
Received January 24, 2021, accepted February 22, 2021, date of publication March 1, 2021, date of current version March 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3062860

Benchmarking Deep Learning Models for
Automatic Ultrasonic Imaging Inspection
JIAXING YE , (Member, IEEE), AND NOBUYUKI TOYAMA
National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan

Corresponding author: Jiaxing Ye (jiaxing.you@aist.go.jp)

ABSTRACT The success of deep neural networks in carrying out a wide variety of cognitive tasks also
raised expectations regarding the advent of AI for the ultrasonic testing (UT) data interpretation in the
Non-destructive evaluation (NDE) field. Though it is a growing area of research, we identify two main
barriers that hinder research in the field: the lack of real-world, annotated datasets accessible to the public
and the scarceness of benchmarked performance of the state-of-the-art deep learning models. To address
these issues, we first introduce a new dataset called ‘‘USimgAIST’’ which contains more than 7000 real
ultrasonic inspection images with both normal cases and defective ones from 17 types of flaws. Using
the dataset, we performed a comprehensive evaluation of representative deep learning models. Through
the study, we expect to validate whether existing AI models can achieve human-level ultrasonic image
understanding for defect characterization. Besides, all detailed benchmarking comparisons, including defect
detection accuracy, model complexity, memory usage, and inference time, are shown. We hope this study
exhibits an overview of performances of advanced learning models working for ultrasonic image analysis
and lays the groundwork for prospective practitioners to compare their methods and results fairly.

INDEX TERMS Anomaly detection, computer vision, deep learning, non-destructive evaluation, ultrasonic
inspection.

I. INTRODUCTION
All civil infrastructures, i.e., bridges, dams, and airports,
have finite life spans and start to degrade since they are put
into service. As time goes, deteriorations, such as corrosion,
fatigue, erosion, wear, and overloads, will continue until the
structures are no longer fit for their intended use. Among all
issues related to infrastructure safety management, condition
inspection is the foremost one since it is the decision-making
stage for any further process. To characterize different types
of damages, a couple of approaches for non-destructive eval-
uation (NDE) techniques had been developed, such as Radio-
graphic testing (RT) and ultrasonic testing (UT) [2]. Those
techniques had been applied to assess the health condition of
structures without interrupting their continued usefulness or
serviceability [3].

In recent years, the availability of advancement in infor-
mation technologies, i.e., cheaper massive storage and
high-speed wireless networks, greatly facilitate the vast col-
lection of NDE data. Moreover, the rapid progress of deep
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neural networks (a.k.a. Deep learning) have made comput-
erized interpretation of NDE data more achievable than ever
before. In order to effectively exploit massive sensor data to
distill crucial information for NDE with fewer/no expensive
human participation, there has been increasing interest in the
application of artificial intelligence techniques in NDE.

In this study, we focus on the topic of computer-aided
interpretation of ultrasonic inspection images, which had
been regarded as a mainstream NDE approach with high
sensitivity to most material damage and superior proficiency
in determining the defect location and size [4]. The general
principle of ultrasonic inspection is that an electrical pulser is
used to trigger an ultrasonic signal that propagates through
the target object in the form of waves; once defect being
encountered, part of the wave energy will reflect back to
the surface. By collecting the echo waves, the defects can
be discerned. As soon as it was possible to save and load
ultrasonic inspection into a computer, researchers have built
systems for automated analysis of non-destructive evaluation
data [5]–[7]. The objective is twofold: From the efficiency
aspect, the current NDE data interpretation relies on the
inspector’s expertise, the process can be time-consuming as
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FIGURE 1. Chartflow of an ultrasonic NDE system with automatic data interpretation.

the workload increases. At the same time, the automatic
inspection data analysis system is designated to alleviate the
overwhelming workload of inspectors. Secondly, condition
assessment is performed in a subjective manner based on the
inspector’s experience, making the results being vulnerable to
human errors [8]. On the contrary, an AI-enabled interpreter
is based on the collective intelligence that is distilled from
the massive NDE database, which is anticipated to be an
objective standard.

In broad terms, there are two approaches to NDE
data analysis: model-driven and data-driven approaches [9].
Model-driven methods establish a high-fidelity physical
model of the structure, usually by finite element analysis, and
then establish a comparisonmetric between themodel and the
measured data from the real structure [10]. If the model is for
a system or structure in normal (i.e., undamaged) condition,
any departures indicate that the structure has deviated from
the normal condition, and the damage is inferred. On the
other hand, data-driven approaches also establish amodel, but
this is usually a statistical representation of the relationship
between sensory data (vibration signal, acoustics, etc.) and
system state indicators (OK or NG) without characterization
of explicit knowledge of the physical behavior of the sys-
tem [11]. More precisely, data-driven approach is the study
of computational methods and algorithms for improving the
performance of NDE data understanding by mechanizing the
acquisition of knowledge from previous data collections. The
design of a data-driven pattern analysis system requires care-
ful attention to the following issues [12]: definition of pattern
classes, pattern representation, feature extraction and selec-
tion, classifier design and learning, preparation of training
and test samples, and performance evaluation. In recent years,
a number of ’human-versus-machine’ evaluations demon-
strated that state-of-the-art data-driven machine learning
systems are able to substitute the human role in various
challenging tasks, such as visual content understanding and
speech recognition, and thus the data-driven models for NDE
applications had drawing plenty of research efforts lately. The
objective of this paper is to perform a comprehensive com-
parative study upon the application of the latest deep learn-
ing approaches for automatic ultrasonic inspection image

interpretation. A general processing flow of chart is presented
in Fig 1, consisting of both sensing hardware and ultrasonic
image data interpretation system. The significant contribution
of this study is three-fold:

† One of the main challenges and hindrances to machine
learning research for ultrasonic NDE data is the lack of real
dataset that is accessible to the public. In this work, we intro-
duce an open-access database – USimgAIST [1], consisting
of over 7000 real ultrasonic inspection images with full anno-
tations. The open dataset is assumed to lay the fundamentals
for further studies and validations. The dataset is offered free
of charge for non-commercial use only under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International [13]. We licensed the dataset for the purpose
of academic research in a non-commercial context, also we
allow third parties to copy and distribute the original dataset
so long as the authors of the original are named.

† Based on the data collection, a series of comparative
experiments had been conducted to evaluate state-of-the-art
deep learning models for the task of automatic ultrasonic
inspection image analysis. We present the detailed bench-
marking results, which can be regarded as the baseline for
future studies in the field of automatic ultrasonic inspection
data interpretation. Moreover, the pre-trained deep learning
model on our dataset can be used to establish an initialization
point of the fine-tuning procedure to the weights of deep
learning model. By continually updating the deep learning
model on the task-specific dataset, the system is anticipated
to achieve superior performance comparing to the case of
training the network from scratch.

† We drew an extensive comparison of the critical specifi-
cations of each model, including architecture design, model
size and processing speed. Those factors can be decisive
when the model is deployed for real applications. We hope
the review of the models can facilitate practitioners from
industries.

The remainder of this paper is arranged as follows.
In Section 2, we present a concise historical review of
machine learning techniques employed for ultrasonic inspec-
tion data understanding from conventional models to nowa-
days deep learning. Section 3 describes the ultrasonic
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inspection image database, including the inspection device,
test specimen, and data annotations. In section 4, we intro-
duce the deep learning models under evaluation with a com-
prehensive comparison of model design and specifications.
Section 5 presents the full benchmarking results in terms
of data interpretation accuracies and efficiency. We finalize
this study with a summary, an prospective discussion in
Section 6.

II. RELATED WORK
The research aiming at building a human-like system to
interpret ultrasonic inspection data autonomously has been a
long-standing theme that can be traced back to half a century
ago [14], [15]. The task can be reformulated as: building a
mathematical model based on a massive collection of ultra-
sonic inspection images, known as "training data", in order
to judge whether the particular flaw-induced patterns are
presented in the observed data or not without explicit writing
program to do so. Initial attempts to employmachine learning
for NDE defect detection and classification focused on using
simple neural networks (i.e., perception) to classify various
types of NDE data [16]. As for the input ultrasonic signal,
there are two groups: the raw echo signal and ultrasonic
B-scan images. Accordingly, two different feature extrac-
tion approaches had been employed: Fourier and wavelet
transform [17] had been introduced to process A-scan waves
and co-occurrence features [18] had been investigated for
ultrasound B-scan images as well.

Starting from the early 2000s, along with the increase
in computational power, the used machine learning models
have become more powerful. Many authors have reported
favorable automatic ultrasonic results with advanced statis-
tical pattern analysis approaches, such as sparse coding [19]
and support vector machines [20]. Those research results
confirmed that novel machine learning/pattern recognition
techniques could substantially contribute to ultrasonic data
interpretation.

Over the last decade, deep learning models have revo-
lutionized many fields, including computer vision, natural
language processing, speech recognition [21]. The signifi-
cant advancements in deep learning models and computa-
tional hardware have facilitated more complex and powerful
approaches that even reach human-level performance. In the
meantime, the development of deep learning-enabled system
for ultrasonic NDE data interpretation has emerged as an
active research direction, and a series of articles had been
published [23]. It is noteworthy that though the name of
deep neural networks had been repeatedly mentioned [24],
the most applied neural networks are limited to 4 layers [25],
which is, indeed, NOT a deep learning solution. The primary
factor accounted for this is that the ultrasonic inspection
datasets used in the experimental validations are confined to
small-scale so that there is no significant benefit to employ
deep neural networks for generating efficient feature repre-
sentations. From the viewpoint of machine learning, we may
have a deep understanding of the limitations of current

FIGURE 2. The ultrasonic inspection device used for database generation.

studies. Too little training ultrasonic inspection dataset will
result in a poor approximation due to biased sampling to the
whole pattern space of ultrasonic inspection images. On the
contrary, choosing a powerful model such as a deep learning
model with hundreds of layers, in turn, will likely overfit the
training data and perform worse when encountering unseen
data in the real application. To alleviate the situation, more
latest works tried to increase the dataset’s size by using data
simulation data or augmentation [26]. In this study, we choose
the most efficient but straightforward way to collect more
real ultrasonic inspection image data. We hope to exploit
whether a larger dataset facilitates the deep learning models
to tune their many parameters to come up with somewhat
generalizable models.

III. ULTRASONIC IMAGING INSPECTION DATASET
In this section, we introduce our dataset of real ultrasonic
inspection images with annotations. The objective of this
research is to investigate the performance of state-of-the-art
computer vision techniques for replacing human roles in
ultrasonic inspection image interpretation. Particularly, In the
era of deep learning, openly accessible, fully annotated
dataset addressing specific task is regarded as the foundation.
Without domain-specific datasets, machine-learning algo-
rithms would have no way of learning how to characterize
the concealed knowledge available in the data.

Our research laboratory has a long research history regard-
ing ultrasonic inspection device development and generated
solid research records. We have previously developed a sys-
tem for the visualization of ultrasonic wave propagation in
general solid media [27], which employs a pulsed laser that
scans an object for ultrasonic wave generation. Then a con-
tact transducer is attached to the object specimen to capture
a series of snapshots of the propagating waves. We have
successfully applied it to the non-destructive inspection of
various structural components. Fig.2 displays a photograph
of the ultrasonic inspection imaging system, and key parts
had been annotated.
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FIGURE 3. Demonstration of flaw types and sensor installation.

TABLE 1. Summary of settings of ultrasonic imaging inspection device.

TABLE 2. Summary of the specimen specifications.

A. ULTRASONIC INSPECTION IMAGE COLLECTION
During an ultrasonic inspection, several key parameter set-
tings, such as probe frequency and pulse repetition frequency,
can play an essential role in this analysis. To ensure the
inspection data quality, we have adjusted the parameters, and
the optimal settings are as presented in Tab. 1.

Moreover, The specifications of defects, such as shape,
size, and depth of flaws, are variational factors affecting
visual inspection. To evaluate the versatility of automatic
imaging data interpretation methods, we prepared a batch of
stainless steel plates with various types of flaws and details
are shown in Fig. 3. In the evaluation, two types of defects
were investigated: drill holes with diameters from 1mm to
5 mm and slits with lengths ranging from 3mm to 10mm.
Tab. 2 summarized the specimen details. Notably, in addition
to the 17 specimens with flaws, we further prepared one plate
without damage to it. By including the ultrasonic images
from the healthy specimen, we can efficiently exploit the
key metric of false alarm rates (FAR) for anomaly inspection
tasks. A laser scan is performed on the central region of 3mm
thick specimens with 100mm by 100mm size (green zone) on
both front/back sides of steel plates. Moreover, the incident

FIGURE 4. Examples of USimgAIST ultrasonic database (left: NG |
right:OK).

angle of the transducer installation has been regarded as a
critical parameter that significantly affects ultrasonic imaging
patterns, especially when examining slit flaws. To exploit
the robustness of the data interpretation system to those
variations, we altered the incident angles from 0 to 90 with
22.5 intervals, and the resultant images had been stored in the
dataset. Overall, we collected 7004 ultrasound images with
a 3615/3389 split regarding without-defect and with-defects
cases.

In Fig. 4, we show two sets of ultrasonic inspection samples
captured from healthy and defective specimens, respectively.
By visual comparison, the flaws can be distinguished at a
glance due to the evident flaw-induced reflection waves.
However, from the viewpoint of an algorithm, it is quite
difficult to define such reflection waves with explicit pro-
gramming quantitatively. In this regard, we introduce cut-
ting edge deep learning algorithms to verify how good they
can replicate human performance in terms of making those
judgments.

IV. REFERENCE DEEP LEARNING MODELS
Convolutional neural networks (CNN) denote a family of
neural network architectures that is dedicated to processing
matrix-shaped data, i.e., images [21]. This network structure
was first proposed by Fukushima in 1980 [22]. However,
the research and application toward neural networks are
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FIGURE 5. Representative design of deep learning models.

limited due to low computation hardware and insufficient
datasets as then. Deep CNNs generally have complex archi-
tecture and time-intensive training phase that highly demand
the parallel computation resources and larger memory. Since
2006, significant efforts have been made to tackle the CNN
optimization problem, which revived the research in deep
learning [28]. In this section, we elaborate on the most
widely-applied architectures which would be employed to the
evaluation for ultrasonic inspection image analysis through
this study. In detail, our review consists of three parts: 1.
A basic introduction to each model, 2. Summarization of
the representative design of each model, 3. A comparison
table of model specifications including detailed settings in
the framework, parameter size and multiply accumulate oper-
ation (MACs) counts.

1) AlexNet [29]
In 2012, AlexNet significantly outperformed all the com-
petitors using conventional hand-crafted features and won
the difficult ImageNet challenge for visual object recognition
called the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) by reducing the top-5 error from 25% to
15.3%. It is the point in history where interest in deep learn-
ing increased rapidly. The AlexNet is composed of 5 layers
of convolution operators followed by three fully connected
layers. It is noteworthy that it also highlighted a batch of
new techniques for computer vision research, such as the
use of GPU to train a model, and many integral parts of
standard deep learning models, including convolution kernel,
max pooling, dropout, data augmentation, rectified linear
unit (ReLU) activation and stochastic gradient descent (SGD)
optimizer. After AlexNet, the exploration of novel architec-
tures took off, and in the past five years, a trend emerged to
build far deeper and wider models.

2) VGGNet [30]
VGGnet shows up as the runner-up at the 2014 version of
the ILSVRC competition. The model came up with a deeper

16-layer structure and the appealing point is that it has a very
uniform architecture with only 3 × 3 convolutions. It is still
themost preferred choice in the community for extracting fea-
tures from images. Moreover, because of the clarity in model
design and superior reproducibility of coding, VGGNet has
been used in many computer vision applications and chal-
lenges as a baseline feature extractor in nowadays.

3) ResNet [31]
It has been commonly acknowledged that with sufficient
training data, increasing the network depth should increase
the accuracy, as long as over-fitting can be carefully sup-
pressed. Nevertheless, the problem does occur with increased
depth; that is, the stimuli signal required to update the
weights, which arises from the difference between the net-
work output and ground-truth, becomes very small at the
earlier layers and thus making the weights update intractable.
The case is described as vanishing gradient. Residual net-
works are designated to tackle this issue by constructing the
network through modules called residual models. The main
idea of residual networks is to learn an additive residual
function with respect to an identity mapping that is based
on the preceding layer’s inputs, accomplished by attaching
an identity shortcut connection. Concretely, residual modules
perform the following computation:

yl = h(xl)+ F(xl,Wl,k|1≤k≤k )

xl+1 = f (yl) (1)

where the input to the l-th residual module is denoted by xl ,
represents its weights and biases, k is the number of layers
in a module, F represents the residual function such as a
stack of convolutional filters, f is the operation that follows
element-wise addition, and h is an identity mapping of the
form h(xl) = xl. An illustration of the residual module
is shown in Fig 5. Residual networks have brought about
some empirical success. Through the changes of the additive
residual link mentioned above, ResNets were learned with
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TABLE 3. Specifications of deep learning models under evaluation.

network depth of as large as 152. It achieves better accuracy
than VGGNet and GoogLeNet while being computationally
more efficient than VGGNet. ResNet-152 achieves 95.51
top-5 accuracies on the ImageNet-1k challenge in 2015.

4) INCEPTION-v3 [33]
On top of the deeper networks, more complex designs
have been exploited, aiming at improving model training
efficiency and again reducing the number of parameters.
Inception-v3 [33] is a representative example that had been
proposed in 2015. Themotivation of Inception-v3 is to extract
multi-level visual features while keep relatively low compu-
tation complexity by employing parallel convolution kernels
and efficient factorization. The detailed plot of inception
model is presented in Fig. 5. With a batch of appealing
components and tweaks, including RMSProp optimizer, Fac-
torized and asymmetric convolutions for parameter reduction,
and Auxiliary classifier, Inception-v3 significantly boosted
the performance in ImageNet classification compared to the
previous Inception models.

5) WIDE ResNet [34]
Stemmed from ResNet, Wide ResNet simply increased num-
ber of channels of ResNet. Though the change is subtle,
it indeed produces superior performance compared to its pre-
decessor. Another benefit brought by design is that increasing
the width instead of depth makes training more computation-
ally efficient. Due to its high performance and simplicity in
computation, we add the method to the comparison list.

6) DenseNet [35]
So far as we reviewed, in standard conventional neural
networks, the input image goes straight through multiple
operation blocks to obtain higher-level features. In ResNet,
identity mapping is added to facilitate the gradient prop-
agation backward. In comparison, DenseNet established
additional connections between each layer, and thus the

’collective knowledge’ can be efficiently transmitted for bet-
ter feature representation learning with respect to the given
dataset. In addition to the superior feature learning ability, it is
also noteworthy that the feature maps sharing between layers
are beneficial from the viewpoint of computational efficiency
and memory usage. Currently, DenseNet is regarded as one
of the most applied models for various machine learning
applications.

7) SQUEEZE-AND-EXCITATION (SE)-ResNet [36]
SE-ResNet is the latest winner of the ILSVRC 2017 clas-
sification challenge and achieved an impressive 25% rel-
ative improvement over the winning model of 2016 [36].
Upon the review to the representative deep learning model,
the primary approaches are establishing various connections
between stacking layers to boost accuracy. However, SE-Net
considers how to evaluate the importance of the feature maps
that learned through model training. To this end, SE-Net
attempted to exploit global information to emphasize infor-
mative features and suppress less useful ones selectively.
In other words, SE-Net block, shown in Fig.5, intrinsically
introduces dynamics conditioned on the input, helping to
enhance feature discriminability. The authors proposed two
variations of SE-Net: SE-ResNet and SE-Inception, which
were built on top of the successful models of ResNet and
InceptionV3, respectively [36]. We choose the SE-ResNet for
the evaluation due to the superior performance. We expect to
see whether SE-ResNet can dominant the ultrasonic image
understanding task again.

V. BENCHMARKING EXPERIMENTS
A. IMPLEMENTATION DETAILS
In order to provide a uniform and rigorous benchmarking
of deep learning models for ultrasonic images recognition,
we exactly reproduce the same policies for experiments. The
PyTorch package [38] is used for network processing with
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TABLE 4. Computing resource details.

TABLE 5. Model training hyper parameters.

FIGURE 6. Demonstration of data augmentation methods.

supporting parallel computation libraries of cuDNN-v7.0 and
CUDA-v10.1. Regarding the hardware specifications, we per-
formed the experiments on AI Bridging Cloud Infrastructure
(ABCI) [39], and the details are shown in Tab. 4.

In addition, we performed random search to determine the
hyperparameters in model training. The resultant settings are
presented in Tab. 5. As for optimization scheme selection,
we applied root mean square propagation (RMSprop), which
had been proven to be efficient and stably for parameter
inference by automatically adjusting the learning rates.

All the other settings, such as weights initialization meth-
ods and dropout ratios, we assigned them by default values.
In other words, we hope this benchmarking is for the off the
shelf models without extensive tweaking.

To enhance the generalization power of models, we applied
data augmentation to inject variabilities to original samples.
For each ultrasonic inspection image, another five augmented
images had been generated through block dropout, random
rotation, position translations, affine transform, and image
reverse. A demonstration of data augmentation is shown
in Fig. 6.

At the training stage, we randomly selected 30% of all aug-
mented images and fed them to deep learningmodels together
with original image data. At the evaluation stage, we adopted
a leave-one-specimen-out protocol; that is, at each iteration,
we select one stainless steel plate specimen, and all the ultra-
sonic propagation imaging data generated from it would be

assigned as testing data. In contrast, all the other images col-
lected from all the other specimens will be split into training
and validation sets on an 80%-20% ratio for each iteration.
In the meantime, the undamaged specimen provided another
155 frames of ultrasonic images, which can further gener-
ate 775 augmented images to facilitate model training. The
resultant 930 snapshots from the damage-free specimen are
randomly inserted into training/testing/validation sets with a
split of 65%-25%-10%. The evaluation is completed as the
process repeats until all specimens had been iteratively tested.
Finally, we obtain the predicted condition labels for the whole
dataset. We normalized the images to 299 × 299 pixels for
Inceptions-v3 model and 224 × 224 for all the other models
considered.

B. RESULTS COMPARISON
In this part, we present results obtained throughout experi-
mental validation. First, we introduce the evaluating metrics,
which can be an essential part of assessing the prediction
models. By comparing the prediction results with ground
truth labels, we can derive four major statistics: True Positive
(TP): defect images correctly detected. True Negative (TN):
normal images classified to be non-defect. False Positive
(FP): normal images incorrectly detected to have a defect.
False Negative (FN): defect images incorrectly classified to
be no-defect. Upon them, we introduce four metrics, i.e., pre-
cision (Pr), Recall (Re), Accuracy (ψ), and F-score (γ ):

Pr =
TP

TP+ FP
, Re =

TP
TP+ FN

(2)

ψ =
TP+ TN
P+ N

, γ = 2 ·
Pr · Re
Pr + Re

(3)

Furthermore, Tab.2 manifests that the size and shape of
flaws are varying significantly. In order to evaluate the robust-
ness of the deep learningmodel to those variations, we further
extracted the specimen-wise averaging upon the above key
metrics. The computation details are as follows:

P̄r =
1
17

17∑
p=1

Prp, R̄e =
1
17

17∑
p=1

Rep (4)

ψ̄ =
1
17

17∑
p=1

ψp, γ̄ =
1
17

17∑
p=1

γp, (5)

where p ∈ [1, . . . , 17] is the induce of specimen. The models
are ultimately benchmarked in terms of the P̄r, R̄e, ψ̄, γ̄ .

The full evaluation results are presented with Tab.6.
By seeing the table, we can find several interesting points.
First, we added some representative computer vision tech-
niques to the comparison, including histogram of gradi-
ents (HoG) and gradients of local auto-correlations (GLAC).
We re-implemented those systems as presented in [37] and
put them into the benchmarking on the USimgAIST dataset.
Since we followed the same settings at model training/testing
stage, and thus the comparison is fair and meaningful.
According to the results, we find the latest models, even with-
out fine-tuning at all, can easily outperform the conventional

36992 VOLUME 9, 2021



J. Ye, N. Toyama: Benchmarking Deep Learning Models for Automatic Ultrasonic Imaging Inspection

TABLE 6. Results of automatic ultrasonic image pattern classification by using machine learning methods.

TABLE 7. Efficiency comparison of deep learning models.

FIGURE 7. Summary chart reporting model performance (F1-score). The
size of each ball corresponds to the model complexity for inference.

computer vision-based approaches. Although the dataset is
not that big, the power of deep learning architectures can be
clearly manifested. The second finding is that the evolution of
deep learningmodels in the last five years is so significant that
the latest ones like SE-Net and DenseNet are quite efficient
compared to the predecessors in just two years. Moreover,
in [37], we had proposed hand-crafted neural networks with
residual module design, and after an extensive fine-tuning
process, the averaged accuracy on 17 specimens reached
to 95.68%. In contrast, the benchmarking tells us that both
DenseNet and SE-Net models can achieved accuracies over
97%which outperformed the previous result with a clear mar-
gin. It should be noted that the deep learning models tested
are just off the shelf ones without detailed tuning in a batch
of hyperparameters. The results show that deeper stacking
networkswith efficient cross-layer connections are preferable
to characterize rich discriminant from image data from the
relatively small dataset. Besides, we also benchmarked the

processing efficiencies of each model, and the results are
shown in Tab. 7. Interestingly, the SE-ResNet, ranked the
2nd among all other models in classification accuracy, also
maintained a 3rd place in processing efficiency in terms of the
number of images being processed per second (fps) at testing
stage. The high computation speed can be appealing merit
when the model is considered to be deployed to practical
applications. Finally, we conclude the benchmarking with
Fig. 7, which manifests both model accuracy comparisons
and computation efficiencies.

VI. CONCLUSION
Automatic data interpretation for ultrasonic imaging inspec-
tion garnered a lot of research interests recently, and plenty
of research articles had been presented. In this paper, we con-
tribute two aspects to the research field. First, we introduce
the USimgAIST dataset, which consists of 7004 real ultra-
sonic inspection images collected from 18 stainless steel
plates. Meanwhile, the data annotations are released together
with the ultrasonic images. Moreover, we benchmarked the
dataset by using state-of-the-art deep learning models. The
results can be regarded as the baseline to facilitate the eval-
uation and comparison of methods for prospective studies.
In addition, there are numerous possible ways to take advan-
tage of the dataset, some of which include: Compiling a
replicable survey comparing various approaches proposed in
recent research papers and combining the presented dataset
with private datasets to validate novel learning schemes of
transfer learning and semi-supervised learning.Moreover, for
practical development, the pre-training deep learning model
obtained from our dataset can be used to initialize the weights
of network. By continually updating the weights on the indi-
vidual dataset, the resultant model is anticipated to achieve
superior performance comparing to the one that trained from
scratch. We hope the dataset together with benchmarks can
open the path to new research in the field of automatic
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ultrasonic inspection image interpretation for non-destructive
evaluation.
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