning system, how inputs
and labels are given to ascertain if an adversary’s activity at
any given time had an impact on the target system. While it
is essential to mention that adversarial attacks in the UFP are
regarded as targeted or unintentional attacks, it is also vital to
understand the stages that an adversary can use to attack the
system.

The authors have detailed several techniques that predomi-
nantly are aligned to the UFP-threat model and the identified
techniques mainly considers the following; the stages of UFP
compromise, Generic Induced Attacks (GIA), mapping GIA
with UFP threat model [6], constitutes of GIA and mapping
GIA to the UFP-Threat model, and general modeling of
attacks in theUFP during activeML. Each of these techniques
is explained further on.

B. PROBLEM FORMULATION
Based on the problem statement that has been presented on
the need for security techniques during activity recognition,
we present a problem formulation that is centered on adver-
sarial detection during an active learning strategy. We then
show how adversarial attacks are modeled in a UFP approach,
by basing the study on the UFP-TM (Table 1). It is important
to note that, to the best of the author’s knowledge the concept
of adversarial attack detection in active learning strategy in
the UFP holds entrancing novelty that is worth exploring and
as a result, the formulation of this problem is based on the
following generic preliminaries:

• We model adversarial attacks based on the GIA con-
stitutes that emanates from the UFP-TM, as unusual
attack propagation, At , Targeted Attacks, TGA, Tar-
geted Behavior, TGB Learning System degradation,
LSD, malicious intention, MALint , Malicious injection,
MALinj, Adversarial Obstruction, Advob and Integrity
Attacks, IntgAt .

• Additionally, we define an adversary driven attack repre-
sentation based on 4-tuples < β, δ, φ, ϕ > to represent
the security goals (CIA) based on the objective of this
research. We also denote the UFP-TM as a 5 tuple
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FIGURE 2. Taxonomy of UFP attacks.

< TM , β, δ, φ, ϕ > entity that represents an existence
of threat in a learning environment, E . This is based on
the existence of activity, object and output respectively.

• Finally, based on the presence of an activity, in a learning
environment, E , we then use assumptions of known
threats to illustrate the effects that the UFP-TM may
hold and how adversarial attacks are able to lead to
vulnerabilities.

C. STAGES OF UFP COMPROMISE: ADVERSARIAL VIEW
The stages for UFP compromise illustrate attack types that
an adversary launches, and then it sets a precedence that can
be explored based on the novel attacks mentioned in novel
CAPEC/MITRE ATT&CK matrices. The stages of potential
UFP compromise are shown as a taxonomy in Figure 2 that
highlights the intent that an adversary may have to target the
learning system that is launched over the attack vectors.

Attack types represent the dimensions used by an adversary
to achieve his adversarial goals or arrive at his destination.
In this context, the attack vector represents approaches or vul-
nerabilities that an adversary uses to gain access to the learn-
ing system. Notably, our study identifies misconfigurations,
gatekeeper takeover/control, or lack of sufficient authentica-
tion as a possible adversary vector of entry. We classify these
attacks as targeted (intentional) or unintentional attacks. This
classification is necessary to show how compromise may be
reached by an adversary. This only happens when a targeted
adversary deliberately compromises the security properties
of the learning system. A possible targeted attack may be
directed to the learning system, applications linked to the
system, the network, sensors, physical tampering, MLmodel,
training and test data, or the data being relayed, while unin-
tentional attacks come in many dimensions.

To defeat the role of detection, an adversary needs to
defeat the capability of the learning system. Doing so allows
the system to do a self-learning to detect or learn the
various malicious actions and anomalies. Using the novel
CAPEC/MITRE ATT&CK matrices it is important to map
and identify key or relevant attacks that affect the learning

TABLE 2. List of notations.

system that is labeled as Generic Induced Attacks (GIA) as
baselines, which are discussed next.

D. GENERIC INDUCED ATTACKS
We explore the common attacks that can be propagated within
a connected environment based on novel CAPEC/MITRE
ATT&CK matrices and the behavior of those attacks. Also,
we take a step further to explore attacks that quickly prevail
during continued ML approaches based on these attacks’
presence during continued learning. This has been presented
as Generic Induced Attacks (GIA), a term coined to depict
different attack behaviors exhibited by an attacker while the
system is learning. Contrary to how most attacks are propa-
gated on the threat and vulnerability landscapes, we take the
attacker’s skills into account as a major contributing factor.
Therefore, we can generate the GIA based on the classifica-
tions that have been highlighted by the novel CAPEC/MITRE
ATT&CK matrices.

In the context of the GIA, the authors are motivated
to use novel CAPEC/MITRE ATT&CK matrices, as these
approaches explicitly give a hierarchy of attack features that
are used when a vulnerable point is being exploited. By trying
to separate the adversarial activities to identify GIA for easy
assessment purposes, we have identified the GIA shown in
Table 3 based on the general recommendations by novel
CAPEC/MITRE ATT&CK matrices on basic attacks.

Consequently, we explore the GIA from the con-
text of the collected raw sensor data that may contain
unique identities, which, if falsified may make the labels
implausible-ultimately this may lead to a security violation
of tampering or manipulation. In this context, an adversary
can directly mislead the learning model through incorrect
input/output information during interactivemachine learning.

E. CONSTITUTES OF GIA AND UFP THREAT MODEL
The GIA representation in a typical attack pattern is given in
this section based on the mapping shown in Table 3. While it
is important to note that some of the attacks are advertently
actualized as a targeted attack, we also note that some may
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TABLE 3. GIA descriptions.

be unintentional. We rely on the fact that the sole aim of an
adversary is to challenge the system’s security, and as a result,
we provide insights that show how the vulnerable threat
landscape is [6]. Based on this shortcoming, an attacker may
easily invalidate most or all attack paths of the learning sys-
tem. Ultimately, while the severity of this adversarial action
is a general point of concern, care is given in this context
on identifying and estimating the likelihood of orchestrated
targeted attacks and their impact during active learning. The
descriptions of the notations that have been used in the paper
are provided as a summary based on Table 2. The discussion
on the constitutes as highlighted in Table 3 is given based on
the bullets that follow:

• Unlimited unusual attack propagation techniques can
come in form of sets, that may compromise the learning
system which shows that based on the assumptions from
the UFP-TM, it may lead to, for example, a number
of sensor instance attacks, At , which is represented as
follows:

At = {At1,At2 . . .Atn}; (1)

• A learning system may suffer degradation based on
the number of active attacks that are channeled either
intentionally or unintentionally through Learning Sys-
tem Degradation (LSD). While LSD could target both
hardware and software, the focus of our study mainly
targets the learning model. In this context the target is
channeled to the act falsifying labeling, flb or capturing
the gatekeeper node, GKC which is represented as is
shown in Equation 2:

LSD→ {Atno→ flb|GKC} (2)

• A Targeted Attack (TGA) can be detected based on the
behavior exhibited when the attack is directed to the
learning system. We present this as a Targeted Attack
Behavior (TAB) that is aimed at giving false labels, flb,
and this stems from repetitive behavior, which in this
context regarded as intentional (targeted) attack. These
are represented as follows:

TGA→ {TAB(Atno)→ {flb}} (3)

• Constant learning system manipulation is based on the
presence or influence of an adversary which eventually
tailors the system in a way that, it is able to give wrong
output, or attack training sets through service disruption
or alteration of the learning system. This is based on the
malicious intention,MALint , by an adversary, that delib-
erately manipulates the learning system to give Wrong
Output, WO, which is denoted as follows:

MALint → {flb→ WO} (4)

• Deliberate malware injection, MALinj during the UFP
is attributed to the malicious intention, MALint , of an
adversary which is advertently propagated in order to
create a negative impact to the system and this is rep-
resented as follows:

INJ → {Adv→ Dinj} (5)

• Adversarial obstruction, Advob, allows limiting of ser-
vices offered by the learning system and this is achieved
by disrupting the learning system, though, for example,
Denial of Service (DoS), in this context, the system’s
resources that queries the human agent/oracle/user for
the feedback, during the UFP may have its resources
depleted in a manner that allows the system to give an
adversary the desired output, which is represented as
follows:

Advob→ {DoS} (6)

• Information modification and tampering, TMP, is chan-
neled by integrity attacks and this is advertently prop-
agated based on direct attack to the data, in form of
manipulation which is represented as shown next

IntgAt → {TMP} (7)

By carefully analyzing the aforementioned GIA descrip-
tions, we are able to come upwith possible attack approaches,
and in order to refine it further for purposes of detection
and profiling approaches, the author maps the GIA, whose
selection has been based on the prevalence of the learning
system, i.e. DIVS, and the novel CAPEC/MITRE ATT&CK
matrices on basic attacks coupled with the potential UFP
threat Model [6].
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FIGURE 3. Mapping GIA to UFP threat model.

F. MAPPING GIA WITH UFP THREAT MODEL
The UFP threat model has been described as a culmination
of possibilities experienced due to the execution of the DIVS
service [5] to and from the oracle/user (presented in Figure 1).
Additionally, we managed to put an argument that an adver-
sary will be more interested in attacking the UFP, which in the
long run, may lead to inaccurate predictions. In return, this
calls the need for detecting potential attacks. Consequently,
the UFP threat model has also created several assumptions
that may be directed to DIVS. We map each of the GIA
against assumptions from the threat model, as is shown in
Figure 3.

From the mapping of (GIA and UFP assumptions), it is
important also to note that the descriptions have been used to
show adversarial motives and approaches that can be used to
conduct profiling. GIA1, for example has been mapped to the
sensor instance attack of the UFP threat model, while the use
of false labels from the UFP threat model has been mapped
to GIA2, GIA3, and GIA4, respectively. Next, tampering
and modification have been mapped to GIA7, while DoS is
mapped to GIA6. This process is followed by the malicious
intrusion that is mapped with GIA4 and GIA5 respectively.

IV. MODELING ATTACKS IN UFP PROCESS
Herein, a scheme that is used to align the UFP with possible
attacks is presented. Doing so is motivated by the need for
identifying weaknesses that conceptually may result from the
user’s activity, which are regarded to be targeted or uninten-
tional attacks in this context. We model this by providing the
fundamental representation of the attacks based on the UFP
threat model’s assumptions.

A. ATTACK REPRESENTATION
Based on the UFP threat model, we suggest that an adversary
is able to be detected based on the presence of the following
aspects; activity, object and output that are generated from
the learning environment. In this context, output has been
represented as a potential output from an oracle that has

FIGURE 4. Threat-driven technique for UFP.

unique identities that could be subject to deliberate manip-
ulation. Based on this premise, our choice of activity, object
and output is necessitated by the fact that these three aspects
give continuous interaction, as long as there is an activity and
object which may lead to a given output . Furthermore, this
is represented as a threat-driven technique that is shown in
Figure 4. In normal cases, therewould be no output without an
input, however, it is worth noting that in this context, output
is not categorically illustrated to have emanated from correct
or wrong input.

The threat-driven technique shown in Figure 4, categor-
ically relies on the activity, object and output parameters
as core aspects in the case of the UFP. Also, this technique
shows the circumstances under which adversarial activities
may prevail. This approach is divided into three parts namely
learning system labelled (1), security goals, labelled (2) and
output that is labelled (3). Based on the threat model that has
been illustrated throughout this paper, the threat mitigation
techniques should identify the measures that can wrongly
influence the output (3), which if not identified and enforced
may have a negative effect to the accuracy of the learning
system (1). It is worth noting, that, the failure to achieve the
security goals of Confidentiality, Integrity and Authenticity
(CIA), leads to existence of vulnerabilities that are easily
exploited by adversaries.

As a result, we give adversarial and threat centered def-
initions which helps the reader to comprehend the threat
formation and path and the need of preserving the security
system goals.
Definition 1 (Adversary-Driven Attack Model): is com-

posed of 4-tuples; <β, δ, φ, ϕ>. These tuples translates and
fits into the entire security goals that should be achieved
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during the UFP, including threat mitigation strategies, where
<β, δ, φ> are also actions of the CIA security goals, and φ
describes the threat mitigation approaches:

In this context, the concentration is on the security goals
that the learning system can achieve based on the activity,
object and output respectively. Basically, this definition is
dependent on all the possible adversarial attacks, because,
in essence the goals of the security model in such a context
is to achieve the 4-tuple, <β, δ, φ, ϕ> i.e. CIA together with
the mitigation strategies respectively. Threat in this definition
has been presented as any anomaly that is bound to have
or exercise a negative impact to any of the CIA security
goals, i.e., the actions that an adversary may use in order to
exploit the system. As a consequence, based on the aspect
of the learning system, we identify key areas of interest in
the UFP. The key interest is on the targeted (intentional)
attack that aims to deliberately manipulate the output of the
system through the GIA constitutes or other anomalies and
eventually this is regarded as a complex threat. As a result,
we provide a definition for the UFP threat model next.
Definition 2 (UFP-Threat Model): is comprised of five

tuples <TM , β, δ, φ, ϕ>, such that for any TM in <β, δ, φ, ϕ>
then a threat is said to exist in the security system:

Within the security system there exist objects and actions
that rely on those objects. For example, in this case, we repre-
sent activity as actions by the objects, in a smart environment
while we represent output as a result from a set of activities.
This implies that, to generate actions that represent the threat
model, there need to be at least a single action that may
have some negative impacts on the 4-tuple, <β, δ, φ, ϕ>. The
violation of these security goals is associated with attacks or
anomalies.

Based on (Def 1 andDef 2), we provide simple conceptual
formalisms that are centered on threats, vulnerabilities and
mitigation strategies and the presence of an adversary in
the learning environment. These formalisms still considers
the activity, object and output from a learning environment
and the notations that have been adjusted to fit the descrip-
tions that was previously highlighted in Table 2. The activity
denotes the actions by the object from a learning environment
(could be an ambient or smart environment) that specifically
represent the system. Also, object denotes the physical entity
that performs some kind of activity from which the sensors
are able to detect. While in most cases entities are attributed
to be physical, we hold the same assumption because the
aspect of having a user in between is associated to be human
agent/user or an oracle based on the suggestions of the DIVS
that is shown in Figure 1 of this article. We take importance
in understanding the learning environment and continued
interactions, which forms the basis of the actions that are
generated from the objects. This is owing to the fact that it
is the learning environment that ends up being susceptible to
threats that may influence the output.

We take the learning environment as E , and to prevent
an adversary actions the 4-tuple, <β + δ + φ + ϕ> which
is part of the security goals and mitigation strategies should

be achieved. We also take the representation of the learning
environment as R(E), which consist of activity and object
such that,

R(E) ≡ {< activity >,< object >} (8)

We assume that the presence of an activity in E takes a 1 or
a 0 otherwise assuming that all the factors are dependent of
the availability of an object . We let TM .R(E) to be a represen-
tation of the learning environment where a TM exist in R(E)
and the assumption is that a threat may exist that may lead
to targeted attacks. In this context, we represent TM .R(E)As
as a set of known threats or some form of assumptions based
on the availability of activities in E , which is expressed as
follows:

TM .R(E) ≡ {TM .R(E)As‖AS ∈ R(E)} (9)

This implies that the effect of TM in R(E) gives room to an
adversarial attack if the threats are able to lead to vulnerabil-
ities. By satisfying the 4-tuple, < β + δ+ φ + ϕ > we argue
that adversarial attacks may be prevented, an illustration is
given below.

R(E) =
{
1 TM .R(E)As =< β + δ + φ + ϕ >

0 TM .R(E)As 6=< β + δ + φ + ϕ >

}
(10)

This conceptualization leads to the identification of an
interaction among entities as is shown in Figure 4. In this
conceptualization, we note the interaction between different
entities that can influence the outcome of a learning system.
This interaction is based on the sensors sensing activities that
are generated by objects. Also, the threat model’s assump-
tions help in identifying the threatening threats that can help
to create a threat profile that can help in adversary identifica-
tion and profiling.

B. THREAT MODELLING TECHNIQUE
In this section, we introduce a specific cyber-threat modeling
as an attack simulation of the proposed adversary action
components in a data streaming architecture using the Meta
Attack Language (MAL) platform [21], [22]. MAL is a
domain-specific language for probabilistic threat modeling to
assess the cybersecurity of a system [23]. Figure 5 illustrates
two scenarios using UML diagrams of the system during
continued learning with andwithout the voting where in some
instances the classified data rests in the database. Hence,
we formalize the automated generation of attack graphs that
can be utilized to improve the overall system security.

Below, we present a MAL specification related to the
adversarial data streaming detection that composed of the
following assets: (i) a set of sensors at the edge of the net-
work, (ii) network, a representative entity of the data pipeline
and data allocation, (iii) DataBase that represents a NoSQL
MongoDB system, and the ML model.
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FIGURE 5. A comparison UML diagram of the secure and non-secure UFP architecture with the validation extension.

The collected data from the sensors at the edge of the
network have two paths. The first is heading from the network
to the ML model to be processed as an activity. Second, they
are forwarded to the database (MongoDB in our deployment
architecture) as storage capacity. Considering the attack steps,
the attacker intercepts the aggregated data in the data allo-
cation stage before reaching the ML model processing. This
step is represented in the network class and highlighted in red.
At the sensors class, compromise represents that the attacker
has gained control over the network. To reach a compromise,

both connect and authenticate must first be reached. Connect
represents the attacker’s establishment of contact with the
system.

If a compromise is reached, then all Software that is
executed by the compromised sensors (data stream) also
becomes compromised. Furthermore, the data sets stored in
the database become accessible. Finally, any connected net-
work becomes accessible for data allocation andmodification
by the attacker. As a validation measurement, we propose
the voting validation in Figure 5 (b) before proceeding to
the database. This validation step can be implemented as a
defense step of an attacker reading and manipulating the data.
Therefore, even if an attacker has access to data, it cannot be
fully compromised as it has to be validated first. This defense
(represented by # in Figure 5) assume boolean values to indi-
cate their status. If the voting validation is false, then, at the
time of instantiation, the dataset is marked as compromised.

V. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In this section, we investigate the performance of ML classi-
fiers in the wake of targeted/manipulate attacks in continued
learning.

1) DATASET
To evaluate and validate the proposed concept, we have con-
ducted our experiments using CASA dataset 1 that represent
the actual daily activity of the volunteers living in these
homes. Each dataset sample corresponds to specific activity
which has been captured, that is composed of 36 features
(as is shown in Table 4), which is linked to different sen-
sors (E.g PIR, door, temperature, and light switch sensors)
that are distributed over 30 different apartments. These sen-
sors are installed in a location throughout the apartments to
observe specific daily activities performed for example by
the residents. In total, we have around 42 different activ-
ities from all volunteers such as reading, working, eating,
sleeping, leaving the home,.etc. Moreover, CASA dataset

1https://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+from+Continuous+Ambient+Sensor+
Data
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contains 13956534 samples, and have been collected from
the selected apartments continuously in real-time while the
residents undertake their day-to-day duties during two month
time period [24]. In addition, CASA dataset has sensitive data
that can be used to monitor the elderly people’s health situ-
ation at their place. This makes this kind of data significant
enough to want to test the adverse effect of manipulations,
this explains its choice for this experiment.Moreover, the data
patterns have diverse features that could likely be susceptible
to attacks.

2) EXPERIMENTAL APPROACHES
We have made assumptions in our experiments that an adver-
sarial attack can occur based on a number of threat levels.
Based on that, the experiments have been conducted as a way
of providing the proof of the concept given the following
threat levels:
• Train a classifier without the attacker knowledge and
without any defense technique and generate a baseline
classifier

• Attack the input data by tampering with the labels
(Targeted actions, malevolent labeler or uncoordinated
attack)

• Apply interactive learning (UFP) and assess the perfor-
mance of the classifiers

• Assess the Attack severity while leveraging interactive
learning strategy, which based on the prevalence of
unique identities may enable swift generation of defense
and detection mechanism.

The CASA datset has been used to deploy our experiments
that are focused in addressing adversarial attacks by training
nine classifiers as follows: ExtraTrees, Random Forests, Bag-
ging, Decision Trees, K-Nearest Neigbor (KNN), Light gra-
dient boosting, Multi-layer perceptron, and Support Vector
Machine (SVM) using the algorithm shown next.

B. RESULTS
Our approach has been mainly to keep track of the targeted
attacks, specifically integrity attack on the classifiers and as
a result we have utilised the Attack Severity Metric(ASM) to
show instances where attacks prevail and the magnitude of
these attacks using Eq 11.

AS = 1−
Recall (after the attack)
Recall (before the attack)

(11)

Tables 6 and 11 has shown the baseline performance of
the classifiers when they are trained without any attack and
when an attack is directed to the input data respectively. From
these two tables, it is monitored that the accuracy of the
classifiers deteriorates drastically once an attack is directed to
the input data with amargin of 19% (Precision). However, the
precision, Recall, F1-score and Kappa indicators have been
used to measure the accuracy of the classifiers before and
after the attack on the labels. Given that this experiment is
aimed at providing proof of the concept on the influence of
targeted attacks to the learning model, the concentration has

Algorithm 1Mapping GIA With UFP Threat Model
Input: x1, x2, . . . xn, xi ∈ X
Output: y1, y2, . . . yn, yi ∈ Y
dataAggregation(X, N); X ′ = getData(N)
ML_Model=trainingML(Input X, Output Y)

Function InteractiveLearningProcess(SelectedSamples
X):

Y ′ =ML_Model.predict(X)
if X ′ in all N db are equals then

activeLearningProcess(X ′, Y ′)
else

dataAttacked(X ′, Y ′)
end if
New_X= Concat(X, X ′); New_Y= Concat(Y, Y ′)
New model: ML.retrain(New_X,New_Y)
ML_Model=trainingML(New_X,New_Y)
if Acc(New model) > Acc(Old model) then

Old model = New model
else

Old model = Old model
end if

Function dataAggregation(dataSample X, replicationNum-
ber N):

Store x→ DBN ,N ≥ 3
return True

Function trainingML(Input X, Output Y):
TrainedModel←ML.train(X,Y)
return TrainedModel

Function getData(NumberOfSamples N):
X ′← Select XN from all Dbs
return X ′

Function activeLearningProcess(Input X, Prediction Y):
foreach X do

y′i ← (xi → Oracle)
if yi == y′i then

continue
else

New labeled data y′i: update yi∀xi for ∀ Dbs
end if

end foreach
Function dataAttacked(Input X, Prediction Y):

(Match, Unmatch)← CountMatchedSamples(X)
if Match > Unmatch then

Select matched xi
activeLearningProcess(xi, yi)

else
discard unmatched xi samples
Continue

end if

mainly been on manipulative/integrity attack. The effect of
attack on each of the aforementioned classifier is shown in
Table 8, where the Attack Severity (AS) has been computed
using Recall indicator. To test the effect of the attack with
interactive learning, we employed UFP and as is projected in
Table 8 and Table 9 respectively, there is an improvement of
the accuracy on the classifiers. We have found out that when
interactive learning is applied across the classifiers, there
is significant improvement on the classifiers performance.
Notably, the experimental verification that is shown in Table 9
shows that to initiate defense techniques, one need to harden
incremental training techniques.

In analyzing the potentially existing vulnerabilities in the
context of the experiment that has been conducted in this
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TABLE 4. CASA dataset features characteristics.

TABLE 5. Baseline performance of the classifiers without any attacks.

TABLE 6. Classifiers performance after attacking the input data.

TABLE 7. Effects of the evasion attack on each classifier.

study, we have also explored and illustrated the potential
attacks that have a possibility of violating major security
goals (CIA), however, the main inclination of the study is
towards targeted (integrity) attacks assuming the oracle that
gives labels has unique identities. Generally, the objective
of this attack is to deliberately falsify the contents of the
dataset or actions that are being sensed in order to give
wrong input/output to the learning model. Consequently,
in the perspective of CASA dataset that has been utilised in
this experiment, this has been achieved by the deliberate or
unintentional falsification of dataset labels, or injection of
malicious content. While monitoring the effect of this attack,
a baseline performance of nine machine learning classifiers
has been portrayed in this experiment in Table 11 based on
Precision, Recall, F1-score and Kappa metrics respectively.
Based on the outcome of these metrics, the effects of a tar-
geted attack could, for example cause accuracy deterioration
of the learning model, particularly during the UFP.

TABLE 8. Classifiers performance after attacking the input data and
applying active learning.

TABLE 9. Evaluation of the countermeasure.

Tables (9-11) portrays various outputs that are based
on baseline performance of classifiers, performance after
attacks, effects of evasion attacks, attacks on input data
with active learning and evaluation of the countermeasures
respectively. From this experiment we compare the effects of
the performance metrics as a result of attacks, for instance,
we compare attacks to the input data (see Table 11) which
represents the baseline performance of the classifiers and
(see Table 6), that shows the classifier performance after
the attack. Based on Table 6 and 11, there is a deteriorat-
ing performances for ExtraTrees (0.9479 to 0.7558), Recall
(0.9478 to 0.5953), F1-Score (0.9474 to 0.5158) and Kappa
(92.802 % to 25.082%) respectively. As a result, compar-
ing the ExtraTree classifier, the Kappa metric portrays a
deterioration of 67.72% after the initial attack to the input
data. We observe that this deterioration has been consis-
tent but with varying margins for Random Forest, Bagging,
Decision Trees, K-Nearest Neighbor, Gradient Boosting and
Multi-layer Perceptron respectively. Alternatively, Gradient
Boosting and SVM classifiers have portrayed unique perfor-
mances for the precision metric. Consequently, several obser-
vations are noted from Table 8 with regard to evasion attack
on each classifier, which is based on the Attack Severity (AS)
using the Recall metric, before and after the attack. This,
has been used to portray instances and magnitudes of attack,
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FIGURE 6. Depicting the attack severity (AS) for the machine learning
classifiers with and without interactive learning.

which in this context if launched towards the input data.
Light gradient boosting andMulti-layer Perceptron portrays a
higher attack severity (0.7875 and 0.7935) respectively when
compared to other classifiers. Notably, the performance of
the ML classifiers have also been assessed after attacking
the input data, AS, while active learning strategy is being
applied (see Table 9). In this case, Bagging classifier performs
well as compared to other classifiers with a Kappa metric of
44.025% improvement, while Multi-layer Perceptron garners
the lowest improvement with 25.266%. These evaluations
have also been extrapolated as a countermeasure by showing
the percentage improvement in Table 9. On the same note,
Table 10 which show a replication of the findings from
Tables (9-11), precisely shows performances of all themetrics
against the classifiers with interactive learning while taking
into account the baseline performance. Overall, ExtraTrees
and Bagging emerges as the best based on Kappa classifier,
while multi-layer perceptron emerges as the lowest perform-
ing classifier when active learning is incorporated.

C. EVALUATION MEASURES
We have used AS and active learning strategy to evaluate
the behavior of the nine classifiers before the manipulative
attack and after the attack. In this context, while the role of
active learning is positioned to improve the classification,
our approach also considers instances when an oracle is
juxtaposed as a malevolent labeler (x ′ ∈ X )′–> oracle in
a potential attack. We have evaluated the performance of
the nine machine learning classifiers by measuring preci-
sion, Recall, F1-score and Kappa respectively with/without
interactive learning at the same time with/without adversarial
attack respectively. It is worth noting again that attack in the
context of this study has been represented in the perspective
of alteration/manipulation of labels which on the premise of
this paper is portrayed as a targeted attack whose nature can
violate integrity of data in a security perspective. Based on
the manipulative attack, we are able to assess the classifier’s
improvements with SVM showing the most improvement as
compared to the rest as is shown in Table 9.

FIGURE 7. Recall value for all machine learning algorithms based on.

Consequently, based on the experimental results, specif-
ically from the baseline performances that are shown in
Table 11, it is evident that one ML algorithm, ExtraTrees
has outperformed the rest both in Precision, Recall, F1-score
and Kappa, although RF and Bagging have a relatively
close-matching accuracy. Although the accuracy looks higher
prior to themanipulative/tampering attack, there seem to exist
slight decrease in the accuracy after the attack, which is an
indication that the influence of the correct labels affects the
accurate prediction of ML algorithms. Furthermore, it also
demonstrates the distinct role that a correct classification
can play toward threat detection. Additionally, the model-
ing of attack steps that previously was highlighted using
the Meta Attack Language is a significant step that could
play a significant role towards real-time detection of other
adversarial attacks in continued learning. In Table 8, we have
observed the Attack Severity for the Recall as a result of the
evasive attack on each of the classifier while after applying
active learning strategy, there also seem to exist variations
for precision, Recall, F1-score and Kappa as is shown in
Table 9. Attack severity based on the experiments conducted
when interactive learning is used and when it is not used
has been shown in Figure 6 and the improvement has been
factored in Figure 7, whereas a computation of baseline
performance, classifier performance after attacking the input,
evasion attacks on classifiers and evaluation before and after
the attack is shown in Figure 5.

We can arrive at a number of conclusions based on
the results exhibited by these experiments: Firstly, our
approaches are more suitable for learning models leveraging
virtual sensors, whichmakes it suitable for security violations
detection mechanisms, which also could lead to development
of defense mechanisms. Also, by utilising the CASA dataset,
our evaluations shows that the outcome could still be applied
in a real-time detection approaches when dealing with attacks
that are confined with unique identities. Nevertheless, the
accuracy portrayed by diverse ML algorithms indicates that
adversarial attacks can emanate from the training sets, the
learning model-in instances where classifiers can be fooled
and the physical surrounding, however, this study is more
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TABLE 10. Evaluation of the algorithms based on active learning and compared it with the baseline performance.

focused on the influence/detection of the adversarial attacks
have in continued learning.

From the perspective of validation, our approach provides
a more effective technique in the context of active learning
strategy in the UFP.More so, from the conducted experiments
and the generated results, it is worth noting that the study
can easily be generalized to fit in smart ecosystems. This,
is owing to the fact that, the study employed nine algorithms
that allowed the authors to conduct extensive experiments,
which have also been used to validate the effects of adver-
saries and data manipulation/attacks in an ambient environ-
ment in continued active learning. These activities in a smart
environment that utilizes CASA dataset were intentionally
selected for this study so as in the long run its performance
and outcome can be evaluated. As a result, the performance of
our approach has duly been evaluated given that each of the
nine algorithm-from a competition has diverse and varying
output with best and worst performing. Furthermore, valida-
tion could also be deduced based on the variations on original
data and attacked data, where this has been used to check
the accuracy based on normal vs attacked data. Furthermore,
a comparative study has also been drawn based on relevant
studies to consolidate on the choice of the current proposition.
Ultimately, the experiments that have been drawn from our
study has portrayed that while leveraging active learning
strategy, our approach is more effective.

Apart from that, it is important for a user of the machine
learning model to be able to identify malicious activities
due to how current attacks have been diversified. In order to
illustrate the type of attacks that our approach realizes, our
study has modeled the assumption that-the attacker or the
malevolent labeler can be able to predict/estimate that in con-
tinued learning-instances of data are randomly or specifically
generated, however, this could be a case when the attacker has
prior know-how of the benign or the learning model, given
that this knowledge may precede the attacks. As a result,
this attacker has a probability of performing a sequence of
malicious activities, potentially to the data or to the learning
system. In that context, our study has been positioned to be
able to detect active learning attacks, that is termed in this
context as a ‘malevolent labeler‘. This has been shown in the
variations before and after the attacks on the classifiers shown
in Table 10.

VI. COMPARATIVE ANALYSIS
In this section, we give selected pertinent examples that
show adversarial threats/attacks, observations and defenses
to machine learning while using active adversarial learning
(proposed) as a baseline as is shown in Table 11. Firstly,
researchers in [1], [25], [26] uses a supervised classification
problem with the aim of identifying the need for secure
machine learning based on adversarial decision making.
These authors are able to identify a number of adversar-
ial attacks; ranging from signature manipulations, allergy
attacks, where active agents can easily be used for DoS
attacks. Also this has been seen in instances where adver-
saries are able to build false labels in order to prevent the
generation of accurate classifiers in order to propagate a
technique through which an adversary can easily obstructs
learning through delusive learning. Important to note is that,
obstruction is a core attack that has been highlighted as a
GIA under MITRE/CAPEC attack matrix in the context of
this paper. Defense techniques for these adversarial attacks
include keeping the corpus up to data and setting lower
thresholds for false positives in new signatures in order to
identify bogus traffic. Next, research by [27], [28] articulates
SpamBayes learning method that shows how an adversary
is able to exploit statistical machine learning vulnerabilities
by identifying dictionary attacks where the SpamBayes is
rendered useless. Also, an adversary can easily and inten-
tionally prevent victims from receiving email messages, for
example, for a competitive bid in order to have an advantage
over others. Defense mechanisms adopted for this approach
include the RONI defense that is able to test the perfor-
mance difference with the victim’s email. Another adver-
sarial approach is the Valiant’s model of machine learning
in [27] through which adversarial learning is done from
errors. Through this model, a classification error is identified
over which an adversary is able to have control over a fraction
of the sets that are being trained and learning is able to
be achieved in the presence of noise or the errors that are
created by an adversary. In this attack, there is need for a
canonical algorithm that is able to cope with the presence of
these malicious errors. An attack algorithm that is responsible
for misclassification is identified as an adversarial attack in
a three-dimensional classification based on learning styles
in [28], where, these attacks are still considered to have no
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TABLE 11. Comparison of different adversarial attacks and defenses.

specific defenses. A particular focus on an analytical model
that gives lower bound on attacker’s work function by iden-
tifying if a machine learning approach can be a target of
an attack by a malicious adversary has identified causative
attacks that are channeled to do alterations of the training
techniques by way of influencing the training data. Through
this, a number of security attacks are identified like integrity
attacks, intrusion and availability attacks, and attacks on
online learners by shaping changes based on how prediction
is done [29].

Defenses that have been identified in this context include
the statistical techniques of information hiding to counter the
causative attacks. Other pertinent research is the game theo-
retical model for adversarial learning in [30], [31] that con-
siders amodel of interaction between an adversary (spammer)
and a data miner in an optimization problem. In this learning
attack, the spammer is able to attack the classifier by way of
modifying emails in order to maintain the status quo in order
to have some desired outputs. No specific defenses are iden-
tified in this context given that the spammer and data miner
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can reach an equilibriumwhen they seem to be playing at their
best strategy at the same time. Other relevant attacks include
the general adversarial attacks focused in machine and deep
learning [32], whose main focus is to identify adversarial
security and perturbation attacks in machine learning on the
training and testing sets. In this context, the authors have
identified causative attacks that are able to target the training
process and exploratory attacks that is able to target the sets
after training. The other focus includes security violations
(integrity attacks, availability attacks and privacy violations).
Lastly, it is an anomaly-based intrusion system in [33] that
is able to show the weakness in anomaly-based intrusions.
In this approach an adversary is able to escape intrusion detec-
tion systems by way of crafting various offensive techniques
that can easily blind the anomaly-based intrusion detector
while other common attacks are on progress. Defenses for this
can of attack can be controlled bymanifesting this attack from
the area of clarity to the area of detecting anomaly blindness.

Based on the comparative analyses that has been shown
in Table 11, it is important to note that, while the selected
studies are relevant, there exist limitations on leveraging
active learning strategy in the context of adversarial detection
in the user-feedback process as is portrayed in this paper.
The relevance in these analysis in Table 11 is that, these
studies also explicitly outlines important strategies that could
be integrated in futuristic adversarial attack detection models

VII. CONCLUSION AND FUTURE WORK
In this paper, we have elucidated diverse approaches that
illustrate potential adversarial issues based on the initially
suggested DIVS threat model. We have provided subsequent
experiments by inclining the experiments on manipulative
attacks to provide proof and observe the behavior of the
trained classifiers before and after this attack. Results that
have been portrayed in this paper have set a precedent for
future work, where we will construct a real-time attack
detection mechanism in continued learning as a step towards
generating defense techniques from an information security
standpoint.

The novelty of this work lies in the adversarial and threat
detection approaches in continued learning while leveraging
active learning. As a result, this work could still be extended
in the following directions: Providing threat alerts that can
enable cyber-response strategies in continued learning and
also threat prediction strategies in continued learning. Since
our suspicions are mainly on potential intrusions, we plan to
utilize a Honeypot Dataset that has intrusion type attacks.

Future work aims to be able to develop specific attack
techniques for active adversarial active learning. Also the
authors aims to leverage and integrate honeypot based dataset
with known attacks in order to model attack patterns from
a real-time attack scenario. Also, we aim to address privacy
preserving aspects by extending the study from active to fed-
erated learning techniques in the UFP, while suggesting now
security mechanisms that can be used to strengthen active
learning strategies.
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