IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 5, 2021, accepted February 20, 2021, date of publication March 1, 2021, date of current version March 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063030

Quadbox: Quadrilateral Bounding Box Based
Scene Text Detection Using Vector Regression

PRATEEK KESERWANI'!, ANKIT DHANKHAR', RAJKUMAR SAINI?,
AND PARTHA PRATIM ROY'!, (Member, IEEE)

! Department of Computer Science and Engineering, IIT Roorkee, Roorkee 247667, India
2Department of Computer Science, Electrical and Space Engineering, Lule tekniska universitet, 971 87 Luled, Sweden

Corresponding authors: Prateek Keserwani (pkeserwani @cs.iitr.ac.in) and Rajkumar Saini (rajkumar.saini @ltu.se)

This work was supported by the Vinnova Nationellt Rymddatalabb (Swedish Space Data Lab) Project. The work of Prateek Keserwani was
supported by the Visvesvaraya Ph.D. Fellowship.

ABSTRACT Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such
text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to
the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the
wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires
predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each
varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome
this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this
work, we have added the philosophy of indirect regression to direct regression by shifting all points within the
quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental
results show the improvement of the quadrilateral approach over the existing direct regression approach. The
proposed method shows good performance on many existing public datasets. The proposed method also
demonstrates good results on the unseen dataset without getting trained on it, which validates the approach’s
generalization ability.

INDEX TERMS Scene text detection, direct regression, indirect regression, quadrilateral bounding boxes,

centroid of the quadrilateral.

I. INTRODUCTION

Among all the remarkable inventions of the human being,
the text is the most influential. It helps to preserve, spread,
and communicate information, idea, and fact across time.
The documentation of the fact and the information helps
to transfer knowledge from generation to generation reli-
ably. However, the influence of the text is not only con-
fined to the books and the documentation. In the modern
world, we are surrounded by text in the form of a vehicle’s
number plate, house number, location information written
on signboards. The written text in the surrounding commu-
nicates the high-level semantics, which becomes helpful in
understanding the world. The text which surrounds us in the
real world is known as scene text. Scene text appears on
the captured images/videos. The automatic detection [1], [2]
and recognition [3], [4] of the appeared text leads to the
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automation of a wide range of applications such as image
search [5], [6], instant translation [7], [8], robot navigation
[9]-[12], and industrial automation [13], [14]. Hence, it is an
important computer vision problem [1], [15]. Although sev-
eral solutions have been proposed for this important problem
in the last decade, it is still not fully solved and encounters
many challenges.

At first glance, the text detection seems to be similar to
object detection. However, in many aspects, text detection
appears to be different from object detection. First, a signif-
icant difference is that an object is an entity with a set of
attributes, such as a human is an entity with hands, legs, face,
and chest. In contrast, text could be either a single character
or a group of characters. In the case of text detection, a single
word is assumed to be a valid detection. Even detecting a sub-
string, which could be a valid lexical word, may be wrong as
per the evaluation criterion. To illustrate this, consider a word,
‘airspace’ to be detected. Here, the sub-string ‘space’ is also
a valid word in the dictionary. During the experiment, if the
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text detector only identifies ‘space,’ it will be considered a
false positive, which reduces the performance. These primary
differences make text detection a challenging problem.

Some significant challenges of scene text detection are the
vast range of aspect ratio of the text in an image. The word can
be of various lengths ranging from a single character to tens
of characters. The arbitrary orientations of the text make this
problem more challenging. The text can appear with complex
backgrounds. It occurs due to text present on a glass window,
a pole, number plate of vehicles, signboard, banner, poster,
and air-balloon. The uneven illumination, a reflection of text
from the floor, blur effect due to the camera’s movement
while capturing an image distorts the text’s appearance on
an image. The presence of text in an image in various scales
makes the problem more difficult.

Other than the challenges mentioned above, one important
issue is the bounding box representation. For object detection,
a rectangular bounding box is suitable. However, in the case
of text detection, the rectangular bounding box may contain a
considerable amount of background pixels in addition to the
text pixels. Suppose a word consist of a significant size of the
first character and other smaller size characters, in some other
cases few characters have a long tail. Then a rectangle is not a
good representation [16]. Moreover, a rotated text may make
this situation more complicated. A rectangular representation
in such cases may contain the parts of characters from the
nearby word. Hence, a quadrilateral bounding box [17] is
a more appropriate representation for text detection. Fig. 1
demonstrates all aforementioned scenarios.
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FIGURE 1. Various bounding box representations for text detection.

(a) Rectangle (b) Rotated Rectangle (c) Quadrilateral. First row: The
quadrilateral bounding box covers the least number of background pixels
compared to the rectangular and rotated rectangular bounding box.
Second row: The first character is bigger than the rest of the characters.
Third row: Less overlap of the bounding box on the nearby text in
quadrilateral bounding box representation.

Most of the existing text detection methods [18]-[21]
produce a word-level rectangular/rotated rectangular bound-
ing box. Only a few works had attempted and proposed
text detection methods using regression-based quadrilateral
bounding boxes [16], [22]. There are mainly two approaches
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for quadrilateral bounding box regression: (i) indirect regres-
sion (ii) direct regression. In indirect regression, the bound-
ing box is predicted from the prior bounding boxes (anchor
boxes) by learning the offset, i.e., the method estimates the
distance of the desired quadrilateral bounding box from the
proposal. Whereas, in the direct regression, a quadrilateral is
directly predicted from a given point. The first approach has a
drawback, that is, rectangular anchor boxes. In multi-oriented
bounding boxes, most anchor boxes are not sufficient to
capture the complete ground truth. The methods based on
indirect regression and anchor boxes use a huge range of
anchor boxes with various aspect-ratios and sizes to achieve
good performance. In the second approach, a quadrilateral
has been predicted from each point directly for the bound-
ing boxes. Due to this, direct regression predicts irregular
quadrilateral for multi-oriented scene text. However, from
each point, the distance of four vertices is non-uniform and
skewed.

In this work, we combined the advantages of the direct
and indirect regression for the quadrilateral bounding box
regression. For this purpose, we have utilized the funda-
mental geometrical property of the quadrilateral and pro-
posed centroid-centric vector regression approach. Since
each quadrilateral has a unique centroid, we propose that
the quadrilateral bounding box be estimated from the cen-
troid. From the indirect regression, the two-level estimation
(i.e., estimation of centroid and then the prediction of ver-
tices of the quadrilateral) has been derived, whereas, from
the direct regression concept, the direct computation of the
vertices from a point has been adopted. Thus, for the quadri-
lateral bounding boxes, the four vectors are to be learned
from the quadrilateral centroid for the text bounding box.
Hence, the learned bounding boxes always follow the geom-
etry of the quadrilateral. Fig. 2 shows the difference between
indirect, direct, and proposed (centroid-centric vector regres-
sion) regression for bounding box prediction.

The significant contribution of this work is four-folded:

1) We propose a centroid-centric vector regression
approach that combines the philosophy of direct and
indirect regression for the quadrilateral bounding box
prediction.

2) It utilizes the geometry of the quadrilateral for the
estimation of the quadrilateral bounding boxes.

3) We propose a region removal multi-scale testing
method to improve the detection performance.

4) We propose a Street View Text Detection (SVTD)
dataset to benchmark the generalization test for quadri-
lateral scene text detection.

The rest of the paper is organized into five sections.
Section II discusses the work related to the proposed method.
In Section III, the proposed method has been described. The
experimental setup and results are discussed in Section IV
and V, respectively. Finally, the conclusion is drawn in
Section VI.
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FIGURE 2. (a) Indirect Regression: The traditional approach used by
various existing methods for quadrilateral bounding box prediction. First
shift the anchor boxes (shown by dotted green color) and then learn the
offset from vertices of the updated anchor box by (dx;, dy;, dx,, dy,,
dxs, dys, dxg, dy,). (b) Direct Regression: Prediction of the bounding box
from any point within the bounding box. (c) Proposed approach:
centroid-centric vector regression. The representation used in our method
considers predicting the quadrilateral from the centroid (green color
point) of the quadrilateral through vector regression. The other points
(one such point is shown by blue color point) inside the quadrilateral are
shifted towards the centroid of the quadrilateral.

Il. RELATED WORK

Recently, text detection has gained massive attention from
the deep learning community, and several methods have
been proposed for text detection. Broadly, the text detec-
tion methods can be categorized into two approaches:
(i) regression-based approach, (ii) segmentation-based
approach.

A. REGRESSION-BASED APPROACH

The regression-based text detection approach are mostly
inspired from two kinds of network in the object detec-
tion domain. These are two-stage and single-stage net-
work. Two-stage network is based on the Faster-RCNN [23],
whereas the single-stage network is based on YOLO [24]
and SSD [25]. In a two-stage network, a region proposal
network generates the candidate boxes in the first stage,
and the candidate box is further refined and classified. In
two-stage network, a region proposal network generate the
candidate boxes in first stage and the candidate box is further
refine as well as assigned a score. However, a single-stage
network directly predicts boxes without the help of a region
proposal network. However, on the basis of the represen-
tation a regression-based approach can be divided into the
rotated rectangle representation, and quadrilateral bounding
box representation.

Most of the existing regression-based approaches come
under the umbrella of the rotated rectangle regression. In [26],
a single-stage text detector network with text region attention
has been proposed. It directly predicts word-level bounding
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boxes. A self-learned attention mechanism identifies the tex-
tual regions. The text region attention suppresses non-text
regions in the convolution feature maps for accurate text
detection. They also developed a hierarchical inception mod-
ule to efficiently aggregate multi-scale inception features.
In [19], the authors proposed a single-stage network based
method for the horizontal rectangular bounding boxes. They
have used the concept of anchor boxes with a prior aspect
ratio, and they set this aspect ratio biased for text detection.
In [27], the authors proposed a method that detects text
through the text bounding box’s corner point localization
and segmenting text region in relative position. During infer-
ence, rotated bounding boxes are generated by sampling and
grouping corner points. The boxes are scored with the help
of segmentation. The non-maximal suppression is performed
as post-processing. In [20], the authors proposed a two-stage
network based method to handle text detection present with
arbitrary orientation based on the region proposal networks.
They introduced the rotated region-of-interest (ROI) pooling
layer to pool out the rotated regions from convolution’s fea-
ture maps.

For quadrilateral bounding box predictions, there are
few existing approaches [16], [22], [28]-[32]. In [28],
the authors proposed a single-stage network based method
which directly predicts the text instance with both rotated
rectangle and quadrilateral shaped bounding box. In [29],
a direct regression-based text detection has been introduced,
relying on single-stage architecture. It advocates the predic-
tion of quadrilateral vertices directly from each point in the
image. In [16], Liu et al. proposed DMPNet. It has used the
quadrilateral sliding window over the convolutional features
to improve the recall of text detection. The Monte-Carlo
method has been used to compute the intersection over
union (IoU) area of the predicted quadrilateral with ground
truth in GPU during training. In [22], Liao et al. extends the
previous work on rectangular text detection [19] for quadri-
lateral bounding box prediction. In contrast to the previous
work, the square kernel has been used instead of a rectangu-
lar kernel. In [30], a rotation-sensitive regression-based text
detector has been proposed. It performs segmentation and
regression by two different branches of a different design.
In [31], the authors proposed a two-stage detection pipeline
for quadrilateral text detection. The quadrilateral region pro-
posal is the first stage, followed by ROI pooling for fur-
ther refinement of proposals. Similarly, in [32], the authors
introduced a text-specific inception module. It is a two-stage
network based method. They decompose n xn block in google
architecture with 1 x 7 and n x 1 convolution. They also added
deformable convolution at the end of each block. They have
introduced a deformable position-sensitive ROI pooling layer
to handle arbitrary orientated scene text.

B. SEGMENTATION-BASED APPROACH

Some of the current methods are based on the semantic
segmentation of the image between text and non-text regions.
In [33], the authors proposed a text detection method that
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produces pixel-wise prediction maps, followed by bound-
ing box generation. Three types of information have been
estimated: text region, individual characters, and their rela-
tionship. With proposed properties, the model can detect hor-
izontal, arbitrary oriented, and arbitrary shaped text. In [34],
the authors proposed an end-to-end learnable method to
perform text detection and recognition using semantic seg-
mentation. In [35], author consider the problem as instance
segmentation approach. The text is first segmented by pixel
connectivity within a text instance. The boundary is further
decided with the help of segmentation. In [36] they con-
sider the text detection problem as an instance segmentation
approach. To differentiate between different text instances,
they mapped the pixels to an embedding space such that
pixels belonging to the same instance are clustered together
and vice-versa. To make their model shape agnostic, they
introduced shape aware loss for training their model. In [37]
predict text by character region score and affinity score.
In [38], the authors proposed a scale-robust arbitrary oriented
text-detection deep learning architecture. They introduced a
feature refining block for multi-scale context features fusion.
It is useful for text detection in a feature map of higher
resolution. In [39] a differentiable binarization technique has
been proposed for arbitrary shaped text detection.

From the literature review, we have found a few works
under the regression category for quadrilateral bounding box
prediction. However, our proposed approach has some sim-
ilarity with existing approaches, but it also differs in many
points. As similar to [16], [22], [28], [29], our approach
is also a single-stage text detection approach. In contrast,
the [28], [29] are direct regression-based approaches, and
[16], [22], [30] are indirect regression-based approaches.
Whereas our proposed method has combined the philosophy
of both direct and indirect regression-based approaches. The
[31], [32] has employed the ROI pooling layer to pool out
the feature and further adjust the quadrilateral. In contrast,
our approach is fully convolutional and does not need the
expensive ROI pooling layer. From this analysis, we have
found that the proposed method possesses the following
superiority with other similar approaches (i) anchor box free
approach (ii) no need of expensive ROI pooling (iii) no com-
plex inference heuristic for box prediction (iv) required only a
vanilla non-maximal suppression. All these points make this
approach simple yet effective for scene text detection.

lll. PROPOSED METHOD

The proposed method is based on utilizing the geometry of
quadrilateral for bounding box regression. This method is
based on a deep architecture having three building blocks:
feature up-sampling, pyramid feature fusion, and bounding
box prediction. The bounding box prediction is made by
proposed centroid-centric vector regression approach which
combines the philosophy of direct and indirect regression.
The proposed method only relies on standard non-maximal
suppression as a post-processing step. For boosting the per-
formance, a region removal multi-testing approach has also
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been proposed. The used approach and the method are
explained in detail in the following subsections.
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FIGURE 3. Steps to compute the centroid (a) The quadrilateral ABCD is
divided into two halves i.e. two triangles (b) The centroid of two triangles
(blue color circle) C; and C, are computed and then the centroid of
quadrilateral (green color circle) is computed from these triangle’s
centroid.

A. OUR APPROACH

Suppose the input image is of dimension M x N. The pro-
posed architecture first divides the input image into the P x Q
grids, where each grid is of dimension Aw x Ah. From
each grid location, the four vertices of the quadrilateral are
predicted. Suppose, the quadrilateral consists of four vertices
A(x1,y1), B(xa,y2), C(x3,y3) and D(x4, y4). The length of
the four sides of the quadrilateral are a, b, d, and e. The
quadrilateral is split into two triangles. The centroid of the
triangles are computed separately, which further computed
the centroid of the quadrilateral [40] (illustrated in Fig.3).
The centroid of the quadrilateral is computed as:

Z?:l CiAi Zt'2=1 C)iAi
(va Cy) - 2 ’ 2 (l)
Zi:l Aj Zi:l A
where
X1+x2+x3 y1+y2+y3
cl.ch= TR )
3 3
X1+ x3+ x4 +y3+y4
(Cf, C)%) _ 1 , Y1ty Y. 3)
3 3
Ay = /S1(S1 — a)(S1 — b)(S1 —©) )
Ay = /$2(S2 — )(S2 — d)(S2 —e) 5)
a+b+c
S = — (6)
c+d+e
Sy = - @)

The (Cg, C;) and (C)?, Cyz) are centroid of the triangle
AABC and A ACD respectively. A| and A, are area of tri-
angle A ABC and A\ ACD respectively. The above-computed
centroid is selected as a reference point to predict the
four quadrilateral vertices. Since each quadrilateral has a
well-defined centroid, this geometrical property of a quadri-
lateral is used in our proposed work for predicting the quadri-
lateral bounding box. The boxes are to be predicted from the
centroid of the quadrilateral by using direct regression. There
are n points in a quadrilateral, and offset from all n points
to the centroid of the ground truth bounding box is learned.
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FIGURE 4. The approach for centroid-centric vector regression: The green
and blue colors show the ground truth and the predicted bounding boxes,
respectively. The learned offset is to move the predicted bounding box to
the centroid of the ground truth bounding box is shown by the
black-colored arrow. Orange-colored arrows indicate the difference
between the vertices of the predicted and ground truth bounding box.
Gray areas show the angle difference between the predicted vector and
the ground truth vectors. These differences can be learned with the help
of loss functions proposed in Section I11-C.

So, each predicted bounding box always follows a balanced
quadrilateral structure, and the approach is the combination of
direct and indirect regression. The same is illustrated in Fig. 4.

B. NETWORK ARCHITECTURE

For the regression of the quadrilateral bounding box, a fully
convolutional architecture has been used. The proposed archi-
tecture is an encoder-decoder based model and fully convo-
lutional. The proposed architecture consists of three blocks,
namely: (a) Feature Up-sampling, (b) Feature pyramid block,
and (c) Bounding box prediction. The proposed architecture
is built over the backbone of pre-trained VGGNet. The kernel
configurations are shown in Fig. 5.

Feature Up-sampling: In a standard detection pipeline
such as [23], [24], the feature maps are reduced by applying
successive convolutions and pooling operations. Due to this,
the feature maps spatial size reduces and divides the image
into grids. If the grid location contains more than one text
instance, multiple regression bounding boxes are computed
for each grid location. However, the regression of multiple
bounding boxes makes the model complex. It is mentioned in
[24] that such a method does not behave well for the cluttered
objects. Although, in the case of text detection, the clut-
tered text is more likely to be present. Hence, to address
this issue, our architecture is designed similar to U-Net to
increase feature maps’ size before prediction. It is achieved
by the successive fusion of downstream features with the
up-sampled features. However, the direct up-sampling with-
out feature adaptation introduces uncertainty and ambiguity
during inference [41]. To get rid of it, we do three things:
(i) only considered the shrunk region of the polygon for
box regression (to avoid ambiguity of text border region).
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(i1) the features are up-sampled and then merged with the
backbone feature again. (iii) used bi-linear up-sampling in
place of the nearest neighbor.

The architecture is designed specially to handle multi-
oriented and skewed text detection. The text may appear
with different angles, sizes, and perspective distortions in
the multi-orientation scene text. Predicting a bounding box
requires that the receptive field of the neural network covers
the whole text instance. The simplest solution is to use deeper
architecture to cover it. However, in images, some of the text
instances are very small, whereas others are huge. It requires
aflexible receptive field to cover text instances of various size
ranges. Due to this analysis, the deformable convolutions [42]
is used in our model. The conventional convolution is applied
on a predefined rectangular grid. Whereas, in the case of
deformable convolution, the grid location is computed by
learning the offset. Thus, the deformable convolutions are
capable of achieving scaling and rotation via learned grid
offset. This property of deformable convolution is used in our
architecture.

The VGGNet consists of five downsampling operations.
Among them, four down-sampling feature maps, di, dz, d3,
and d4 have been extracted with spatial resolution of /3”—2 X %,
% X %, % X %, and %’1 X % respectively. The progressive
up-sampling of feature map’s consists of two entities, namely,
merging (m;) and feature up-sampling (s;) defined by the
following equations:

B [ UD3x3(Crxi(mi—1)); 2), i> 1
Si = ) (8
m; = [dit1lsi], z <3 ©
D3x3(Cix1(diy1lsi])), i=3

where U(.; x) is the feature bi-linear up-sampling by a fac-
tor x. Dpx4 and Cpx, represent the deformable and vanilla
convolution operation with kernel size p x g respectively.
The [xly] represent the concatenation of two features along
channel dimension.

Pyramid Feature Fusion : The receptive field plays an
important role in object detection. The receptive field must be
big enough such that no important information is left out for
the desired prediction [43]. The text appearing in the image
are of different sizes. The text covers a wide range of aspect
ratios and sizes. A small text instance requires a smaller
receptive field, whereas the bigger text instance requires
a bigger receptive field. In [44], the property of receptive
field has been used to introduce a light-weight architecture
for text region proposal. In [44], the architecture is trained
for a fixed receptive field, and bigger text is detected by
considering the down-sampled image. Also, [45]-[47] proves
the impact of pyramid feature for effective object detection.
Hence, inspired by this, a pyramid feature fusion block has
been used to capture the text with various sizes. The feature
maps of various levels have different receptive fields. Hence,
the level which covers the whole text instance is better to
predict the bounding box at a specific scale.
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FIGURE 5. The proposed architecture consists of three blocks: (a) Feature Up-sampling, (b) Pyramid feature fusion, and (c) Bounding box
prediction. The prediction block consists of learning two tasks: (i) classification, (ii) quadrilateral bounding box regression. Finally,

the non-maximal suppression is used as a post-processing.

The PFF block obtains feature from different levels of
feature up-sampling block.The features are denoted by Fj.
The spatial resolution of each feature map is 2{% X % The
features F; are computed at different level of up-sampling
block and represent features at different receptive field. For
F; the features are mapped up-sampled and the computed

up-sampled feature map is:

Yi=U@@F): 27, i={1,2,3) (10)

where U(.; x) represents the bi-linear up-sampling of the
feature map with the scaling factor x, ¢ denotes the combina-
tion of convolution-normalization-ReLU operations. Finally,
the features Y; which have same spatial resolution are fused
and defined by:

F = @Wixy *[Y1[Y2]Y3] + D) Y

where ¢ is the combination of the batch-normalization and
ReLU operation, [x1|x2] denotes the concatenation of the
vectors x1 and x», * represent the convolution operation, b
represent the bias. The Wy represents a 1 x 1 kernel which
reduces the channel dimension of concatenated feature from
224 to 32.

Bounding Box Prediction: The bounding box prediction
has two tasks to perform, namely, regression and classifi-
cation. For regression, the quadbox layer has been used for
the quadrilateral bounding box. Whereas for classification,
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semantic segmentation has been done. The following subsec-
tions cover the details of regression and classification.

1) QUADBOX LAYER (CENTROID-CENTRIC VECTOR
REGRESSION)
The objective is to predict the quadrilateral for text detection.
The geometry of the quadrilateral has been utilized to directly
predict the quadrilateral. Each quadrilateral has a unique cen-
troid, and the quadbox layer shifts all candidate points (iden-
tified by segmentation) to the centroid of the quadrilateral.
The vertices are directly predicted using the vector regression
from the centroid of the quadrilateral. The quadrilateral can
be represented by a tuple of 14 dimension R = (a, b, V;|i €
{1,2,3,4}) and V; = (ri, «j, Bi). Here, V1, Vo, V3, and
V4 are four vectors from the centroid (Cy, Cy). Symbol r,
o, and B are vector length, sine, and cosine angle between
the vectors and the x-axis respectively. The label generation
for this representation is done by Algorithm 1. For ground
truth generation of quadbox, a square image is cropped with
a window size of W to make batches of the same size in
the training phase. The bounding box ground truth genera-
tion requires a bounding box and cropped window size. The
14-dimension encoded vector representation is generated for
a bounding box.

The quadrilateral bounding box has been predicted as
14-dimension vector (R) from the quadbox layer by the
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Algorithm 1 Box Regression Ground Truth Generation

Algorithm 2 Classification Ground Truth Generation

Input: A Bounding box BB consists of 4 vertices, and
image crop size W.
Output: Vector regression map Map.
procedure Regressmn(BB W)
Map < zeros(W T 14)
P <« point inside the provided bounding box
R <« zeros(14)

I:

2:

3

4:

5. center < CENTROID(BB)
6 R[0] « ceterlO]

7

8

9

ter[1]
R[l] <« cen Zr
fori < 1to4 do
vector < BB[i]- center

10: r < /vector[0]? + vector]1]?
11: R[3i] < r

12: R[3i+ 1] « vecrorll]

13: R[3i + 2] « tectorlO]

14: end for

15: for i < |P| do

16: Map[P[i][0],P[i][1]] < R

17: end for

18: end procedure

following equations:

o eZRAl —1
Cr=y——+x 12
=V oR 1 (12)
Conio=l, (13)
y — ngZRAZ + 1 y
Ry
—_ e
ri=¢ = (14)
1+ eRsi
62R3i+1 -1
G- (15)
e2R3iv1 — 1
) SHCR 16)
hi= e2Rsiva _ |

where R; represent the i/ dimensional value from prediction
vector. ¥, n, and ¢ are the scaling factors and fixed by the
value %, %, and W respectively. The scaling factor y and 7
scales the predicted values in the range of [— % s %] and [— W
%] with respect to the point (x, y) respectively. Whereas, the
scaling factor ¢ scales the predicted vector to the same scale
as used for a normalization during ground truth generation.

The quadrilateral could be decoded with respect to a point
(x, y) by using the following equations:

VE=Ci+7 Bi (17)
=G +7m (18)
2) CLASSIFICATION

The second task is the classification, which has been used
to score the bounding boxes. Since our primary goal is to
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Input: A Bounding box BB consist of 4 vertices.
Output: Segmentation map for text (Text_class),
boundary (Boundary_class),

and background (NonText_class).
1: procedure Classification(BB)
2 center < CENTROID(BB)
3 shrink_coordinate < [ ]
4: per < 0.8 > percentage of length
5: fori < 1to4do

6 end_point < center + per * (BB[i]- center)

7 shrink_coordinate.append(end_point)

8 end for

9: shrink_quad <— CONTOUR(shrink_coordinate, 1)
10: original_quad <— CONTOUR(coordinate, 2)
11: sum < shrink_quad + original_quad
12: Text_class < (sum = 3)
13: Boundary_class < (sum = 1)
14: NonText_class < (sum = 0)
15: end procedure

make the bounding box at the word level, the boxes must be
predicted near the center of the quadrilateral and avoid the
boundary pixel. Due to this fact, the classification is posed as
a three-class problem, namely, text, non-text, and boundary
pixels. For generating three-class ground truth, each bound-
ing box is shrunk such that the length of the vector from the
centroid to the vertices of the quadrilateral is reduced to 0.8
times the original. Then, CONTOUR(BB, value) is called to
draw contour with values and produce a mask. The values for
shrank and original bounding box contour are set to 1 and
2, respectively. Then the shank and original contour mask are
added together. The pixel with value 3, 1, and O are considered
text, boundary, and non-text classes. Algorithm 2 gives the
procedure to generate the ground truth for the classification.
Sample of the text, non-text and boundary pixels for classifi-
cation are shown in Fig. 6.

(@

FIGURE 6. Sample for classification ground truth: (a) Text region
(b) Boundary region (c) Non-text region.

C. LOSS FUNCTION

The proposed method consists of the learning of two tasks:
vector regression and classification. The loss computed on
four vectors from the centroid to the quadrilateral vertex is
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the combination of three losses, namely, centroid loss, angle
loss, and length loss. The centroid 10ss (Lcensroiq) 1S computed
to shift the default position of prediction to the centroid of the
ground truth quadrilateral. The angle loss (Lgngle) is used to
compute the angle difference between the predicted vector
and the ground truth vector. The length loss (L) is used
to find the length difference between the predicted vector
and the ground truth vector. The losses are computed by the
following equations:

52

Leenid = Tz D ICy — Cl +1Cy — Gyl (19)
i=1
&

Langte = T 21 i = @)% 4+ (B = Bl 20)
i=1

S |ri — 7l
L = - Iog (1 — | ——— 21
fensth |Trext| 2.t og( |:max(ri, ) @D

i=1

where s represents the grids, and Hf"x’ is the position where
the ground truth has text annotation. Length loss [,leng,h calcu-
lated by measuring the error in absolute length is not a correct
measure as that loss is averaged while updating the network’s
weight. This way of calculating loss suppresses the loss from
small text instances in images. It deteriorates the performance
as the model suffers in the detection of small text instances.
The equation for regression loss (L) is given as follows:

Ereg = Acentroid Lcentroid ~+ )"angleﬁangle + )\lengthﬁlength (22)

where Acentroids Aangle» and Ajengnn are used as 0.2, 5.0, and
1.0 in this work. The other task of the network is to classify
between text and non-text. This classification is done at the
pixel level and avoids the expensive ROI pooling operation.
The number of text pixels is comparatively less as com-
pared to the background pixel. Since the method is fully
convolutional, it increases the false-positive case if a wrong
classification occurs. A false positive classification increases
the recall but decreases the precision. Hence, a loss function
is needed, which maximizes precision while maintaining the
recall. Suppose p; is the predicted probability of pixel to be
text, and g; is the probability of ground truth to be text. Then,
the Tversky loss [48] for the classification between text and
non-text is defined as:

2
Ecla&s = 5 22?:1 Pigi 5
Y pigi+ Ay pigl + (=13 gipd
(23)
pi =1—pi (24)
g =1-g (25)

where A parameter is used to control the trade off between
false-positive and false-negative rate. In this experiment,
the value of A is taken as 0.8. The classification 10ss (L juss) iS
applied on three planes separately by considering it into three
different binary problems. The sum of these three dice losses
has been used as a classification loss.
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The total loss, L is the linear combination of the regression
loss L., and classification loss L4 given by the following
equation:

L= »Creg + Eclass (26)

D. REGION REMOVAL MULTI-SCALE TESTING

The text appearing in the image has various aspect-ratios and
sizes. From the literature, it is found that multi-scale testing
is beneficial to handle this challenge. In usual multi-scale
testing, the B = {Bj, Ba, ...B;,} bounding boxes are pre-
dicted from n input scales I = {[{, >, ...1I,}. A bounding
box appearing at scale /, may have overlapping bounding
boxes at scale I,. This overlapping causes an extra burden
on the NMS algorithm. As a solution to the above-stated
dependency, a region removal multi-scale testing (RRMT)
method is introduced. The central idea is that the text region
predicted on one scale with reasonable confidence will be
removed from the next scale’s image. The NMS is applied
over the gathered bounding boxes B from n scales. The
procedure of RRMT is summarized in Algorithm 3.

Algorithm 3 Region Removal Multi-Scale Testing
Input: I = {I1, I, ..., I} is input image at n scales.
M is the Quadbox trained model.
T is the segmentation threshold.
Output: Bounding Boxes (BB).

1: procedure RRMT(, M, T)

2: B<—¢,5S ¢

3: fori < 1tondo

4: ifi > 1 then

5: I < I; x CS

6: end if

7: B;, S; < M(I;)

8: B <~ BUB;

9: S« SUS;

10: ST «8;>T

11: if i = 1 then

12: CS <~ (- SiT) > cumulative seg. mask
13: else

14: CS < CS x (1 -8
15: end if

16: end for

17: BB < NMS(B, S)

18: return BB

19: end procedure

IV. EXPERIMENTS

The proposed method is evaluated over many pub-
licly available datasets, namely, ICDAR2015, COCO-Text,
ICDAR2013, and MSRA-TD500. We also introduced a
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challenging dataset SVTD for the generalization test of the
trained model for quadrilateral bounding box predictions.
Description of datasets, implementation details, and evalu-
ation protocols are provided in the following subsections.

A. DATASETS DESCRIPTION
The following benchmark datasets have been used in this
work:

ICDAR2015: This dataset [17] covers the incidental scene
text and proposed in Robust Reading Competition as chal-
lenge 4. It consists of 1000 training set images for word-level
text detection and 500 test set images with text localiza-
tion bounding boxes. Each image may contain multiple
multi-oriented text instances. This dataset is provided with
the quadrilateral bounding boxes.

COCO-Text: This dataset [49] contains 63,686 images
and 173,589 labelled text regions. It consists of horizontal,
curved, and multi-oriented text. The label provided for this
dataset is the axis-aligned rectangle. It consists of text cov-
ering a wide range of variations, and it is the biggest scene
text dataset for the detection task, which covers most of the
possibility of the existence of text in the real world.

ICDAR2013: ICDAR2013 dataset consists of a total
of 462 images for horizontal text detection and recogni-
tion. The training set and the testing set contain 229 and
233 images, respectively. For the text localization task,
the ground truth is provided in the term of word bounding
boxes.

MSRA-TDS500: MSRA-TD500 contains text with multi-
oriented rotated rectangle annotations. It consists of English
and Chinese text images as well as indoor and outdoor
images. It consists of 300 training images and 200 testing
images.

SVTD'Dataset donwload link : Street View Text Detec-
tion dataset consists of 250 images borrowed from the SVT
dataset [50]. This dataset contains the images harvested from
Google Street View. Image text in this dataset exhibits high
variability, and some of the images are severely corrupted by
noise and blur. As SVT is a word spotting dataset, only testing
images were considered, and the dataset for the text detection
was annotated on the same hypothesis as ICDAR2015 with
quadrilateral bounding boxes.

B. IMPLEMENTATION DETAILS

Training The proposed model is trained with a batch
size of 10 for 1800 epochs. The model is trained on the
ICDAR2015 dataset for quadrilateral bounding box predic-
tions. The proposed model is trained by using Adam opti-
mizer with the initial learning rate, i, and B, are 1074,
0.9, and 0.999, respectively. The decay in the learning rate
is performed by a step decay policy, i.e., decay by a frac-
tion of 0.1 after 1000 epochs. Each training iteration takes

1 https://drive.google.com/drive/folders/IDGW-k8LxATXu06hGze 1tOE3
Cthbv1kKg?usp=sharing
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TABLE 1. Fine-tuning details for various datasets. [ILR: Initial Learning
Rate].

Dataset ILR | #Epoch | Decay Interval
ICDAR2015 10~% 1800 1000
ICDAR2013 10— 1 1700 855

MSRA-TD500 | 10—% 1400 750

0.45 seconds. For other datasets, the training details are men-
tioned in Table 1.

Data Augmentation In this work, the random scaling
and random rotation have been done within the range of
[0.8, 1.2] and [—10°, 10°], respectively. Next, a random crop
of size 512 x 512 has been done. On these cropped images,
the gamma correction, Gaussian blur, median blur, mean blur,
light reflection effect, channel swap, Gaussian noise, and
Poisson noise has been performed.

Post-processing During inference, the segmentation
threshold and NMS are the only post-processing methods
used in our method.

Hardware and Software The proposed method is imple-
mented on PyTorch.” All the experiments have been con-
ducted on the DGX server with Xeon E7 processor and
32GB NVIDIA Tesla V100 GPU.AII the experiment has been
conducted on DGX server having Xeon E7 processor, 32GB
NVIDIA Tesla V100 GPU. The evaluation has been done on
the batch size of 1.

C. EVALUATION PROTOCOL

For evaluating the performance of the text detection on vari-
ous datasets, we have taken the precision (P), recall (R), and
f-measure (FM). These are as follows:

TP
P=—— 27
TP + FP
TP
== (28)
TP + FN
P xR
FM =2 x 29)
P+R

where TP, FP, and FN are the true positive, false positive,
and false negative, respectively. In the case of text detec-
tion, if the detected bounding box has an intersection over
union with respect to the ground truth bounding box more
than the threshold, then it is considered as a true positive.
Incorrect bounding box predictions are considered as a false
positive, and missed bounding boxes as a false negative. The
F-measure is used to measure the trade-off between precision
and recall.

V. RESULTS AND ANALYSIS

For the detailed analysis and evaluation of the proposed
method, the qualitative and quantitative analysis of the pro-
posed method is performed. The ablation study is also con-
ducted. The proposed method is also compared with the

2https :/Ipytorch.org/
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TABLE 2. The performance of detection results in various settings. The best results regarding each setting is highlighted by boldfaced text.

Dataset Channel Single Scale Multi Scale
Order NMS LANMS NMS LANMS
P R [ FM P [ R [ FM P R [ FM P [ R [ FM
RGB 0.906 | 0.788 | 0.843 | 0.901 0.788 | 0.841 0.887 | 0.818 | 0.851 | 0.881 0.819 | 0.849
GBR 0.903 | 0.785 | 0.840 | 0.897 | 0.785 | 0.837 | 0.880 | 0.809 | 0.843 | 0.875 | 0.810 | 0.841
ICDAR2015 GRB 0.905 | 0.790 | 0.844 | 0.903 | 0.792 | 0.844 | 0.884 | 0.817 | 0.849 | 0.880 | 0.820 | 0.849
BRG 0.903 | 0.786 | 0.840 | 0.904 | 0.791 0.843 | 0.878 | 0.813 | 0.845 | 0.876 | 0.816 | 0.845
BGR 0.901 | 0.785 | 0.839 | 0.897 | 0.784 | 0.837 | 0.881 | 0.814 | 0.846 | 0.870 | 0.809 | 0.839
RGB 0.898 | 0.714 | 0.795 | 0.904 | 0.717 | 0.800 | 0.844 | 0.780 | 0.811 0.833 | 0.784 | 0.808
GBR 0.902 | 0.712 | 0.796 | 0.908 | 0.718 | 0.802 | 0.842 | 0.765 | 0.801 0.832 | 0.773 | 0.802
ICDAR2013 GRB 0901 | 0.712 | 0.795 | 0.901 | 0.711 | 0.795 | 0.840 | 0.776 | 0.807 | 0.828 | 0.779 | 0.803
BRG 0.901 | 0.715 | 0.797 | 0.903 | 0.715 | 0.798 | 0.847 | 0.783 | 0.814 | 0.824 | 0.778 | 0.800
BGR 0.902 | 0.715 | 0.797 | 0.905 | 0.720 | 0.802 | 0.842 | 0.778 | 0.809 | 0.830 | 0.774 | 0.801
RGB 0.846 | 0.617 | 0.714 | 0.839 | 0.619 | 0.712 | 0.790 | 0.714 | 0.750 | 0.743 | 0.708 | 0.725
GBR 0.842 | 0.609 | 0.707 | 0.837 | 0.611 0.706 | 0.787 | 0.698 | 0.740 | 0.752 | 0.705 | 0.727
MSRA-TD500 GRB 0.848 | 0.619 | 0.715 | 0.845 | 0.615 | 0.712 | 0.790 | 0.714 | 0.750 | 0.743 | 0.708 | 0.725
BRG 0.847 | 0.615 | 0.713 | 0.838 | 0.612 | 0.708 | 0.780 | 0.709 | 0.743 | 0.724 | 0.698 | 0.711
BGR 0.853 | 0.619 | 0.717 | 0.847 | 0.615 | 0.713 | 0.790 | 0.711 0.748 | 0.746 | 0.709 | 0.727

existing state-of-the-art (SOTA) methods in the following
subsections.

A. QUANTITATIVE RESULTS

1) DETECTION PERFORMANCE

The robustness of the model is an important aspect. For
ensuring the robustness of the model, it is evaluated in
different settings. We have checked the performance by
changing the input image’s channel order using two types
of post-processing techniques, i.e., NMS and locality aware
non-maximal suppression (LANMS). For measuring the
text detection, the metrics, namely, precision, recall, and
F-measure, are used. The obtained values are summarized
in Table 2.

Quadrilateral Text Detection Since the major contribu-
tion of the proposed method is quadrilateral text detection,
the proposed method’s performance with the ICDAR2015 is
evaluated, which comes with the quadrilateral bounding
box annotation. For testing on a single scale, the image
is resized such that the larger size becomes 1504. The
post-processing threshold for segmentation and NMS is taken
as 0,99 and 0.1, respectively. Multi-scale testing is also con-
ducted, and the chosen size for multi-scale testing is 1504 and
512. Multi-scale testing helps to improve both precision and
recall. The results are summarized on Table 2 with various
testing settings.

Detecting Horizontal Text For the analysis of the pro-
posed method on the rectangular annotation text instances,
the ICDAR?2013 dataset is chosen. In ICDAR2013, some of
the images contain wrong annotations in the training dataset.
Such images with the wrong annotations were dropped during
training. The model was trained by combining the images of
ICDAR2013 and ICDAR2015. The trained model has been
tested by resizing the image such that the largest size of
the image is 640 for single scale testing. However, for the
multi-scale testing, sizes of 256, 768, and 1504 are consid-
ered. The results are mentioned in Table 8. The results on
ICDAR2013 are mentioned in Table 2.
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Line level text detection Most of the existing datasets
are for the word-level bounding box prediction. Whereas
line-level text detection is also essential because it is a
prime concern for some languages (such as Chinese). Hence,
the performance of the proposed method is also evalu-
ated on the text line detection. For this study, the MSRA-
TD500 dataset has been chosen. The combined image of
MSRA-TD500 and HUST-TR400 [51] has been trained for
1400 epochs. For single scale testing, the images are resized
to 640 while preserving the aspect ratio. Similarly, for
multi-scale testing, the sizes used are 256, 640, and 1024.
The performance of the proposed method on the MSRA-
TD500 dataset is mentioned in Table 2.

From Table 2, it was noted that the proposed method
achieves similar performance irrespective of the color chan-
nel order. The NMS shows better results than the LANMS for
both the single-scale testing and the multi-scale testing. The
comparison of the NMS with LANMS shows that the pre-
dicted boxes are well clustered. Thus, the use of LANMS is
to combine the bounding box for creating the bigger bounding
box. The recall improves in most of the case due to this prop-
erty of the LANMS. However, the precision drops because
some boxes get merged, and the IoU threshold penalizes the
prediction performance.

2) loU RELIANCE DETECTION PERFORMANCE

The standard metric for text detection is based on the IoU
threshold of 0.5. A higher threshold requires more efficient
and robust methods. Hence, this analysis is performed to
explain the effectiveness of the proposed method better. For
this analysis, the datasets, i.e., ICDAR2015, ICDAR2013,
and MSRA-TD500 with publicly available testing annota-
tion, are selected. The IoU threshold of 0.5, 0.6, 0.7, 0.8,
and 0.9 are considered to analyze this trade-off. It includes
IoU vs. Precision, IoU vs. Recall, and IoU vs. F-measure
analysis. The computed values at the thresholds mentioned
above are shown in Fig. 7. From Fig. 7, it has been observed
that the proposed method is better performing for the dataset
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FIGURE 7. Trade-off (a) loU vs. Precision, (b) loU vs. Recall, (c) loU vs. F-Measure.

which has images that were captured irrespective of the pres-
ence of text in it (i.e., incidental scene text) as compared
to the images which have focused text (i.e., focused scene
text). In the case of focused scene text, i.e., ICDAR2013 and
MSRA-TD500, the proposed method sustains the perfor-
mance for MSRA-TD500 as the IoU threshold increases
compared to the ICDAR2013 dataset. In MSRA-TD500,
at IoU of 0.5, some word-level detection appears in place
of line-level detection. It penalizes both precision and recall.
However, as the IoU threshold increases, the candidate
bounding boxes have covered more ground truth areas in
MSRA-TD500 than ICDAR2013. From Fig. 7, it has been
observed that the prediction performance deteriorates as the
bounding box area increases. It is best for the incidental
scene text dataset (ICDAR2015), which further drops for
the focused word-level bounding box dataset (ICDAR2013),
and it further drops for the line-level bounding box dataset
(MSRA-TD500).

3) GENERALIZATION ABILITY

In the current trend for scene text detection, the inclina-
tion is to train and test on the same dataset. However,
the machine learning-based method’s final objective is to
perform good in unseen real-world data without training. For
accomplishing the final objective of machine learning-based
methods, two datasets close to the real-world environment
are chosen, namely, COCO-Text, and SVTD. In COCO-Text,
the images are taken irrespective of the compulsion of the
presence of text in the image, making this dataset very
challenging. The evaluation of the COCO-Text required
the rectangular bounding box, whereas our method predicts
the quadrilateral bounding box. Hence, the fittest rectangle
enclosing the quadrilateral bounding box is taken for evalu-
ation purposes. The second dataset is SVTD, which is based
on the Google Street View Images. Our ICDAR2015 trained
model is directly applied to COCO-Text and SVTD datasets
to check the trained model’s generalization ability. The
results are mentioned on the Table 3. From Table 3, it has
been concluded that the proposed method, trained on the
ICDARZ2015 dataset, has shown satisfactory performance on
the unseen dataset.
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TABLE 3. Detection performance of methods on untrained dataset.

Dataset Precision | Recall | F-Measure
COCO-Text 0.642 0.586 0.613
SVTD 0.857 0.459 0.598

B. QUALITATIVE RESULTS

The text detection metric is borrowed from object detection
and is based on the predicted box’s IoU over ground truth.
Nevertheless, if we understand this metric, then it has a sig-
nificant drawback for text detection. If a bounding box does
not cover the text’s full height and only covers the top half
part and still achieves the IoU of 0.5, it is considered a true
positive case. It may provide good quantitative results, but
qualitatively the results are not good enough. Hence, we also
presented the qualitative results of the proposed method. The
qualitative results of the proposed method on various used
datasets have been shown in Fig. 8. From Fig. 8, it is clear that
the proposed method can detect the skewed, multi-oriented,
and handwritten text.

The qualitative results obtained from the generalization test
on COCO-Text and SVTD are shown in Fig. 9. From Fig. 9 it
is also clear that the trained model even works satisfactorily
on untrained datasets. It is analyzed from Fig. 9 that the pro-
posed method can detect the text written on clothes (some part
occluded by the gloves), at unusual pose (written on the bus
surface), text written on building with strokes likes structures.
The used model is trained on the ICDAR2015 dataset, which
contains shopping malls, metro stations, and few outdoor
scene images. In contrast, the COCO-Text contains images
from a vast spectrum covering both indoor and outdoor
images. The SVTD dataset comprises street view images,
including deformation such as blur and noise. Qualitatively,
it has been observed that the trained model is not explicitly
working only for a trained dataset but also producing reason-
able results on untrained datasets.

C. ABLATION STUDY
An ablation study has been conducted to analyze the impact
of pyramid feature fusion (PFF), hyperparameter A, and the
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significance of quadrilateral over rotated rectangle represen-
tation on the proposed approach.

Impact of pyramid feature fusion: In the proposed
method, the PFF block has been included to combine the
multi-scale features. The impact of the PFF block has been
investigated in Table 4. In Table 4, the impact of the PFF
block is clearly visible. The use of the PFF block improves
the detection performance of the bounding box prediction.

TABLE 4. Ablation study to show the impact of the pyramid feature
fusion.

Dataset PFF | Precision | Recall | F-measure
ICDAR201S (%0303 L 070 L oo
ICDARROS |y |07

MSRA-TD500 ‘; 8:223 8:2(1)3 8:2;;

Impact of X: In this work, the A hyperparameter is
used to control the trade-off between the false-positive and
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FIGURE 9. Qualitative results for untrained dataset used to check the generalization of the trained model on (a) COCO-Text dataset, (b) SVTD dataset.

false-negative rates. To show this ablation, we have chosen
various values of A and train model for ICDAR2015 dataset
and summarized in Table 5. The choice of A helps to improve
the precision at the cost of a small drop in the recall. But
overall, the f-measure increases. Hence, we choose the A
value as 0.8 in our proposed method.

Quadrilateral vs. rotated rectangle boxes: This ablation
helps to inspect the capability of our proposed method for
predicting the quadrilateral as well as a rotated bounding box.
It is verified by converting the quadrilateral bounding box
annotation to the rotated rectangle one, using a minimum
area rectangle to fit the quadrilateral. The training is con-
ducted on both quadrilateral and rotated rectangle annotation
by using the proposed method. For this ablation, we have
considered the ICDAR2015 dataset. The results are summa-
rized in Table 6. The results show that the proposed repre-
sentation performance is good for the quadrilateral bound-
ing box as compared to the rotated rectangle bounding
box.
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TABLE 5. Impact of the A hyperparameter in the model for
ICDAR2015 dataset.

A Precision | Recall | F-measure
0.2 0.830 0.816 0.823
0.4 0.886 0.792 0.836
0.6 0.888 0.796 0.839
0.8 0.905 0.790 0.844

TABLE 6. Detection performance to analyze the significance of
centroid-centric vector regression approach for Quadrilateral annotation
and rotated rectangle annotation.

Annotation (used in training) | Precision | Recall | F-Measure
Quadrilateral 0.905 0.790 0.844
Rotated Rectangle 0.910 0.755 0.826

TABLE 7. Comparison of the proposed method with state-of-the-art
approaches for ICDAR2015 dataset. The best and second best results are
boldfaced. [+: Multi scale testing].

Method Recall | Precision | F-Measure
EAST [28] 0.783 0.832 0.807
TextBoxes++ [22] | 0.785 0.878 0.829
DR [29] 0.800 0.820 0.810
DMPNet [16] 0.682 0.732 0.706
FTSN [54] 0.800 0.886 0.841
RRD [30] 0.800 0.880 0.838
IncepText [32] 0.806 0.905 0.853
Wang etal [31] 0.867 0.821 0.843
QuadBox 0.790 0.905 0.844
QuadBoxx* 0.818 0.887 0.851

D. COMPARISON WITH SOTA

Quadrilateral Text Detection For the quadrilateral text
detection, the ICDAR2015 dataset is used, and the proposed
method is compared with the other state-of-the-art methods
and reported in Table 7. For a fair comparison, the quadrilat-
eral bounding box prediction methods are only considered in
the comparison. Our method outperforms most of the existing
state-of-the-art quadrilateral bounding box prediction meth-
ods. Only the IncepText [32] is marginal better performing
than the proposed method with the difference in F-measure
of .002.

Detecting Horizontal Text: Our work is mainly focused
on text detection of the quadrilateral bounding box anno-
tated dataset. However, for the broad applicability of the
proposed approach, the horizontal text annotated dataset
is also used. Two horizontal annotated datasets, namely,
ICDAR2013 and COCO-Text, are taken. For a fair com-
parison of the ICDAR2013 dataset, the IC13 Eval [52]
and DetEval [53] metrics are considered. SOTA methods
have used these metrics for the ICDAR2013 dataset evalu-
ation. The proposed method’s result is compared with other
state-of-the-art approaches for ICDAR2013 and summarized
in Table 8.

Since the COCO-Text dataset has many versions of the
annotation, the V1.4 annotation of the COCO-Text dataset is
used for a fair comparison. The same has been used on the
ICDAR2017 robust reading competition. The comparison has
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TABLE 8. Comparison of the proposed method with state-of-the-art
approaches for ICDAR2013 dataset. [+: Multi scale testing].

IC13 Eval Deteval
Method R [ P [FM| R | P [ FM
TextFlow [55] | 0.76 | 0.85 | 0.80 | - - :
He ct al. [56] 076 | 085 | 080 | - - :
He ctal. [57] 073 [ 093 [ 082 | - - :
Tanctal [58] | 0.84 | 084 | 084 | - S —
Qinetal. [59] | 079 | 0.89 | 083 | = S —
TextBoxes [19] | 0.74 | 0.86 | 0.80 | 0.74 | 0.88 | 0.81
TextBoxes [19] | 0.83 | 0.88 | 0.85 | 0.83 | 0.89 | 0.86
TextBoxes++ [22] | 0.74 | 0.86 | 0.80 | 0.74 | 0.88 | 0.81
TextBoxes+++ [22] | 0.84 | 0.1 | 0.88 | 0.86 | 0.92 | 0.89

QuadBox 0.70 | 0.90 | 0.79 | 0.71 | 0.90 | 0.79
QuadBoxx* 0.81 | 0.88 | 0.84 | 0.81 | 0.89 | 0.85

TABLE 9. Comparison of the proposed method with state-of-the-art
approaches for COCO-Text dataset. The best and second best results are
boldfaced. [+: Multi scale testing].

Method Precision | Recall FM
RRD [30] 0.640 0.570 | 0.610
Lyu et al. [27] 0.725 0.529 | 0.611
Lyu et al.* [27] 0.629 0.622 | 0.626
Textboxes ++ [22] 0.558 0.560 | 0.559
Textboxes ++ * [22] 0.567 0.608 0.587
SR-DeepText [38] 0.478 0.593 0.529

[ QuadBox [ 0.642 [ 0.586 [ 0.613 ]

been shown in Table 9. We achieved the second-best results
on the COCO-Text dataset without having the model trained
on the COCO-Text dataset. However, from Table 9, it is
clear that our method achieves state-of-the-art performance
if a single scale testing is taken into consideration. Even the
single scale testing of our model on the COCO-Text dataset
has achieved similar performance to the other multi-scale
testing SOTA methods.

Line level text detection The performance of the pro-
posed method is validated on the line-level bounding box
predictions. The comparison has been made with other state-
of-the-art approaches in Table 10. The MSRA-TD500 is
both line-level text detection and a multi-lingual dataset.
Our method is also robust to generate good results on
multi-lingual and line-level text detection dataset from the
comparison.

From the comparison of the proposed method with
other state-of-the-art approaches, we have found that
the proposed method’s performance is one of the best
in quadrilateral bounding box representation, i.e., for
the ICDAR2015 dataset. The competitive methods for
ICDAR2015 dataset are IncepText [32] and [31]. The advan-
tage of the proposed approach over IncepText [32] is that
the proposed system removes the need for the ROI pooling
operation and still achieves similar results. The proposed
method has a drop of 0.002 in F-measure in comparison
with [32]. This ROI pool removal makes the proposed system
simple at the cost of the marginal drop in performance. On the
other hand, the proposed method is a single-stage network,
whereas [31] is a two-stage network. Usually, a two-stage
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TABLE 10. Comparison of the proposed method with state-of-the-art
approaches for MSRA-TD500 dataset [+: Multi scale testing, i:
Segmentation-based approach, i regression-based approach].

Method Precision | Recall | H-Mean
Yin et al [60] 0.71 0.61 0.66
Kang et al [61] 0.71 0.62 0.66
Yin et al [62] 0.81 0.63 0.71
Zhang et al 7 [63] 0.83 0.67 0.74
Yao etal T [33] 0.76 0.75 0.75
EAST + VGG T [28] 0.81 0.61 0.70
He et al. [57] 0.71 0.61 0.69
DeepReg ¥ [29] 0.77 0.70 0.74
RRPN ¥ [20] 0.82 0.68 0.74
RRD T [30] 0.87 0.73 0.79
PixelLink T [35] 0.83 0.73 0.77
Corner ¥ [27] 0.87 0.76 0.81
TextSnake ¥ [64] 83.2 0.73 0.78
CRAFT T [37] 0.88 0.78 0.82
SAE T [36] 0.84 0.81 0.82
DB T [39] 0.91 0.79 0.84
Quadbox ¥ 0.80 0.59 0.71
Quadbox * ¥ 0.84 0.68 0.75

network performs better than a single-stage, but our method
outperforms [31] by the margin of 0.008 in F-measure.

The proposed system also achieves similar performance to
the state-of-the-art method for the COCO-Text dataset, even
with the cross-modal validation. The competitor method is
corner [27] for the COCO-Text dataset. The [27] method
is similar to ours, but they detected several corners and
performed segmentation. However, inference steps are com-
plex. It includes the grouping and sampling of corner
points for probable text regions and then uses Rotated
Position-Sensitive ROI Average Pooling for box scoring.
In contrast, our approach does not rely on expensive ROI
pooling operation. Our method utilizes the geometric prop-
erty of the quadrilateral bounding box, which makes the
proposed system simple yet effective. In Table 7 and Table 9,
the proposed method shows its efficient performance for
incidental scene text.

Also, for the horizontal scene text dataset, the proposed
system shows good results. However, the method such as
TextBoxes [19] and TextBoxes++ [22] are based on the prior
anchor boxes. Whereas our proposed approach removes the
requirement of prior boxes for text detection. Again, this
makes the proposed system simple and effective. The geo-
metrical property helps to get better results for quadrilateral
representation (see Table 7) and competitive in horizontal box
representation. However, the proposed method’s limitation
appears due to the longer length text instance for the line-level
annotated dataset. For line-level annotation, methods such
as PixelLink [35], SAE [36], and DB [39] shows better
results than our method. These are the segmentation-based
method, and learning segmentation for the character and
space between characters as a text region seems eas-
ier for line-level text detection than the regression-based
approach.
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VI. CONCLUSION

This paper proposed a quadrilateral bounding box prediction
that combines the philosophy of direct and indirect regression
for text detection in the wild. Here, the geometry of quadri-
lateral for text detection is exploited to improve performance.
The simplistic approach is based on single-stage detection
with standard non-maximal suppression and region removal
multi-scale testing. The qualitative and quantitative results
show the effectiveness of the proposed method on publicly
available datasets. The proposed method also performs well
in the generalization test, conducted on the proposed SVTD
dataset and publicly available COCO-Text dataset. In the
future, the semantic information of object could be integrated
into the network for further improvement in the accuracy.
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