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ABSTRACT Cameras are being used everywhere for the safety and security of citizens in different countries.
Using a machine to detect humans in a photo or a video frame is a very complicated and challenging task.
Various techniques have been developed for this purpose, which mainly rely on Artificial Intelligence. This
article aims to provide a comprehensive review and analysis of the literatures from a descriptive perspective,
which is its main differentiator from the existing survey papers in this area. Firstly, the vision-based human
detection techniques and classifiers are elucidated in conjunction with the variants of feature extraction
techniques. Secondly, various pros and cons of such techniques are discussed. Then, an investigation has
been conducted and reported based on the state-of-the-art human detection descriptors (e.g. Log-Average
Miss Rate and accuracy). Although techniques such as Viola-Jones and Speeded-Up Robust Features
can detect objects in real-time and overcome Scale-Invariant Feature Transform (SIFT) limitations, they
are still sensitive to illuminated conditions. Other techniques such as SIFT, Bag of Words, Orthogonal
Moments, and Histogram of oriented Gradients provide other interesting benefits which include insensitivity
to occlusion and clutters, simplicity, low-order element construction and invariance to illuminated conditions;
nevertheless, they are computationally expensive and sensitive to image rotation. A meticulous review along
similar lines revealed that the Deformable Part-based Model performs relatively better due to its ability to
deal with particular pose variations and multiple views, occlusion handling (partial) and is application-free
while its counterparts focus on only a single aspect. This article highlights and provides a brief description
of each available data-sets for human detection research. Various use-cases of human detection systems
are also elaborated. Finally, various conclusions are derived based on the conducted review followed by
recommendations for future directions and possibilities to further improve the speed and accuracy of human
detection systems.

INDEX TERMS Computer vision, object detection, human detection, feature extraction techniques, classi-
fiers.

I. INTRODUCTION

A novel coronavirus (COVID-19) pandemic [1], [2] affecting
the respiratory portion of the human system is currently
ongoing [3] causing a high degree of mortality and morbidity
globally [4]. More than 2.5 million people lost their lives
and 113 million people are infected by this virus across the
globe [5] as of February 2021. There is no proper treatment
yet to cure this disease. This virus is contagious and can
be transmitted from one infected person to another person.
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According to the World Health Organization (WHO) infor-
mation, its spread can be reduced by maintaining social dis-
tancing, wearing a face mask and washing hands [6]. In order
to reduce the spread of this virus, human detection can play
a very important role, for example, by checking whether
people wear facial mask correctly or follow social distancing
instructions.

With the growth of modern technology, human detection
can play a major role in avoiding or minimizing accidents
or death due to natural calamities. Every year, approximately
60,000 people lost their lives due to natural disasters, which
is, 0.1 percent of the world total deaths [7]. In Australia,
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for instance, more than 28 people were killed and over
3,000 houses were destroyed by bushfire [8]. At least 47 peo-
ple were reported dead in volcanic eruption in New Zealand
[9]. Using Unmanned Aerial Vehicles (UAV) [10], imagery
human can be detected and therefore, accidents or deaths can
be avoided in these areas.

Human detection can play a key role in e-health applica-
tions, for instance, to detect the fall of elderly people. The
population of the elderly is increasing worldwide. By 2050,
the number of old people will increase to more than 20 per-
cent in the United States and more than 30 percent in the
European countries and China mainland [11] and around the
world, the elderly population will reach 2 billion [12]. Many
studies have cited the fall incident as a serious issue for
aging people because the majority of these elderly live by
themselves [13].

Annually, an estimated 1.35 million people lost their
lives and 20 to 50 million people around the world
experience non-fatal complications because of traffic acci-
dents [14]. In the United States, more than 5,000 pedes-
trians lost their lives due to road accidents and around
130,000 pedestrians needed medical treatments with non-
fatal complications in 2015 [15]. Traffic death ratio can
be minimized by using autonomous car techniques and
devices [16], [17] which are capable of interacting with
people [18].

With the continuous increase in the crime rate and public
concern due to terrorist activities for the past few decades,
public security is an inevitable consequence and human
detection systems, can be used to monitor, manage and
enforce law in public areas. Every year around 21,000 people
lost their lives due to terrorism. 0.05 percent of the total
worldwide deaths in 2017 is caused by terrorism [19]. The
need to install a large number of human detection systems
has increased significantly in public areas after the terrorist
attacks in New York [20], London [21] and some other cities
in the world. These happenings are serious enough that robust
detection systems need to be designed and deployed in such
scenarios. The role of human detection system is considered
to be a promising solution for ensuring public safety; hence,
it has become one of the important areas of research in the
field of computer vision.

Accurate identification of particular objects is essential
in order to perceive and understand the specific details of
images. Object detection, which includes identifying the exis-
tence of a certain object in a picture and figuring out its loca-
tion, is considered as a key problem in the field of computer
vision. Moreover, image understanding includes not only
detecting objects in a particular scene but also categorizing
the detected objects in their respective classes [22]. Visual
object detection is primarily concerned with the classification
of object categories [22]. Figure 1 shows an example of the
basic work flow of a machine learning paradigm for object
detection. For instance, we want to classify three different
objects: a cat, ahuman and a horse. In order to train a machine
learning model, the first task is to collect training images with
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FIGURE 1. xample of machine learning work flow for object
classification across three different classes (cat, human and horse).

label data. The next task is to extract the features and add it
to the classification model.

Features [23] can be represented by any object proper-
ties such as colours, edges, corners, blobs or regions and
ridges. The success of the training process depends on the
feature extraction, classifier selection and training step (i.e.
the iteration process). Among these steps, feature extraction
is very important to get the desired outcome as it enhances the
trained models’ accuracy from the input data by removing
unwanted or unnecessary features. Feature extraction min-
imizes the data dimensionality by extracting the redundant
data, thus improves the inference and training speed. Ideally,
we want the features to be invariant to different lighting
conditions, and should have the ability to handle changes in
scale or rotation. Upon extracting all possible features from
the images, these features are added to the training model.
Then, they are fed to a suitable type of classifier, depend-
ing on the speed and accuracy. Nearest Neighbour classifier
(NN), Decision Tree and Support Vector Machine (SVM) are
commonly used as classifier models. Once the training model
is set, then for a given test image, it is possible to extract the
same features from the test image and as a result, to predict
the correct category class from those features by using the
trained model.

Human can easily detect objects in images or videos
without difficulties. They can understand emotional status,
relationship among people and count the number of human
occurrences in the pictures. Computer vision is expected
to give technological assistance for this human capability.
The computer vision’s aim is to make a computer realize
a picture or a video with the help of the eyes of a digital
camera. Computer vision is a research field that entails dif-
ferent techniques to acquire, analyze, process and understand
pictures [24].

Human detection is one of the core tasks in computer
vision. It is challenging to detect human in images due to
various factors which include illumination conditions [25],
background clutter [25] and occlusion (partially or fully
detected) [26]. Early methods had failed to detect humans
in a real world environment [27], took more time [28] and
produced less accurate results [29] due to distance [30] and
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appearance changes [31]. These factors make it extremely
problematic to find a universal representation for the human
object. Despite these shortcomings, human detection is being
used in many applications (for details see the application
part).

Review or survey articles can be categorized into two major
groups known as Review and Comparison. These two groups
can be further divided into four divisions: Brief Reviews, First
Level Evaluation, Deep Evaluation and Descriptive Reviews
[32]-[34].

We have investigated the existing vision-based human
detection surveys, in which the authors reviewed human
detection mostly for specific applications. These examples
include detecting pedestrians for safety in “‘driving assis-
tance” method [35]-[39], human activity recognition [40]
and “human motion” analysis method [41]-[43].

Zhou et al. have given a brief review on the human detec-
tion and tracking techniques from a diagnostic and clin-
ical perspective. The authors focused on the variation of
non-visual tracking methods with sensing techniques (iner-
tial, magnetic and other sensors) and visual tracking meth-
ods (marker-free or marker-based) [44]. Gandhi et al. have
written another comprehensive review on human detection
focusing on mainly “‘Pedestrian Protection Systems (PPSs)”.
Furthermore, the authors included probabilistic models to
analyze the human behavior with the purpose of avoiding
collisions between vehicles and human [35].

Schiele et al. have written a deep evaluation review
on human detection in which the authors mentioned the
improved performance combining laser-based and visual
human detection techniques. Moreover, the authors provided
apotential research guideline for visual human detection [45].
Geronimo et al. have given a comprehensive deep evaluation
review for human detection. The authors detected human
for “Advanced driver assistance systems (ADASs)”” focusing
especially on ‘““pedestrian protection systems (PPSs)”” while
mentioning future guidelines and challenges in the field [37].

Paul et al. have provided a first level evaluation review on
human detection. The authors focused on the conventional
approaches: spatio-temporal filtering, optical flow and back-
ground subtraction methods to detect the human from the
surveillance videos. For classification purpose, the authors
used motion-based, texture-based or shape-based features
[46]. Nguyen et al. have written an inclusive first level eval-
uation survey for human detection. The authors discussed
some human detection problems such as real-time issues
and partial occlusion. Besides, the authors mentioned the
failures and successes of the existing methods [47]. Brunetti
et al. have provided another first level evaluation review for
human detection, particularly focusing on pedestrians. The
authors reviewed vision-based techniques with deep learning,
especially CNN (Convolutional Neural Networks) techniques
for pedestrian detection and tracking [48].

We have observed only one short descriptive review so
far on human detection [49]. Nevertheless, the article did
not satisfy the descriptive review requirements. The authors
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described several descriptors while ignoring some revolution-
ary methods. Besides, the authors did not mention the pros
and cons of the described methods. This study is different
from the existing review articles aforementioned in the fol-
lowing areas:

« The key objective of this article is to offer a compre-
hensive review on human detection utilizing various
machine learning techniques.

« Vision-based on revolutionary methods with their vari-
ants are described in this article while mentioning the
successes and failures of various methods/models.

o Available human descriptors are investigated and
reported based on their log-average Miss Rate (MR) %)
and accuracy.

o Human detection applications are discussed and avail-
able data-sets are listed with brief description.

« A comprehensive guideline is provided to improve these
descriptors, particularly for speed and accuracy.

o Open problems and future directions are elaborated to
provide a foresight of the possible gaps that also deserve
additional attention and which can later be addressed as
part of the future work in the area of human detection.

In general, this review article lays the necessary ground for
those who are keen to explore the area of human detection
based on computer vision.

Before heading for the full study, it is necessary to address
the outline of the present work. The contents are as follow:
(section II) explains the human detection methods and their
variants with their successes and challenges, (section III)
illustrates the classifiers with their pros and cons, human
detection applications are described with advantages and
limitations (in section IV), available human detection data-
sets with brief description are discussed (in section V), state-
of-the-art human detection methods’ results are reported (in
section VI), (in section VII) some suggestions to improve the
existing descriptors are provided and open issues problems
and future direction are given, and finally, section VIII con-
cludes the article.

Il. FEATURE EXTRACTION TECHNIQUES
In the past decade, researchers have been paying much atten-
tion to design better hand crafted features to enhance the
object detection accuracy and robustness. A large number
of standard features have been offered by computer vision
community for object detection, for example *‘scale-Invariant
Feature Transform (SIFT)” [50], “Speeded Up Robust Fea-
tures (SURF)” [51] and “Histogram of oriented Gradients
(HoG)” [52]. Figure 2 provides a taxonomic view of various
feature extraction techniques for human detection.

In the subsequent sections, we summarize some of the most
popular feature extraction methods.

A. VIOLA-JONES MODEL
The Viola-Jones [53] face detection algorithm is the first
framework for robust face detector — proposed in 2001 by
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FIGURE 2. Taxonomy of various feature extraction techniques for human detection.

Viola and Jones [53]. The system uses Haar features and

able to perform real time detection of faces. Even though,

the training of the system is slow, the detection is fast.
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During the training phase, small sub-windows of different
shapes (shown in Figure 3(a)) are applied across the bounding
boxes in the training images. The features are computed by

is
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FIGURE 3. (a) Shows different Haar features. (b) Example of Haar feature
that produces no signal when applied on a random distribution of
intensity values (on the left) but the same Haar feature, when placed over
forehead and eyes (right side), produces some signal.
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FIGURE 4. Constructing an integral image.

the following Equation (1):

I:ZIwa_ZIbu (1)

where I,,, and I, are the intensities of white and black areas
respectively.

The result of applying such a sub-window will result in a
scalar value for a gray scale image. In case of color image,
it will be a vector of three elements — based on the three color
channels. Figure 3b shows an example of applying such sub-
window to different images. The left image of Figure 3b will
produce no signal or zero when a particular sub-window is
selected for feature computation; nonetheless, with the same
sub-window, when placed right across the forehead and eyes
of a human face (right image in Figure 3b) will produce some
signal. The signal will not be very strong as the system is not
robust i.e. they will form a weak learner. The authors came
up with the idea that by using several of these weak learners
— which are able to produce signals at different locations of
a face with at least an accuracy of more than 50% — a robust
face detector can be built.

One major problem with this approach is that summing all
the values under the sub-window and also with many vari-
ations of sub-windows can be computationally very expen-
sive. To solve this issue, the authors proposed a concept of
integral images for faster computation. This simple concept
of integral image is shown in Figure 4c. In an integral image,
the value of a particular pixel (x, y) is represented as the sum
of all the pixels under the region shown in blue rectangle
in Figure 4c i.e. integrating all the pixels in a 2D space.

CRS(x,y) = CRS(x — 1,y) +i(x,y) 2)
H(x,y) =1Hx,y—1)+ CRS(x,y) 3)

Equation (2) and (3) show the procedure on how to com-
pute the integral values from an image. Where i represents
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the original image, CRS denotes the cumulative row sum,
and II denotes the integral image. Thus only 3 operations
((1) computing the integral value at location (x,y — 1)), (ii)
cumulative sum of the current row upto the point (x — 1, y)
and (iii) finally adding them together) are required to compute
the value of the integral image at any location and it will be
3n where n is the pixels in an image. So it is a linear operation
in time.

sum=A—B—-C+D )

where A, B, C, D indicate the coordinates of rectangle ABCD.
Now given any rectangle (see Figure 4e) over the image,
the sum of original image values within the rectangle can
be computed by using the Equation (4). Thus to obtain the
sum of all the pixels in the original image, we only need to
perform three addition/subtraction operations. Subtracting B
and C from A in the integral image will subtract point D twice,
thus in the formula, D is added again.

In the next stage, a classifier is built with the help of
boosting. Boosting is a learning algorithm that takes all the
weak learners and produces a accurate ensemble classifier
out of those weak learners. Before we train the system, data
should be labeled with the bounding boxes of a human face
which will be serving as positive samples and any regions
without the faces can be used as negative samples. Prior to
the training, some fixed weights are assigned for the positive
and negative samples. During each iteration of the training,
one weak learner is selected that gives the best performance
and raise the weights of the positive samples that were mis-
classified by the selected weak learner. Finally, the classi-
fier is computed as a linear combination of all the weak
learners where the weights of each learner is proportional
to its accuracy. As the boosting iteration increases, every
time the system has to out perform the previous round of the
boosting. Hence, the system gets better with time as more and
more features are added. Among various boosting schemes,
AdaBoost is the most commonly used. In this method, a series
of classifiers are trained in a cascading manner. The combi-
nation of complex classifiers in a cascade structure increases
the speed of the detector dramatically by focusing attention
on promising regions of the image.

1) SUCCESS

Integral image is used to calculate rectangle features for
object detection that maximizes detection accuracy while
minimizing computing time. Even though the train time is
higher, it can perform real time face detection after training.
Viola and Jones can detect walking human on low resolu-
tion images under difficult conditions such as rain and snow
by implementing of a state of the art pedestrian detection
system [54].

2) CHALLENGE(S)

This method lacks all the fine details of the image as it only
relies on coarse intensity difference. It also does not account
for any texture or shape information. The system is very much
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FIGURE 5. Schematic representation of constructing scale space images
using different values of sigma. Edge maps at different scales are
generated by taking pairwise difference of Gaussian scale output to
produce the Laplacian of Gaussian (LoG).

dependent on sensitivity of the intensity values; any changes
on lighting condition will result in failure in the detection
phase. This is also not suitable for general object detection
[55], [56].

Table 1 illustrates a brief evaluation of Viola-Jones, SIFT,
PCA-SIFT and SURF methods.

B. SCALE INVARIANT FEATURE TRANSFORM (SIFT)
Scale Invariant Feature Transform (SIFT) [62] is one of the
most influential methods in the computer vision community
around in the year 2004. It is commonly used for recognizing
objects, once the system is trained with few example images
of the same object. It is an interest point detector (also known
as key point extractor) that addressed the problem of match-
ing features by providing local descriptors for the key points
which is capable of coping with changes in scale and rotation.
While detecting edges using techniques like Canny edge
detector [71] or by using Laplacain of Gaussian, the primary
challenge is to select the value of sigma (o) i.e. what should
be the width of the mask and there is no easy answer for
that. To overcome this problem, the author used many val-
ues of sigma by creating a scale space of any given image.
The scale space is created by using Gaussian function with
progressively increasing sigma (o) value, which produces
blurred images at different scales (see Figure 5). The scale
space of an image is defined as a function, L(x, y, o), where
L represents the level of the scale space and is produced from
the convolution of a variable-scale Gaussian, with an input
image, I(x, y) by using the equation (5).

L(x,y,0) =G(x,y,0) ®1(x,y) &)

where ® is the convolution operation in x and y, and

G(x,y,0) = e~ (x* +yH)/20? (©6)

1
2mo?

From the heat equation for Gaussian, we can take the
derivative of Gaussian (G) with respect to sigma (o), it should
be equal to the Laplacian of Gaussian (LoG) (V2 G), multi-
plied by sigma (o).

T = oV*G (7
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Here Gaussian (G) is function of three variables (x, y, and
o). From the approximation of derivative, we can compute the
rate of change of G with respect to o by subtracting the values
of Gaussian at some point o with another value of Gaussian at
another point ko and then by dividing the difference (ko — o)
— as shown in the following equation (8).

G N G(x,y,ko)—G(x,y,0)

V3G = — 8
? do ko —o ®)

The equation (8) can be rewritten in the form of equation

).
G(x,y, ko) — G(x,y, 0) ~ (k — )o>V>G 9)

Equation (9) shows that we can approximate the Laplacian
of Gaussian by taking the difference of Gaussian filter at o
and ko - which is an efficient way to compute LoG (see
Figure 5). Laplacian of Gaussian (LoG) is then employed to
identify the potential interest points.

However, the obvious question is how do we combine all
the edge maps to select the appropriate interest or key points?
According to this algorithm, if we want to check a point
whether it is a interest or key point or not (see the red pixel
in Figure 5), we need to scan 3 x 3 neighborhood of the same
scale as well as one scale above it and also one scale below
it. The pixel is only considered to be an interest or key point
if it is a local extrema i.e. either the value is the largest or the
lowest out of all 26 points from the 3 x 3 neighbourhood
including the adjacent levels (Figure 5). Note that for 3 x 3
neighbourhood, each level will have 9 points, all together -
including the adjacent levels (the level below and the level
above) - it is 27 points and the central point (shown in red
color (Figure 5)) is compared with rest of the 26 points.
Ultimately, all these key points are finding blobs. The size
of the blob is determined by the value of 0.

Once the key points are extracted, the SIFT algorithm also
provides a way to describe the SIFT key points (also known
as features) which are used to compare while recognizing
the same object. To generate the descriptor around each key
point, a histogram of local gradients are computed for the
selected o value i.e. the scale at which the blob was detected.
This removes the rotational uncertainty while matching the
features to another image. A threshold is applied to discard
the outliers from the key points based on minimum contrast.
Additionally, another threshold is applied based on the ratio
on principle curvatures to ensure the reliable orientation.
Now for each key point, in a 16 x 16 neighborhood, all the
gradients are quantized into 8 different directions and formed
a histogram. Then it splits that window into sixteen 4 x 4
windows. From each 4 x 4 window it generates a histogram
of 8 bins. In this case, there will be 128 elements in the final
feature descriptor, which can be normalized to unit length to
handle illumination differences.

Success: SIFT features are not dependent and do not
change when an image is scaled or rotated. The partially
invariant to lighting and the 3d viewpoint of a camera though.
SIFT features are local features, which make them robust
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TABLE 1. A brief summary of Viola-Jones, SIFT, PCA-SIFT and SURF techniques.

methods application

advantages

limitations

Viola-Jones object detection, face detection [53],

pedestrian detection [57]

takes less computational time while
maintaining high accuracy in real-time
[53]

can detect object under complex situ-
ation (i.e. rain , snow) [53]

can successfully detect pedestrian in
low resolution [54]

lacks the entire image fine details [55],
[56]

texture or shape information are ig-
nored [55], [56]

sensitive to lighting condition [55],
(561

unsuitable for general object detection
[55], [56]

SIFT object recognition, face recognition [58],
gesture recognition [59], video tracking
[60], motion tracking [61]

robust to occlusion, clutter and noise
[62]

distinctive features [62]

performance is close to real-time [63]
flexible to extend with other features
[64]

poor performance with lighting
changes and blur [65]
computationally expensive [65]

reduces the dimensionality of the
SIFT descriptors [66]

improves the matching accuracy and
speed in real-world environment [66]

sensitive to viewpoint change [65]
color information is ignored [67]

PCA-SIFT object recognition, image retrieval [66],
image analysis [65]
SURF object recognition [51], [68], face detection

[69], image registration [66], object
classification [70]

takes less time for computation and
feature matching [51]

improves the robustness of feature ex-
traction [51]

struggles under scale, rotation and
blur invariance [65]

sensitive to viewpoint change, illumi-
nation condition [65]

to occlusion, clutter and noise. The features are highly dis-
tinctive, individual features which can be matched to a large
database of objects, thus providing a basis for robust object
recognition, motion tracking [62]. It is more accurate and
better descriptor compared to other older descriptors [72] at
that time.

Challenges: SIFT does not use global information and
relies heavily on local information. Generally speaking,
it does not perform well with lighting changes and blur.
SIFT is based on the Histogram of Gradients. The gradients
of each Pixel in the patch need to be computed and these
computations cost time [65].

1) PCA-SIFT

PCA-SIFT [66] is a variation of SIFT which produces alter-
native representation. Principal Components Analysis (PCA)
is employed to the normalized gradient patch in lieu of SIFT’s
smoothed weighted histograms. The only change in PCA-
SIFT is the construction of key point descriptors. PCA-SIFT
pre-computes an eigen-space for local gradient patches of
size 41 x 41. Next, it calculates 39 x 39 horizontal and ver-
tical gradients, and results in a vector of size 3042 (normal-
ized image gradient vector). Later on PCA-SIFT multiplies
this vector to get a compact feature vector using the stored
eigenspace n x 3042 projection matrix. To determine whether
two vectors in two images correspond, Euclidean distance is
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used. This results in a PCA-SIFT descriptor of size n, where
n = 20.

a: SUCCESS

PCA-SIFT produces alternative representation which
improves upon the local image descriptor than SIFT.
It reduces the dimensionality of the vector using PCA (from
3042 to 36). PCA-SIFT shows remarkable progress in match-
ing the accuracy and speed for regulated and real-world
environments [66].

b: CHALLENGES

PCA-SIFT is sensitive to viewpoint change. PCA-SIFT per-
forms very well when the viewpoint angle is smaller than
30 degrees but its performance tends to worsen when the
viewpoint angle becomes greater than 30 degrees [65].

C. SPEEDED UP ROBUST FEATURES (SURF)

SUREF [51] is a Hessian based scale and rotation invariant
interest point detector and descriptor for object detection. The
SUREF approach is a robust and swift technique for local rep-
resentation of invariant similarities and image comparison.
The SURF approach keeps a key interest in its operators’
quick computation employing box filters. SURF contains two
steps: a) Feature Extraction and b) Feature Description.
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(f)

FIGURE 6. (a)-(d): The Gaussian second order partial derivative
(discretised and cropped) in y-direction(Gyy) and xy- (Gxy), accordingly,
(e) shows interest points detection & (f) shows the Haar-wavelet that are
employed for orientation assignment [51].

The approach adopts a simple ‘“Hessian matrix” approxi-
mation for key point detection in the feature extraction phase
because of its excellent results in accuracy and calculation
time. Surf depends on the Hessian matrix’s determinant to
select the position and scale. For any pixel of the image P at
point x, the Hessian is defined by

82g 82g
ax2 0x0dy

H(g(x,y)) = (10)
8,y 82g &
Ixdy  9y2

Gaussian Kernel filters the image, in ordered tuple X =
(x, y)inaimage P, the ‘““‘Hessian Matrix” H (x, ¢) in x at scale
¢ is expressed by

H(x, ¢) = Gy (x, @) ny(x,(ﬁ) an

Gy(x,¢)  Gylx, @)

where Gy (x, ¢) is known as the convolution of the Gaus-
sian second order partial derivatives and in the same process
Gyy(x, ¢) and Gyy(x, ¢) are defined.

Gaussians are most advantageous for scale-space interpre-
tation, but the Gaussian needs to be discretised and cropped
in practice. This causes the repeatability loss which is subject
to image rotation in the region of odd m/4 multiples. This
shortcoming generally holds for Hessian dependent detector.
At first, Gaussian Kernel convolution needs to be applied and
then partial second-order derivatives compute the Hessian
matrix determinant. For example, the 9 x 9 box filters ( shown
in Figure 6a,b,c,d) are approximated by Gaussian second
order partial derivatives with ¢ = 1.2 and is represented at the
lowest scale (i.e. highest spatial resolution). These approx-
imations are denoted by My, My,, and M,,. The weights
applied to the rectangular regions are kept simple in the
expression for computational efficiency and also required re-
balancing the relative weights for the Hessian’s determinant
defined as

IGA2)[|MO)|

=0912...~09 (12)
|G(1.2)[ IM9)|
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where ||x||r is the Frobenius norm. This results
|(Happr0x)| = MxxMyy - (Oongy)z' (13)

SUREF converts the image sequences into integral image.
Integral image can calculate the pixel intensities in square
region quickly. They permit for the very quick execution of
box type convolution filters. The element of an integral image
Py~(xy ata position X = (x, y) describes the sum of all pixels
in the input image P of a rectangular region formed by the
point x and the origin. This can be evaluated by

i<x j<y

Py(x) =YY PG.)). (14)

i=0 j=0

When the value of PZ is occurred, only four additions
are required for the sum of the intensities over any upright,
rectangular area, independent of its size. As box filters and
integral images are used, it is not necessary to employ the
same filter to the result of a formerly filtered layer. Any size
of filters can be applied parallelly on the original image with
the same speed.

The scale space is then analyzed by up-scaling the filter
size rather than iteratively decreasing the size of the image.
Then the filter feed-backs are normalized subject to the mask
size. It ensures a constant “‘Frobenius norm” for every filter
size. Scale spaces are normally enforced as image pyramids.
The images are continually smoothed with a Gaussian and
afterwards sub-sampled to obtain a maximum advanced level
in the pyramid. The result of the above 9 x 9 filter is known
as the initial scale layer, where scale s = 1.2 and ¢ = 1.2.
Moreover, as the “Frobenius norm” remains constant for all
filters, they are already scale normalized. A non-maximum
concealment is employed in a 3 x 3 x 3 neighborhood to
locate the key points in the picture and on scales.

After that, the maxima of the Hessian matrix determinant
is interpolated into the scale and image space in the feature
description phase. Scale space interpolation is important par-
ticularly in this case, as the difference in scale between the
first layers of every octave is relatively large. (Figure 6¢)
shows an example of the detected interest points in rose
garden using ‘“‘Fast-Hessian” detector. Haar wavelets (shown
in Figure 6g) of size 4s are computed for the orientation
assignment in x and y directions. Haar-wavelet responses
are calculated for pixels that are located within a radius of
6s around the interest point. The dominant orientation is
evaluated by sum of vertical and horizontal responses. The
descriptor is calculated using Haar wavelets in square 20s
size area centred at the interest point and oriented along the
dominant direction.

1) SUCCESS

Integral images are used for speed in SURF. Moreover, SURF
has minimized the time for computing and matching features
and also improved the robustness with just 64 dimensions
simultaneously [51].
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2) CHALLENGES

In terms of matching correct key-points under scale and
rotation invariance, SURF algorithm does not provide a sat-
isfactory performance. The performance of SURF under blur
invariance is not sufficient. SURF is also very sensitive to
viewpoint change and illumination conditions [65].

D. HISTOGRAM OF ORIENTED GRADIENTS (HoG)

Object detection using HoG descriptors is a hot area [52],
which achieved extensive success in the field of human
detection. Unlike SURF [51] and SIFT [50], HoG are global
descriptors as opposed to local descriptors. The HoG method
consists of vector space that calculates similarity employing
Euclidean or cosine distances, which is well suited to machine
learning techniques. The HoG features construct the gradients
inside a cell into nine orientation bins without discriminating
between boundary edges and internal textures.

The resulting histogram of oriented gradients (HoG) is
used to represent an object category, and constitutes a filter
for detecting a particular class of object. The HoG filter is
used as a template to detect a particular object in the image,
by applying it to various scales of an image pyramid.

The detector can be considered as a classifier that uses an
image, a location within that image, and a scale as inputs. The
classifier decides if there is an instance or not at the specified
location and scale of the target category. As the method is a
simple filter, a score can be computed as the scalar product
B - ¢(x) where B defines the filter, x describes an image with
an identified location and scale, and ¢(x) delineates a feature
vector — constructed by computing the histogram of gradients
from the image x.

A primary innovation of the Dalal-Triggs [52] detector is
its ability to extract features that are particularly relevant.

Success: The algorithm is structured with low complexity.
It also contains all the gradients of summation in a single cell
without taking their magnitude into account [73].

Challenges The algorithm performed well in case of human
but could not perform well on detecting objects with high
articulation such as birds [74].

1) HoG WITH LBP

Many enhanced, recent techniques use HoG features when
detecting human class. One of them is HoG and LBP (Local
Binary Pattern) combination [75]. In this method HoG fea-
tures are extracted following [52]. Besides, pattern his-
tograms are directly built in cells for the construction of
the cell-structured LBP. Then the current scanning window
and the histograms of LBP patterns from different cells are
combined to describe the texture. Two types of detectors are
used in this model; one is global detector and the other is part
detectors. Global detectors scan the entire windows and the
local regions are detected by part detectors. For this training
data are provided for learning using linear SVM. For each
ambiguous scanning window, this model takes the response
of each block of the HoG feature to the global detector to con-
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struct an occlusion likelihood map. Then Meanshift approach
segments the occlusion likelihood map. The segmented part
of the window is determined as an occluded region which
responses are mostly negative. In the un-occluded regions,
part detectors are applied for finishing in the current scan
window if a partial occlusion is seen in a particular scanning
window.

a: SUCCESS

The combination of HoG with LBP in the framework of inte-
gral image can detect human reasoning with partial occlusion
while providing high accuracy [75], [76].

b: CHALLENGES
This model cannot handle the articulated deformation of
people [75].

2) HoG WITH CSS FEATURE

Combination of HoG with color self-similarity termed CSS
was proposed in [85]. This technique shows high accuracy
in one or multiple sequencial images. CSS determines the
color patterns in persons which captures pairwise statistics
of spatially contained color distributions.

A calculation of the similarity between color histograms
of two cell regions is called the Color Self-Similarity (CSS)
feature. By calculating the color similarity of two local
regions, this feature takes the similarity or dissimilarity
with the detection object. Color similarity is used as a fea-
ture and gives the benefit that the detection object color
is independent. Normalization is involved in computational
procedure. The input image is converted to a pre-defined
dimension and divided the image into cells, b, of N x N
pixels. After that, color histograms are generated for the cells
illustrated in the HSV color method (H: hue, S: saturation,
V: brightness) [92]. The color similarity between the two
cells uses the color histograms generated from the two cells.
Bhattacharyya distance and the intersection of histogram
are employed to measure the distance between histograms.
Euclidian distance is also adopted to measure the similarity
calculations.

a: SUCCESS

HoG with color self-similarity named CSS improves state
of-the-art detection performance for both static images and
image sequences. CSS determines the color patterns in indi-
viduals that capture statistics from spatially contained color
distributions in pairs [85].

b: CHALLENGES

This model cannot handle occlusion [85]. The filtering strat-
egy is used which is too stringent and resulted in under
reporting of detector performance [93]. In spite of using
optical flow, there is still no evidence for the improve-
ment of detection per frame on particular monocular picture
frames [39].
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TABLE 2. A brief summary of HoG, HoG with LBP, HoG with CSS and Efficient HoG techniques.

methods application advantages limitations
HoG object detection [52], pedestrian detection
[77], text recognition [78] invariant to photometric and geomet- cannot detect high articulated object
ric transformation [52], [79] perfectly [74]
improves the detection accuracy and spatial neighboring pixels context are
speed [52] missed [81]
invariant to illumination condition or
shadowing [80]
HoG with LBP object detection [75], face recognition
[82], hand gesture recognition [83], can handle partial occlusion [75], unable to handle the articulated de-
pedestrian detection [84] [76] formation of the object [75]
improves the detection accuracy [75],
[76]
HoG with CSS object detection [85], [86], pedestrian

detection [87]

improves the classification accuracy
for both static images and videos [85]

unable to handle occlusion [85].
no evidence for the improvement

of detection per frame on particular
monocular picture frames [39].

Efficient HoG object detection [88], pedestrian detection

[881, [89], action recognition [90] o reduces the computational time [88] e cannot solve the occlusion issue [88]

e unable to perform in real-world envi-
ronment [91]

3) EFFICIENT HoG HUMAN DETECTION

Another HoG based model has been proposed by [88] with
high classification accuracy. This model is capable of com-
puting the HOG features efficiently. At the beginning this
algorithm calculates the block-based HOG features at one
time. Besides, it reuses the features for all the detection
widows to intersect at the block. After dividing each cell
into four sub-cells in a block, it classifies and treats them
differently into three forms. This transforms cell-based trilin-
ear interpolation to sub-cell-based interpolation. The trilinear
interpolation on the basis of sub-cells prevents unimportant
interpolation by removing gradients. The look-up-table trick
is utilized to accelerate the computation process in the last
step.

a: SUCCESS

This model reuses the block-based HoG features for all inter-
secting detection widows and also utilizes sub-cell based
interpolation for reducing the computational time [88].

b: CHALLENGES
This model focuses only on the static images and cannot
solve the occlusion problem. Authors capture images in top
view only for reasoning occlusion [88]. It is not suitable for
identification precision and computational performance in
real-world environments [91].

Table 2 illustrates a brief evaluation of HoG, HoG with
LBP, HoG with CSS and Efficient HoG methods.

E. BAG OF WORDS (BoW)
Bag-of-Words (BOW) has attracted the research community
because of its robustness and simplicity in object recognition.
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K-means clustering

(b) Feature extraction (c) Codebook

(a) Region Detection

FIGURE 7. Building bag-of-words for image representation; beginning
step is to detect the region (a), next step is to extract the features (b),
codebook construction is the final step.

The BoW model is generally used in document classification.
In 2005 BoW [94] has been used in computer vision because
of its robustness and simplicity.

BoW is based on LDA (Latent Dirichlet Allocation)
method. A category variable has been introduced in BoW
model for image classification. A single image is considered
as a group of local patches. Codewords illustrate the patches
separately and create a big vocabulary. This is a generative
Bayesian hierarchical model for creating an image in a par-
ticular category. The process is in general English. Initially,
a category label is chosen for an example a mountain image.
A probability vector is drawn for the mountain class and
it will choose intermediate theme(s) at the time of creating
all patches of the image. At first a specific theme is chosen
from the mixture of possible themes for making all patches
in the scene. Let a “‘rock” theme is chosen, so the codewords
which repeatedly appear in rocks will get advantage. After
that if horizontal edges supporting theme is selected, code-
word seems to be a horizontal line portion. The procedure
is repeated multiple times to create themes and codewords.
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Finally, a bag of patches is formed which create an image of
mountains. It is also called Theme Model 1. The complete
generative calculation of this algorithm can be written by the
joint probability.

px,z,7,clf,n, B)
= plelmp(r|c, ).T1 p(zn|T)pCenlza, B)  (15)

where x stands for patches, z indicates for theme, ¢ represents
category variable, 7 is multinomial variable, 6 is Dirichlet
parameter.

p(x16, B, ©)
= f P16, C>(nﬁ_l Zp(zn|n)p<xn|zn,ﬂ>>dn (16)

This is intractable because of the combination into 7 and 8.

BoW is based on some steps: key-points detection, local
descriptors, codebook construction (shown in Figure 7).

Key-points detection: Local interest regions or points
detection in pictures is the first step of BoW methodol-
ogy (shown in Figure 7a). For extracting features of key-
points, they are calculated at predefined positions and scales.
To extract local regions four different algorithms have been
examined- Evenly Sampled Grid, Random Sampling, Kadir
and Brady Saliency Detector, Lowe’s DoG Detector.

Local Descriptors: The second step is to compute local
descriptors for the detected keypoints. Pixel grayvalue and
SIFT representation have been used to describe a patch. SIFT
representation is more robust than the pixel grayvalue repre-
sentation. The dimensionality of the SIFT descriptor is 128
and Pixel grayvalue is 11 x 11.

Codebook construction: In the next step, the training
images of all categories which are the collection of detected
patches are learned in the codebook (shown in Figure 7c).
The BOW method discards all spatial information about how
features are related and distributed across images. BoW fea-
tures extraction depends on vector quantization. In general,
the clustering algorithm k-means is commonly employed for
this assignment, and the amount of visual words depend on
the clusters(i.e., k) number. The use of BoW can automat-
ically and without guidance learn appropriate intermediate
representations of scenes. Texton histogram models can be
established and expanded easily using BoW.

Success: BoW can create groups of objects; for instance,
humans into a responsive hierarchy [94].

Challenges: The computational cost of BoW model is high
[95]. Vector quantization reduces the discriminative power
of images and the BoW methodology ignores geometric
relationships among visual words [96]. The image interface
carries mixed image data that can contain multiple artifacts
and background, and such noisy (or diluted) feature repre-
sentations can reduce the annotation accuracy [97].

1) SPATIAL PYRAMID MATCHING(SPM)
“Beyond Bags of Features” [98] provides a way to identify
categories of scenes developed on estimated global geometric
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correspondence. This method performs by splitting up the
picture within each sub-region into progressively fine sub-
regions and calculating histograms of regional characteris-
tics.

To detect interest point authors used two sorts of features:
weak features and strong features. Weak features are aligned
at edge points that are extracted on two scales and eight
directions, for a total of N = 16 channels. Strong features
are used to get better discriminative power. A dense regular
grid is used to catch uniform regions instead of interest points.
K-means clustering of a random part of patches from the
training set is implemented to construct a visual vocabulary.
Typical vocabulary sizes for this experiments are N = 200
and N = 400.

Pyramid matching process has been done by assigning a
series of progressively coarser grids over the space of the
feature and by taking a weighted sum of the number of
matches at each resolution point. When two points are paired
at any stable resolution, they fall into one grid cell. The result
of matching at finer resolutions is stored lower than matches
at higher resolutions.

Order-]less image representation can be handled by pyra-
mid match kernel, which allows precise matching of two
collections of features in a high dimensional appearance
space, but discards all spatial information. Pyramid matching
performs in the two-dimensional image space and applies
traditional clustering methods in feature space. Every feature
vectors are quantized into N discrete types, and produce the
simplifying assumption that only features of the same type
can be matched to one another. The final execution concern
is normalization. Histograms are normalized altogether by the
full weight of image features for maximum computational
proficiency and to keep the same number of features in all
images in weight forcing. For multi-class classification a
support vector machine (SVM) is trained with the help of
one-versus-all rule: a classifier is taught to distinguish each
class from the other and the classifier label with the highest
response is assigned to the test image.

a: SUCCESS

SPM is an easy and computationally effective addi-
tion of bag-of-features scene representation which shows
high performance on challenging image categorization
assignments [98].

b: CHALLENGES

One of the challenges is that the spatial pyramid matching
(SPM) method” weights mechanisms is not sophisticated
enough. SPM does not work well for the coarse resolution
blocks by assigning less weight. In addition, for the finer
resolution block containing only background or clutter, it mis-
leads the calculation by assigning more weight [99]. SPM
often fails to offer sufficient discriminative power, as seen
from the similar image statistics [100]. SPM is built on top
pooling which is the most popular spatial pooling method for
classifying objects. This gives the irrational features result of
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the picture when the object of interest (here a car) comes out
in pictures at different positions. For this reason, it becomes
more challenging to train an appearance method of the
object [101].

2) BAG OF VISUAL WORDS (BOVW)

Bag of visual words (BOVW) [108] has the same concept of
bag of words (BOW). However, in BOVW image features are
used as the “words” instead of words. Image features can be
detected in an image that are distinctive in shape. To describe
an image as a set of features is the key concept of visual words
(BOVW). Features consist of keypoints and descriptors. Key-
points are salient points in an image and remain unchanged
under the condition of image rotation, shrink or extension.
Descriptors detect the keypoints. Difference of Gaussian
(DoG) detector is used to detect keypoints automatically
in images. The identified keypoints are depicted employing
PCA-SIFT descriptor, that is a 36-dimensional real-valued
feature vector. Vector quantization (VQ) technique is used
to cluster the keypoint from the descriptors. For clustering
purpose K-means algorithm is used. Every single cluster is
considered as a visual word that illustrates a particular local
pattern shared by the keypoints in that cluster. Therefore,
the clustering procedure creates a visual-word vocabulary
defining various local patterns in images. Finally, for each
image, frequency histogram from the vocabularies and the
frequency of the vocabularies in the images are created. Those
histograms are bag of visual words (BOVW). Image category
prediction or corresponding images can be found from the
frequency histogram. The representation of bag-of-visual-
words can be changed into a visual-word vector similar to the
term vector of a document. Visual-word vectors are applied
in image classification method.

a: SUCCESS
Bag of visual-words representation produces good classifica-
tion performance [108].

b: CHALLENGES
The performance is not relatively better as compared to the
best standard approaches such as color histograms and homo-
geneous texture. The spatial location of visual words is not
included in the image while using the BOVW approach. This
decline in output provides the evidence that the visual terms
are too discriminatory for very large dictionaries, i.e. they
no longer avoid image disruptions from noise, blurring and
discretization [109]. The number of occurrences of each
visual word is limited and the computational cost of the visual
vocabulary is high [111].

Table 3 illustrates a brief evaluation of BoW, SPM and
BOVW methods.

F. DEFORMABLE PART MODEL (DPM)

One of the most successful approaches in general object
detection Deformable Part Model (DPM) is basically built
on the pictorial structures framework. DPM [112] employs a
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(a) Root Filter (b) Part Filters

FIGURE 8. Human detection with Deformable Part Model, (a) shows the
root filter and (b) shows the part filters.

scanning window technique that consists of a comprehensive
“root filter” shown in (Figure 8a) and multiple ‘““part filters”
shown in (Figure 8b). Part model defines a spatial model indi-
vidually and part filter as well as the spatial model establish
a group of permissible placements for a part corresponding
to a detection window and the amount of deformation for
individual position. The detection window result is similar to
classical part-based methods, “root filter” as well as “part
filters” are recorded by calculating the dot product within
a window between a set of weights and gradient histogram
(HoG) features. The “part filters” compute features two
times of the spatial resolution of the ‘“root filter”. Here
“root filter”” behaves similar to a Dalal-Triggs method. The
outcome of this method at a specific point and scale in a
picture is the result of the “‘root filter”” on the window plus the
sum over parts, of the limit over positions of that component,
of the “part filter” record on the coming from sub-window
minus the cost of deformation. The task of DPM is to detect
objects by looking at a picture pyramid; it is defined at a fixed
scale.

For an object a model has a root filter M and n part models
(M;, vi, d;) where M; defines ith “part filter”’, v; stands for
two dimensional (2D) anchor position of ith part relative and
d; describes four dimensional deformation parameter for ith
part. The position of every filter in the model in a feature pyra-
mid is specified by an object hypothesis, z = (qo, - - -, , gn)
where g; = (xj, yi, [;) defines the level and location of the
ith filter. Hypothesis score depends on the score of every
filter at its particular position minus a deformation cost that
depends on the function of displacement of the part from
anchor position plus standard bias,

n
score(qo, - . ., qn) = ZM,-’ -o(H, q)
=0

n
= di-oaldxi,dy) + b, (17)

=1
where
(dxi, dyi) = (xi, yi) — (2(x0, Yo) + Vi) (18)
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TABLE 3. A brief summary of BoW, SPM and BOVW techniques.

methods application advantages limitations
BoW object detection [94], [102], object
recognition [103], text classification [104], o quite simple to comprehend and imple- computationally expensive [95]
image retrieval [105] ment [94] skips geometric relationships among
e can categorize the objects [94] visual words [96]
less annotation accuracy [97]
SPM object recognition [106], image classification
[98], [107] o computationally effective [98] weight’s mechanism is not sophisti-
e improves the classification accuracy cated [99]
[98] insufficient discriminative power [100]
BOVW scene classification [108], [108], land-use
classification [109], object classification e improves the classification accuracy o visual vocabulary’s computational cost
[110] [108] is high [111]

gives the displacement of the ith part relative to its anchor
position and

oa(dx;, dy;) = (dx, dy, dx*, dy?) (19)

are deformation features. The score of a hypothesis z can be
described in respect of a scalar product, § - 0(H, z), between
a vector of model parameters § and a vector 6(H , z),

§=W,,....M,,d,... dyD), (20)
0(H1 Z) = (G(Hs qo)s . U(Hv Cln), _Ud(dxlv d)’I)y ceey
—0g(dxn, dyn), 1). 2D

This represents a relation within models and linear classifiers.
In training, a set of annotated images is provided with bound-
ing boxes on all sides of every instance of the object.

DPM brings the detection issue to a binary classification
problem. Every instance x is recorded by the form function,

mg(x) = max 6 - X(x, 2). (22)
zeZ(x)

where § defines a vector of model parameters and z defines
latent values (e.g. the part placements). A latent variable MI-
SVM construction called latent SVM (LSVM) is used to
train models using partly labeled data. A significant property
of LSVMs is that if the latent values are set for positive
instances, the training problem converts into convex. This is
used in an algorithm of coordinate descent.

Traditional SVM training is applied in practice to triples
(X1,21, Y1, - -+ s Xy Zn, ¥)) Where z; defines the highest
recording latent label of x; in the earlier iteration model.
Bounding boxes of PASCAL data-set generates an initial root
filter and the parts are initialized from this root filter.

DPM provides an elegant framework for object detection
and recognition. DPM can handle Non-rigid deformations
for example it can detect human in different poses wearing
different clothes. DPM can deal with intra-class variation in
features and other graphical properties for instance it can
detect cars in different forms and colors. Success: It is a better
representation of objects. In practice, DPM maintains a list of

42736

vectors, - X(x, z), in lieu of (x, z) pairs. This illustration is easy
(it is application free) and more impenetrable [112].

Challenges: Deformable part-based methods obtain state-
of-the-art achievement for object identification; yet it is not
salient because it depends on heuristic initialization dur-
ing training for the sake of the optimization of non-convex
cost function. Non-convex optimization is unstable to ini-
tialization [113]. DPM and its variants are systematically
outmatched by methods using a single component and no
parts casting doubt on the need for parts. For walking human
detection there is still no clear evidence for the necessity
of components and parts, beyond the case of occlusion
handling [39].

1) SHARED PARTS METHOD

Shared parts method [114] is an addition of DPM that offers
for allocation of object share models among several mixture
components as well as object classes. In this shared parts
method 1) DPM is reformulated to organize part allocation,
and 2) a new energy function is proposed for the com-
bined training of mixture parts and object categories. In this
extension of DPM model, parts are shared among mixture
components. The mixture parts match with various view-
points in an object. Parts are appeared in multiple mixture
components which are visible from a range of views. This
sharing parts representation allows the learning of robust
models specified a limited training set. Moreover, sharing
parts enable stronger methods to be learned in the sense
that it becomes achievable to precisely model ’intermediate’
graphic modes, for example three-quarters observations of
an object. ‘Combination weights’ §: are acquainted for each
component of the mixture. The part filters are shared while
spatial priors and anchors are not shared. As a result, spatial
priors and anchors are connected with each other to a certain
mixture component. Learning a model involves guesstimat-
ing W, V, B parameters so that they simplify well to unseen
data; where W describes the appearance and V describes the
spatial configuration of the parts. Contrariwise, 8 describes
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linear combination of parts in the mixture components. An
energy function E is expressed to learn the mixture com-
ponents which consists of two parts: a regularization term
R and a loss term. Regularization term R ensures that the
acquired detector’s proper observation of unseen data and
loss term calculates the training data’s detector prediction
ability. Energy function offers for concurrent learning of
multiple mixtures as A(-) constantly select the component of
the mixture that meets the inference scheme. By redeveloping
the loss term, the energy E(-) can be extended to multi-class
learning for collecting the losses of multiple detectors. Such
detectors exchange partial responses based on the weights
they have learned from the combination. The regularization
term R(-) controls over-fitting by soft-bounding the mixture
component responses. All values of § are forced to be positive
and weights w are combined. Therefore, regularization needs
the penalization of the combined entity Sw. For multi-class
learning, the regularization definition is simply expanded by
summation across whole object detectors.

a: SUCCESS

The total parameter numbers are decreased and training sam-
ples are distributed across all applicable parameters, result-
ing in less negative impact on the lack of available training
data. In this method computational expenditure on training
and testing time is decreased and enables a large number of
classes to be scaled [114].

b: CHALLENGES

Object part models are shared among multiple mixture com-
ponents and object classes and this introduces additional
noise [115]. In Fine-Grained Video Classification (FGVC)
similarities between classes are exploitable for model sharing
methods [116].

2) STRONGLY-SUPERVISED DPM

This model [113] extends DPM methods using additional
supervision. It is necessary to know linear parameters of the
model B for this model training samples and annotations D
and C number of clusters. Positive samples are clustered
based on their pose, every mixture component is assigned
to a structure and part filters are initialized. Mixture meth-
ods (components) allow intra-class modification modeling
in the presence of various examples. These changes are
caused by sturdy variations in viewpoints, class subcategories
and unstable deformations. Assigning positive examples to
LSVM elements is a non-convex expansion and therefore
unstable to initialization. For better assignment of training
samples part annotations is used to have components accord-
ing to the pose. As a result, similar parts are aligned better
inside every component while employing linear classifiers.
Annotated parts are used to parametrize the pose 6, of sample
x. All positive pose vectors are clustered by applying a modi-
fied k-means clustering algorithm. A weight is defined for all
blocks of 6 by a predetermined parameter (W) to monitor the
consequence of all parameters for the time of clustering. The
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position of a bounding box p; in the picture and the status
of the binary visibility v; are described for all parts of this
method. One mixture component of the method has a tree
structure with grids L and edges M related to object parts and
relations among parts accordingly. An optimization process
is designed for making a dependency graph employing part
annotations of object. The statistically optimal component
relationship of the generative pictorial structure method can
be accomplished by optimizing the connections over the prior
probability of samples.

Then a fully connected graph H = (Lg,Mp) is con-
structed with n + 1 grids with respect to object and parts
bounding boxes, each edge m is described as a 3-tuple (i, j, w).
For every pair of grids (i, j), the translation’s diagonal covari-
ance matrix (dx, dy) is calculated between the two related
bounding box centers. Optimization problem is solved by
following a coordinate-descent method in which at the start
the latent variables for positive records are set in order that
the equation turns into convex in 8. The stochastic gradient
descent (SGD) is then used to estimate parameters of the
model. Object portions are often occluded because of the
existence of additional objects and self-occlusions. As occlu-
sions mostly do not occur arbitrarily, there may have a com-
patible presentation of occluded parts positions. For occluded
parts occlusions model is constructed by learning separate
appearance parameters F°. The bias terms b; and b} manage
the stability in S4 between occluded and non-occluded pre-
sentation. An improved Latent SVM is used to train models
by collecting hard negative records from negative training
pictures.

a: SUCCESS

A learning design is formulated that can cope with
annotations of sub-optimal and incomplete regions of
objects. Besides, it deals with partial occlusions of objects
explicitly [113].

b: CHALLENGES

The occluded part in supervised DPM is modeled on addi-
tional templates and are based upon a root portion (i.e. the
holistic object), which never becomes ““occluded.” If a major
occlusion occurs, it is difficult to model the root component
itself [117]. The part models mentioned provide prototypes
for an occluding version of each component of the model.
However, the visibility of different parts of the model is not
enforced by pairs [118].

3) WEIGHTED HISTOGRAMS OF ORIENTED
GRADIENTS(WHo0G)

Weighted Histograms of Oriented Gradients (WHoG) [73]
is another compatible descriptor to detect object. Weighted
Histograms of Oriented Gradients (WHOo0G) is a join of global
shape descriptors and local point descriptors that descript
object detection with diverse textures. Authors use bottom-up
pose clustering to handle intense pose variations. One is input
pose taker templates and another is taker of color information;
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TABLE 4. A brief summary of DPM, Supervised DPM and WHoG techniques.

methods application

advantages

limitations

DPM object detection [112], [119],

pedestrian detection [120], face .
detection [121], pose estimation [122],
image segmentation [123] .

better object representation and
application free descriptor [112]
can handle partial occlusions

computationally expensive [124]
unstable to initialize the non-
convex optimization [113]

[112]

improves the accuracy for object
detection (achieves the state-of-
the-art) [112], [119]

Strongly-Supervised DPM object detection [113], object

classification [113] .

can handle partial occlusion .
[113]
improves the detection accuracy

[113]

problematic to model the root
component for major occlusion
[117]

WHoG object detection [73]

improves the detection accuracy .
(73]

can detect textured objects in
opposition to background clutter

(73]

minimizes computational com-
plication [125]

unable to meet the requirement
for real-time processing [126]

two CNNs works parallel there. Firstly, the authors explain
pose clustering technique and employ an improved HoG
descriptor (WHoG) to make a pose-specific bird detector.
WHOoG generates a result for every candidate posture, with
the maximum score indicating the recognized position for
that specific posture. In the subsequent step, the authors use
scale invariant color components for making a spices-specific
bird detector. WHoG finds out the birds and defines its posi-
tion exactly in any particular picture by allocating additional
weight to fringe and less load to body structures or stripes.
WHoG can be usable to detect any kind of object that conveys
intestinal designs or textures.

a: SUCCESS

This approach can detect textured objects in the presence of
background clutter. Moreover, it has an immense dimensional
articulation as well as pose variety, for instance, in birds.
Integration of properly schematic scale invariant color fea-
tures into the method increases the detection accuracy. This
method minimizes computational complication and shows
a great performance progress on a comprehensive data-set:
CUB-200-2011 [125].

b: CHALLENGES
It is difficult to integrate WHoG straight into FPGA for quick
object detection as it is not completely adapted for resource-
limited hardware systems [127]. WHoG is designed for a
CPU that does not consider the requirement for real-time
processing [126].

Table 4 illustrates a brief evaluation of DPM, Supervised
DPM and WHoG methods.
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G. ORTHOGONAL MOMENTS
Orthogonal moments have a key role to play in image pro-
cessing and other related applications. Over the last few
decades, orthogonal moments have been extensively applied
in different fields in image analysis [128]. Moment invariants
and moments have the potential to describe global image
processing features.

Moments can be defined as the projections of an image
function onto particular kernel functions [129], in Rectangu-
lar coordinates:

Zlim = /2 R (x, V)f (x, y)dxdy (23)
R
or in polar coordinates:
1 2¢
Zrl;m = / / hpm (7, G)f(}’, 9)rdxrd9 (24)
0o JO

where Z;, indicates the (n+m)th-order moments of an image
function f (x, y) represented in Rectangular coordinates, zh
stands for the (n 4+ m)th-order moments of an image function
f(r,0) represented in polar coordinates n,m = 0, 1,2, ...,
and A, (x,y) and hy,,(r, 0) are the kernel functions (also
known as the basis functions). With different kernel func-
tions, different types of moments can be obtained.

The moments are orthogonal moments if those kernel func-
tions satisfy the following conditions

1 1
/0 /0 (s Yy (e, Yy = Kt S,

1 p2¢
/ / (1, OYhg (r, O)rdrd = k28,58, (25)
0o JO
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where k| and k; are the normalization coefficients and &,
is the Kronecker delta function; otherwise, the moments are
called non-orthogonal moments.

Success: With their lower order (not larger than 12th order)
elements, orthogonal moments are strong signal descriptors
that have distinguishing strength in object or pattern recogni-
tion [129].

Challenges: The major drawback of orthogonal moments
is the difficulty of their computation [129].

1) KRAWTCHOUK POLYNOMIALS
Krawtchouk polynomials are utilized for the formation of
discrete moments that can illustrate a picture locally [23].
Discrete Krawtchouk polynomials are commonly used in
various areas for their exceptional localization property and
characteristics [130].

The definition of the n-th order classical Krawtchouk poly-
nomial [130] is defined as

N

1
Kn(x;p,N) = Zak,n,pxk = 2F(—n, —x; —N; 1—7) (26)
k=0

where x,n = 0,1,2,...,N, N > 0, pe(0, 1).oF is the
hypergeometric function, defined as

> k
(@ (D) z
Fi(a,bic;) =) ———= 27
2F1(a, b; ¢; 2) Z o I Q27)
k=0
and (a)y is the Pochhammer symbol defined by
[(a+k)
(@ =aa+1)...(a+k—1)=—".  (28)
I'(a)

The set of (N + 1) Krawtchouk polynomials K, (x; p, N)
forms a complete set of discrete basis functions with weight
function

N
w(x; p, N) = (x )m —pN (29)

and fulfills the orthogonality condition

N
D owxs p, N)Kn(x; p, N)Kn(x; p, N)=p(n; p, N)Sum (30)
x=0

wheren,m=1,2,...,N and
1-p\" n
p(n;p,N) = (=1)" (—) )
)4 (_N)n
a: SUCCESS

Krawtchouk polynomials consistently perform better com-
pared to other polynomials for reconstruction error [23],
[130].

b: CHALLENGES

A particular window function is required for signal. The
computational time of krawtchouk polynomials is relatively
high [23].
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2) TCHEBICHEF POLYNOMIALS
The Tchebichef polynomials have been successfully applied
as pattern characteristics in two-dimensional (2D) image
analysis [131], [132].
The discrete Tchebichef polynomials [131] are defined as
tn(x) = (1 =N)p 3F2(—n, —x, 1 +n; 1,1 =N; 1),
nx,y=0,1,2,...N—-1 (31)

where (a)i is the Pochhammer symbol expressed by
(@ =ala+1@a+2)...(a+k—-1) (32)

and 3F»(-) is the generalized hypergeometric function

) D o (a1)k(@2)k(a3) i
3Fa(ay, az, a3; by, by; 2) = ,(X:(:) o & (33)

The Tchebichef polynomials fulfill the property of orthog-
onality with
N(N?% — 1)(N2 =2%)... (N2 —n?)
2n+1

p(n,N) =

N +n
2n)! ,n=0,1...,N—1 (34
2n+1

and have the following recurrence relation:

(n+ Dty 1(x) — 2n 4 1)(2x — N + Dt (x)
+n(N? = )ty 1(x) =0, dn=1,2...,N—1. (35

a: SUCCESS

This feature perfectly eliminates the necessity for any numer-
ical approximation and satisfies the orthogonal property pre-
cisely in the image discrete domain [131], [133].

b: CHALLENGES
The TP’s common issue is that the calculation of coefficients

is vulnerable to numerical instability for higher polynomial
order [132].

3) CHARLIER POLYNOMIALS
Charlier polynomials (CHPs) [134] are generally adapted in
image analysis [135] because of their excellent success in
the study of signal processing and their potential for signal
representation [136].

The definition of CHP CZ(x) for the n-th order is obtained
from [134], [136] as follows:

—n, —Xx 1
Ch(x) = 2Fo< T —;)
nx=0,1,...N;p>0 (36)

where p indicates the parameter of the CHP, and ,F) is the
hypergeometric series which is expressed by [136], [137]:

2Fo (“’_b | —z) =3 OB (37)

k!
k=0
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where (a), denotes the ascending factorial, which is also
known as the Pochhammer symbol, and expressed as follows:

(@p =ala+1)a+2)...(a+b—-1)
_(a+b-1! T(a+b)
T b= T

On the basis of Equations (36) and (37), CHP can be
defined as:

(38)

>\ (—n)(— 1
Cl];(x) — Z (M;C#(__)k (39)
k=0 ’ p

CHP satisfies the orthogonality conditions such that [136],
[138]:

N
D CEChWe(x: p) = pe(r: p)Sum (40)

x=0

where w.(x; p) and p.(n; p) are the weight function and
squared norm of CHP CJ (x), respectively. The weight func-
tion is expressed as follows [136], [139]:

_ @)

x!

we(x: p) (41)

and the squared norm p.(n; p) is defined as follows [139]:

x!

)Vl

pe(n; p) = (42)
a: SUCCESS

This approach minimizes both the time of computation and
the error of propagation [136]. The properties of this model
can be utilized to compact a natural image and to recreate a
large image [134].

b: CHALLENGES
The coefficient’s numerical inconsistency for higher-order
polynomials is the key problem of CHPs [136].

4) SQUARED KRAWTCHOUK-TCHEBICHEF POLYNOMIAL
(SKTP)

Two orthogonal polynomials’ combination is also considered
as orthogonal polynomial. Motivated by this idea Abdulhus-
sain et al. presented one new hybrid technique for object
detection named SKTP (squared Krawtchouk—Tchebichef
polynomial) [140].

From the mathematical point of view, a polynomial estab-
lished by combining two OPs is also orthogonal [141], [142].
The nth order of the hybrid polynomial form, R,(x), can be
defined as follows:

N—-1

Ry(x; N) =Y X;(x; p, N)Y;(n; p, N)
j=0
nx=01....N—1 (43)

where Y, (x; p, N) and X,,(x; p, N) are orthogonal polynomi-
als constructed from two fundamental OPs, i.e., first level of
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combination. Let X,(x; p, N) and Y,(x; p, N) be expressed as
follows:

N-1
X(x; p, N) = Y Ki(n; p)Tj(x) (44)
i=0
N—-1
Yo(x;p, N) = ) Kilx; p)Tj(n)
i=0

nx=0,1,....N—1;pe(0,1) (45

From Equations (43), (44), and (45), the developed hybrid
OP can be defined as follows:
N—1N—-1N—1
Rueip.NY =) ) > Kili pTy)Ki(n: p)Ti(i) - (46)

i=0 j=0 [=0

a: SUCCESS
The performance of SKTP is stable and remarkable compared

with other existing orthogonal polynomials in noisy environ-
ments [140].

b: CHALLENGES

There is no clear information provided for handling major

occlusion and the articulated deformation of objects [140].
Table 5 illustrates a brief evaluation of Orthogonal

moments, Krawtchouk polynomials, Tchebichef polynomi-

als, Charlier polynomials and SKTP methods.

Ill. CLASSIFIERS

A. NEAREST NEIGHBOUR CLASSIFIER

The K-nearest neighbor(KNN) is one of the simplest and
most traditional nonparametric algorithms for classification
proposed by [157]. KNN generates a vector of features and
outcomes a vector of values. This vector of values goes into a
comparator that compares the features vector; feature vector
coming from a library of possibilities. By finding the closest
match the comparator determines what the object is [158].
KNN classifies a subset of k training samples from a set of
stored samples which are the nearest to it. It uses Distance
Metric to compute the smallest distance and majority voting
rule for the nearest object selection [159].

Let take a training set with N training samples (X, M) =
(x1, my), .., xn, my)|xi € R, mije 1,2, .., P,i=1,.,N
where x; defines the feature vector of ith sample and m;
defines class label and P stands for predefined classes. From
atest sample x’ € R? of training samples X, we can find its k-
nearest neighbors X’ = x|, x}, ..., x; with their resembling
labels symbolized as M’ = m},m), ..., m). Euclidean
distance ||x — m|| is used to calculate the smallest distance
for finding neighbors. Then majority voting rule is applied to
classify the test sample x’.

: k
gn(x) — 0 lf ZiZI I{M(;)(x):l} = I{M([)(x):()} (47)
1 otherwise.

gn(x) is a majority vote among the labels of the k nearest
neighbors.
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TABLE 5. A brief summary of Orthogonal moments, Krawtchouk polynomials, Tchebichef polynomials, Charlier polynomials and SKTP techniques.

methods application

advantages

limitations

Orthogonal moments face recognition [143], object

classification [144], [145], object °

recognition [128], [146], texture
retrieval [147]

strong signal descriptors with low
order elements [129]

computationally expensive [129]

Krawtchouk polynomials object recognition [130], edge

detection [148], object classification .

[149], image recognition [150]

better performance for recon-
struction error [23], [130]

high computational time [23]

Tchebichef polynomials image analysis [131], face Recognition

[151], edge detection [132], image .

retrieval [152]

eliminates the necessity for nu-
merical approximation in the im-
age discrete domain [131], [133]

vulnerable coefficients’ calcula-
tion to numerical instability for
higher polynomial order [132]

Charlier polynomials object recognition [153], image

classification [154], image .

reconstruction [155], object recognition
[156]

minimizes both the time of com-
putation and the error of propaga-
tion [136]

coefficient’s numerical inconsis-
tency for higher-order polynomi-
als [136]

SKTP face detection [140]

stable in noisy environments e 1o clear information for handling
[140] major occlusion [140]

FIGURE 9. K-nearest neighbor to identify objects in class A and B: christi
color represents class A, saddle brown represents class B.

Finding of k values is a challenging task. A very large value
of K is computationally expensive and prediction accuracy is
low for a very small value of K [160]. Besides, KNN is also
responsive to lebel noise [161]. We classify a new object from
known two classes; A and B (shown in Figure 9). If k = 1
(shown in Figure 9a), it will select the nearest one. If k = 3
(shown in Figure 9b), it will select the nearest 3 objects. Let
the value of K is odd to avoid the voting ties. If k = 2
(shown in Figure 9c), (even number) it is difficult to classify
the object because of achieving the same score of two classes
labels.

B. DECISION TREE

Decision trees are developed for classification tasks. It gen-
erates a tree for a data-set and processes a single outcome at
every leaf. These trees construction involves a root node at
the top then continues down to its leaf nodes.

Iterative Dichotomiser 3 (ID3) is one of them developed
by [162]. The basic structure of ID3 is iterative. The sample
objects are defined distinctly by a set of properties values
where a classification statute is established and decision trees
are disclosed successively in respect of these same properties.
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FIGURE 10. Decision tree: starts with the root node and ends with the
leaves.
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In order to classify an object, ID3 starts at the root of the
tree shown in Figure 10, assesses the test, and selects the
accurate branch to obtain the result. The process goes on until
aleaf is found, at which time the object is assigned to the class
named by the leaf.

It means this algorithm performs Top-Down Induction of
Decision Trees. The induction creates a decision tree for
classifying the objects properly from the training set. Besides,
it can classify the unseen objects. There should be some
significant relationship between the class of an object and
its attribute values for object classification. The best attribute
of the data-set is placed at the root of the tree. It splits the
training set into subsets. A subset of a training set known
as a window is selected randomly and a decision tree is
constructed from it; this tree classifies every object in the
window accurately. Subsets should be made in such a way that
each subset contains data with the same value for an attribute.

Next, in the training data-set each of other objects are cat-
egorized employing the tree. If the tree provides the accurate
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response for each of these objects, it is perfect for the whole
training data-set and then the process ends. If it does not
provide an accurate answer, a choice of the inaccurately
categorized objects will be compiled to the list and the process
will begin. In this manner, after just a certain number of
iterations accurate decision trees have been identified for
training data-sets.

It is difficult to make a decision tree for a random set
objects y. y being void or containing just one class object,
decision tree becomes the simplest while having a labeled leaf
only with that class.

On the other hand, y contains two or more subsets y; which
are nonempty and their values are smaller than y, it splits
the subsets to fulfill the one class requirement for a leaf.
By this process a decision tree is formed to classify every
object properly in y.

The test selection is the key in order to make the decision
tree smooth.

For this reason, root node is chosen by selecting an attribute
while a test is restricted for ramification on the attribute
values.

ID3 appoints an information based method for attribute
selection. Information gain is a popular way to select an
attribute. Let I(g, m) be the information in g positive deci-
sions and m negative decisions.

q m m
lo — lo 48
qg+m gzq+m qg+m g2q+m (48)

I(Q7m):_

If attribute L with values [Li,L....L,] is employed
for the root of the decision tree, it will divide y into
[¥1, Va - - . .»»] where y; consists of those objects in y that
have value L; of L. Let y; take on g; objects of class Q and
m; of class M. I(g;, m;) is the required information of y; for
the sub-tree.

The proposed information needed for the tree with L as
root is then gained as the weighted average

14
qi +m;
E(L) = 1(qi, m; 49
(L) izzlﬁm(ql ) (49)
where the weight for the ith branch is the proportion of the
objects in y that belong to y;. The information acquired by
branching on L is therefore

gain(L) = 1(q, m) — E(L) (50)

A suitable thumb rule would appear to be selecting the
branch attribute on which the most information is obtained.
ID3 tests every candidate attributes and selects L to optimize
gain(L) and then uses the same process recursively to form
decision trees for the residual subsets y1, 2 ... . 1.

To illustrate this idea, consider the data-set y in Table 6 and
the objects “hangout with friends”. Of the 10 objects, 5 are
of class Q and 5 are of class M, so the information needed for
classification is

5

5 5 5
——logr— — —logr— =1 bits (51)

I s =
(g.m) = =15l08275 ~ 1510825
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TABLE 6. Data-set y.

|

H Day  Weather Holiday Money Decision

1 sunny true available Q
2 sunny false available Q
3 sunny true available Q
4 sunny true shortage Q
5 rainy false available Q
6 rainy true shortage M
7 rainy false shortage M
8 sunny false available M
9 sunny true available M
10 rainy false available M

Now consider the weather attribute with values [ sunny,
rainy]. The 6 value of sunny are four from class Q and two
from class M, so

q1 =4 m =2 I(q1,m1) =0.9182

and for rainy

g2 =1 my =3 I(q2, mp) =0.8112

Consequently, the required information after examining
this attribute is

6 4
E(weather) = El(q] ,mp) + El(qz, mp) = .8759 (52)
The gain of this attribute is then
gain(weather) = I(q, m) — E(weather) = 0.1241 (53)

similarly

gain(holiday) = 0.029

gain(money) = 0.0349

Form this analysis, the information gain of weather is high
so it will be the root node and the decision tree is shown
in Figure 10.

ID3 algorithm is robust to execute and gives high accuracy
in classification tasks [162].

The ID3 algorithm depends on the theory of information
gain and attempts to reduce the number of comparisons
amongst the training records. ID3 algorithm does not give a
measurable optimal result. It can stop working in optimums
at the local level. Entropy calculates the information gain that
illustrates the measure of uncertainty of a record y [163].

C. SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) was developed by [164] for
solving the classification problems. Due to its effectiveness
and popularity, SVM has been employed in many object
detection methods. SVM is used as a linear binary classifier as
well as a non-linear classifier that can be explained by a sep-
arating hyperplane [165]. From a set of labeled training data,
this method produces an optimal hyperplane that separates
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(b)

FIGURE 11. SVM margin construction procedure and decision boundary.

the positive from the negative examples in two dimensional
space.

In Figure 11, some positive examples and some negative
examples are shown. Now the question is how to separate
these two classes? A straight line called hyperplane or deci-
sion boundaries is required to separate them. Another ques-
tion is how would we make a decision rule that would use that
decision boundaries?

Let us take a set of labeled training data x;, y;,i =
1,.....,1, where y;e—1,1, x;eRe. To separate the positive
from the negative examples some hyperplanes are needed.
The equation of hyperplane is

u-x+c=0 (54)

where u is normal to the hyperplane, x stands for values lie
on the hyperplane, |c|/||u|| defines the perpendicular distance
from the hyperplane to the origin, and ||u|| describes the
Euclidean norm of u. Some points either positive (x) or neg-
ative (x_) are the closest to the hyperplane which are the
shortest distance from the separating hyperplane. (x4 +x_)is
the margin of a separating hyperplane. Support vector algo-
rithm takes the largest margin for the separating hyperplane in
linearly separable case. Let us assume that each of the training
data satisfies the conditions given by,

Xi-u+c>+l1fory, =+1 (55)
Xi-u+c<—l1fory =—1 (56)

The combination of equation (55) and (56) become:
yixi-u+¢c)—1>0 (57)

The distance from the nearest positive value or the nearest
negative value = 1|||u|| and their margin is clearly 2| |u]|.
A and B have no training values in between them which are
also described in hyperplane. They are parallel to each other
and shown in Figure 11. Based on these conditions the pair of
hyperplanes can be found at maximum margin by minimizing
||u]|2, related to constraints (57).

However, the result of two dimensional (2D) cases is
described in Figure (11a) in details.

Training values which are closest to the hyperplanes and
support the hyperplanes’ margin are known as support vectors
shown in Figure (11a) with extra circles.

There are some constraints (57); to solve this prob-
lem a Lagrangian formulation is employed where positive
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Lagrange multipliers 8;,i = 1, ..., [, constraints of the form
d; > 0; are introduced. To form the Lagrangian, the con-
straint equations are multiplied by positive Lagrange multi-
pliers and subtracted from the objective function. For equality
constraints, the Lagrange multipliers are unconstrained. This
gives Lagrangian:

1 [
1
Lps§||u||2—§ Byitxi-u+c)+> B (58)
i=1 i=1

This is a convex quadratic programming problem. To solve
this Lp should minimize with respect to u, ¢, where B; >
0 and “dual” problem also can be solved by maximizing
Lp, the gradient of Lp related to u and ¢ vanish give the
conditions:

u= Zﬁiyz’xi (59)
> Bvi=0. (60)

As these are equality constraints in the dual formulation,
we can put them into Equation (58) to give

1
Lp = Z,Bi —3 Zﬂiﬂjyiy/xi - X (61)
i ij

The optimization depends on the dot product of pairs of
samples. In the solution values having ; > 0 are defined
as “‘support vectors”, and lie on one of the hyperplanes A,
B. Support Vectors lie closest to the decision boundary; if all
other training values are removed and the training is repeated,
the same separating hyperplane would be found. To handle
non-separable data positive slack variables n;,i = 1,...,1
are introduced in the constraints, which then become:

Xi-u+c>+1—n fory,=+1 (62)
Xi-u+c<-1+4+n fory,=-1 (63)
n=>0 (64)

where Y, 7; is defined by an upper bound of the number
of having training errors. An additional cost is given to
choose the optimal function to minimize from lul|?/2 to
ul|?/2 + DY, n)¥, where D is the parameter selected by
the user, As it stands, this is a convex programming problem
for any positive integer k; for k = 2 and k& = 1 it is also
a quadratic programming problem, and the selection k = 1
has a fruitful effect that neither the 5;, nor their Lagrange
multipliers, involve in the Wolfe dual problem, as follows:

1

Lp = Z Bi— > Z BiBiyivixi - j (65)

1 l,./

where as:
0=<B =D, (66)
D Byi=0. (67)
i
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The given solution is again presented as
Ns
w="y_ By (68)
i=1

The term Ns is known as the number of support vectors.
Hence the only main difference from the objective hyperplane
consideration is that the §; have an upper bound of D. This
circumstance is described in Figure (11b). To solve the primal
issue, Karush-Kuhn-Tucker criteria is required. The primal
Lagrangian can be expressed by

1
Ly = Sllul* +D} i
i
—Zﬂiyi(xi utco)—1+n— Zumi (69)
i i

where the w; define the Lagrange multipliers which were
proposed to effectuate positivity for the n;. The conditions
of KKT for the primal issue are given by

Bilyixi-u+c)—1+n} =0 (70)
wmini =0 (7D
0<pi<D (72)

SVM classifies the test sample with the following decision
function, which determines on which side of the separation
hyperplane the sample x lies,

M(x) =sgn(u-x+c) (73)

For Nonlinear classification problems, the data are mapped
to possibly infinite dimensional Euclidean space H, using a
function which is known as m:

7:R' > H. (74)

The training algorithm depends on just the data through scalar
multiplications in /, i.e. on maps of the form 7 (x;) - 7 (x;}). In
the training algorithm, we only need to use ‘’kernel function™
K where K (x;, xj) = m(x;) - m(xj), and would never need to
explicitly know what 7 is. One example is defined as,

K(xi, x) = e~ ||x; — x112 /28 (75)

But how can this machine be used? Basically, u is required
that will also live in H. However, an SVM is applied in test
phase by calculating scalar multiplication of a particular test
value x with u, or more generally by evaluating the sign of

Ns
mx) =Y iyim(si) - w@x) + ¢
i=1
Ns
= > BiyiK(si,x) + ¢ (76)
i=1
where s; define the support vectors. Therefore, 7 (x) calcula-
tion can be ignored evidently, rather K (s;, x) = 7 (s;) - w(x)
should be employed.
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SVM can achieve optimal result on training record but the
VC dimension of SVM is computationally high and hard to
calculate [177].

Table 7 illustrates a brief evaluation of KNN, DT and SVM
techniques.

IV. APPLICATION

Human Detection is being used in various applications.
Human detection constitutes the first phase in a variety of
applications for examples “intelligent digital content man-
agement” [201]-[203], “driving assistance systems” [204]—
[207], “smart video surveillance” [208]-[210], “abnormal
behavior” [211], [212], “crowd scene analysis (people count-
ing)” [213], [214], “person re-identification” [215]-[217],
“human tacking” [218]-[220], “human activity recogni-
tion” [221]-[224], “human pose estimation” [225]-[228],
“gender classification” [229]-[232], “‘pedestrian detection”
[233]-[238] and ‘“‘e-health systems” [239]-[243].

1) ABNORMAL BEHAVIOR

“Abnormal behavior” is defined as any kind of activity that
is performed in different or unusual circumstances than what
is normally or usually carried out. Abnormal behavior’s def-
inition changes according to the circumstances. For instance,
a person running in a mall is deemed abnormal but it is con-
sidered as normal behaviour in a field. Detection of abnormal
behavior is important because of the society’s rising crime
rate. If an irregular activity can be identified earlier, it is
possible to prevent tragedies [244].

Ko et al. developed a model for human abnormal behav-
ior detection combined with deep learning using Kalman
filter. A LSTM (long-short term memory) model is applied
to estimate the behaviour process from normal RGB image
[245]. Unlike ‘“‘trajectory-based” and ‘‘pixel-based” meth-
ods, Cosar ef al. came up with one integrated approach
while reducing the false alarm for detecting the irregular
group behaviors [246]. Benmakrelouf et al. combined the
“divergence” and ‘“‘outlier” detection methods to detect the
abnormal activities in real time and succeeded with high
accuracy rate [247].

2) CROWD SCENE ANALYSIS

“Crowd analysis”™, that is, people counting in public gath-
ering has become a point of discussion in computer vision
[248], [249]. It is considered as one of the major or critical
problems in this area. Crowd analysis has shown its impor-
tance in some events, for example, marathon terrorist attacks
[250].

As “head” is able to be seen clearly in a crowd scene,
Shami et al. detected the head to analyze the crowd. At first
the authors combined the SURF feature with binary SVM
classifier to separate the crowd scene from the not-crowd
scene. Then the authors detected the heads from these scenes
using CNN [251]. Idrees et al. came up with one technique
to detect humans in deep crowd gathering by employing
“Locally-Consistent Scale Prior””. Subsequently, the authors
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TABLE 7. A brief summary of KNN, DT and SVM techniques.

methods advantages limitations
KNN
e has no need for training period that makes the technique to o difficult to find the K value [160]
execute faster than other classifiers [166] e less accuracy and high computational time for large dataset
e possible to seamlessly add new data that would not change the [160]
algorithm’s accuracy [167] o poor performance for high dimensional data [168]
e very simple to implement, only requires two parameters (K e sensitive to noisy environment [161]
value and the function of distance) to implement [157]
o less computational time [159]
DT
o needs less effort in the time of pre-processing for data formula- o minor change in the dataset creates uncertainty in the decision
tion as opposed to other classifiers [169] tree structure [172]
o needs no data scaling and normalization [170] e computationally expensive [163]
o robust to execute and gives high accuracy in classification tasks ¢ inadequate for calculating continuous values and applying re-
[162] gression [173]
o not affected by missing values in the dataset while making a
decision tree [171]
SVM

o provides good classification accuracy [174]
o shows good performance for high dimensional data [175]
o comparatively memory efficient [176]

o computationally expensive [177]
e responsive to noise environment [178]
o inferior performance for big dataset [179]

introduced an “Integer Programming formulation” for rea-
soning occlusion that can enhance the detection localiza-
tion [26].

3) PERSON RE-IDENTIFICATION

We need to clarify the definition of “re-identification”
first to know the “Person re-identification”. A. Plantinga
defined “‘re-identification” as “To re-identify a particular,
then, is to identify it as (numerically) the same partic-
ular as one encountered on a previous occasion” [217].
“Person re-identification (re-ID)” has gained a lot of
attention among researchers because of its significance to
application and research in the field of computer vision
[25]. It attempts to locate a human of interest in another
camera [217].

Su et al. developed ‘““Semi-supervised Deep Attribute
Learning(SSDAL)” technique for human *“Re-Identification
(ReID)” solving visual appearance changing with high
accuracy [252]. Since parts of the human body are often
misaligned in the detected person boxes, an image charac-
terization is needed which can deal with this misalignment.
Suh et al. proposed ‘““‘Part-Aligned Bilinear Representations”
technique to solve this misalignment issue while the authors
achieved high accuracy in five different data-sets [253].

4) HUMAN TRACKING

Human tracking is one of the core problems in the field of
computer vision. Human tracking is the process in which
moving humans are placed in various frames of a video, main-
taining the accurate identities. Xu et al. developed “UFFB-
based INS/UWB-integrated human tracking” technique in
which they were able to increase the accuracy of localization
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[254]. In order to track multiple human, Fu et al. proposed
“Monte Carlo probability hypothesis density (PHD) filter-
based” system [255].

5) PEDESTRIAN DETECTION

Pedestrian detection is another popular topic in computer
vision [236]. During the last few years, pedestrian detection
has made significant progress [256].

Li et al.. proposed “Scale-Aware Fast R-CNN (SAF R-
CNN)” technique to detect pedestrian while achieving high
accuracy on different dataset [Scale-Aware Fast R-CNN for
Pedestrian Detection]. Liu et al. developed “CSP detector”
for pedestrian detection where the authors achieved high
accuracy on “CityPersons” and “Caltech” data-sets [238].

6) E-HEALTH SYSTEMS

Human detection can also play a substantial role in e-
health systems, for instance, automatically elderly persons
fall detection by activating an alarm. Since the number
of senior citizens is rising significantly, fall detection has
become more of a concern than ever before. Various devices
and techniques have been proposed for fall detection [257].
Harrou et al. developed “MEWMA-based SVM” technique
for fall detection while increasing the classification accuracy
as well.

This model is also capable of categorizing the fall detec-
tion with high performance [242]. Considering illumination
condition, Kong et al. came up with one technique to detect
fall using RGB Depth camera [257]. Li et al. presented
“Convolutional neural networks (CNNs)” based technique
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TABLE 8. State-of-the-art human detection descriptors.

descriptor classifier train data test data Miss Rate Accuracy
Informed Haar [180] AdaBoost Caltech Caltech 34.60 % -
Informed Haar [180] AdaBoost Inria Inria 14.43 % -
VI [181] AdaBoost Inria Inria 95% -
VI [54] AdaBoost Inria Inria 72.48% -
VI [54] AdaBoost Inria Caltech 94.73% -
HOG [52] linear SVM Inria MIT 68% -
HOG [52] linear SVM Inria Inria 45.98% -
Shapelet [182] AdaBoost Inria Caltech 91.37% -
Shapelet [182] AdaBoost Inria Inria 81.70% -
MultiFtr+Motion [85] linear SVM TUD-Motion Caltech 50.88% -
MultiFtr+CSS [85] AdaBoost Inria Caltech 60.89% -
MultiFtr+CSS [85] AdaBoost Inria Inria 24.74% -
MB-BLP + WCRM [183] EFLDA Classifier Inria Caltech - 95%
MB-BLP+WCRM [183] EFLDA Classifier Inria TUD-Brussels - 96.53%
Pedestrian
HogLbp [75] linear SVM Inria Caltech 67.77% -
HogLbp [75] linear SVM Inria Inria 39.10% -
LatSvm-V1 [184] latent SVM Pascal Inria 43.83% -
LatSvm-V1 [184] latent SVM Pascal Caltech 79.78% -
LatSvm-V2 [185] latent SVM Inria Caltech 63.26% -
LatSvm-V2 [185] latent SVM Inria Inria 19.96% -
ChnFtrs [186] AdaBoost Inria Caltech 56.34% -
ChnFtrs [186] AdaBoost Inria Inria 22.18% -
Shape [187] K-means Caltech Inria - 78.7%
Gradient distribution [188] SVM INRIA INRIA - 93.81%
Improved Shape Context [183] SVM OSU Infrared Image OSU Infrared Image - 90.54%
DB DB
CrossTalk [189] AdaBoost Inria Caltech 53.88% -
CrossTalk [189] AdaBoost Inria Inria 18.98% -
VeryFast [190] AdaBoost Inria Inria 15.96% -
Roerei [190] AdaBoost Inria Caltech 48.35% -
Roerei [190] AdaBoost Inria Inria 13.53% -
AFS+Geo [191] AdaBoost Inria Caltech 66.76% -
FPDW [192] AdaBoost Inria Inria 57% -
PLS [193] PLS+QDA Inria Inria 62% -
POSEINV [194] SVM Inria Inria 86% -
Haar-like+HOG [195] SVM Inria Inria - 95%
HOG [195] SVM Inria Inria - 92.3%
ABM-HOG [196] SVM Inria TUD-Pedestrian - 90.2%
FeatSynth [197] linear SVM Inria Caltech 60.16% -
FeatSynth [197] linear SVM Inria Inria 30.88% -
MultiResC [198] latent SVM Caltech Caltech 48.45% -
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TABLE 8. (Continued.) State-of-the-art human detection descriptors.

descriptor classifier train data test data Miss Rate Accuracy
HikSvm [199] HIK SVM Inria Inria 42.82% -
HikSvm [199] HIK SVM Inria Caltech 73.39% -
SIFT [200] Adaboost Diamler Diamler 34% -
SIFT [200] SVM Diamler Diamler 34% -
SUREF [200] Adaboost Diamler Diamler 21% -
SURF [200] SVM Diamler Diamler 29% -
SIFT [200] Adaboost Inria Inria 49% -
SIFT [200] SVM Inria Inria 45% -
SUREF [200] Adaboost Inria Inria 49% -
SURF [200] SVM Inria Inria 36% -
to detect fall in video surveillance system while maintaining VI. RESULT

high accuracy [258].

7) HUMAN ACTIVITY RECOGNITION

Human activity recognition (HAR) has attracted considerable
interest in the recent decade among the scientific commu-
nity across the world. The ability of another person’s action
identification has become one of the key responsibilities
in computer vision. Various techniques and devices have
been advocated until now to recognize the human activ-
ities [294]. Chen et al. came up with ‘“‘coordinate trans-
formation and principal component analysis (CT-PCA) and
online support vector machine (OSVM)” based technique
for human activity recognition. The authors eliminated the
orientation changes issue employing CT-PCA method [295].
Hassan et al. developed “‘smartphone inertial sensors-based”
technique in which the authors integrated ‘‘kernel princi-
pal component analysis (KPCA), linear discriminant analy-
sis (LDA)” and “Deep Belief Network (DBN)” to identify
human actions [222].

Table 9 illustrates a brief evaluation of Abnormal Behavior,
Crowd scene analysis, Person re-identification, Human track-
ing, Pedestrian detection, Elderly fall detection and Human
activity recognition applications.

V. DATA-SET

A large number of human detection data-sets have been pro-
posed in the recent decades and made them publicly accessi-
ble to check the performance of human detection techniques.
We have collected these datasets based on various scenarios
so that they can be applied in different applications as well.
For instance, the CVC [37], Caltech [296] and ETH [38]
datasets are compatible for pedestrian detection where as
CAVIAR [297] and USC-B [298] are compatible for surveil-
lance systems. Various datasets with their available Uniform
Resource Locator (url), short descriptions and publications
are listed (in TABLE 10).
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Vision based human detection state-of-the-art methods have
been investigated and denominated based on their outcomes;
Log-Average Miss Rate (MR %) & Accuracy. The applied
descriptors, classifiers, training and testing data-sets are
reported (in TABLE 8).

In [180], Zhang et al. introduced the “‘Informed Haar”
model, which avoided complete searches for each specific
rectangle feature configuration and did not depend on random
sampling. The outcome showed that this technique is stable in
contradiction to occlusions and can perform at low computa-
tional cost. The authors used the model on two mostly famil-
iar benchmark datasets named “INRIA” and “Caltech”; on
“INRIA” it showed impressive result in regard to Log-Avg.
Miss Rate.

In [54], Viola et al. described a human detection technique
in which the authors integrated ‘“Haar-like features™ with
“motion information” evaluated in a video series, taking
into account two successive frames. The authors used face
descriptor [181] to solve the issue of human detection but on
“INRIA” and “Caltech” benchmark datasets, their method
achieved high Log-Avg. Miss Rate.

In [52], Dalal et al. introduced the HoG features after
studying the feature sets question for stable visual object
identification. This method consists of vector space which
calculates similarity by employing Euclidean or cosine dis-
tances while implementing a linear SVM. The experimental
result of HoG outperformed existing human detection feature
sets [195] Kim et al. proposed a human detection technique
combining HoG features with Haar-like features whereby this
model showed high accuracy compared to conventional HoG
features. Li et al. presented a part-based human detection
method [196] to overcome the pose changing and appear-
ance shortcomings of human in complicated traffic regions
wherein the authors applied a stochastic grammar technique.
The authors designed the human appearance parts in an
exuberant feature representation which increased the map
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TABLE 9. A brief summary of Abnormal Behavior, Crowd scene analysis, Person re-identification, Human tracking, Pedestrian detection, Elderly fall
detection and Human activity recognition applications.

methods

advantages

limitations

Abnormal Behavior

Supervised methods show impressive performance for
abnormal behaviors (labeled as classes) which are
known to the machine [259].

Abnormal behaviors can be detected at a high speed
using semi-supervised methods [260], [261].
Unsupervised methods are easy and can be used to
quickly detect abnormal behaviors [262], [263]

Supervised methods are useful to detect only particular
behaviors, e.g., fighting [264], falling [13], and loiter-
ing [265].

Supervised methods cannot detect ambiguous anoma-
lies and is not practically feasible to learn all possible
abnormal behaviors of humans [259].
Semi-supervised methods are responsive to multiple
parameters [266].

Training time for unsupervised methods is relatively
longer [262], [263]

Crowd scene analysis

Real-time crowd analysis is feasible using continuum
dynamics [267].

Good performance of crowd scene analysis can be
achieved even under lighting conditions [268].

Short time occlusion problem can be resolved using
matching-based tracking technique for crowd analysis
[268].

Present strategies generally target to analyze the crowd
with high accuracy, without taking the computational
time into account [269].

Contextual knowledge for learning and tracking is not
factored in the current crowd scene analysis techniques
[269].

If the view field is small with high crowd density and
occlusion, then it becomes challenging to analyze the
crowd scene [269].

Person re-identification

Person re-identification is possible with intense oc-
clusions employing fusing local-local and global-local
matches [270], [271].

Person re-identification is feasible even under illumi-
nation conditions and view changes [272], [273]

Person re-identification techniques fail to cope up with
the dynamic changes in the clothing patterns [274].
Achieving a very high tracking accuracy by utilizing
person re-identification techniques is not possible as
of now [274].

Human tracking

Human tracking is possible with appearance change
which is important to achieve good performance [275].
Real time human tracking is possible using online
trackers [255], [276].

Even in the presence of clutter backgrounds, human
tracking is possible [30].

It is still difficult to track human in real-time with off-
line trackers [255].

Majority of the current works consider only two ac-
tions ’standing’ or walking’ while the other activities
such as pose changes are ignored [277].

Occlusion handling is a significant challenge which
limits the accuracy of human tracking [277].

Pedestrian detection

It is possible to detect pedestrian in real-time [191].
Achieving a high efficiency in pedestrian detection is
currently feasible [190].

Partial occlusion can also be handled during pedestrian
detection [180].

Speed and accuracy are still low in real-time pedestrian
detection [48].

Occlusion, illumination conditions, view changes and
noise still continue to remain as the open problems for
pedestrian detection [38], [278], [279]

Elderly fall detection

Elderly fall detection is possible at a low cost [280],
[281].

It is possible to detect elderly fall in less time while
still maintaining a high accuracy [282], [283]

Many existing strategies using vision-based detection
lack flexibility for elderly fall detection [284].
Sensor-based methods lack consistency in terms of
providing a highly reliable and automatic fall detection
systems [284].

Human activity recognition

It is possible to recognize human action based on
viewpoint changes using wearable sensors [285] and
3-D markers [286].

Occluded actions can be recognized with the help of
probabilistic and pose-based methods [287]-[291]

As occluded part is impossible to extract, it is neces-
sary to develop robust classifiers which can handle the
occlusion even in dynamic backgrounds [292], [293].

A significant barrier to achieve success in human ac-
tion recognition is the absence of a benchmark dataset
that efficiently represents camera motion [292], [293].
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TABLE 10. Publicly accessible human detection data-sets.

name publication description year url
INRIA [52], [299]-[301] It contains 1208 humans in 2005 http://pascal.inrialpes.fr/data/
which 614 humans are for human/
training, and 288 humans are
for testing purpose.
MIT [302] It contains 64 x 128 colour 2000 http://cbcl.mit.edu/
images, and 924 humans for software-datasets/
training. PedestrianData.html
Daimler-DB [36], [303] It contains colour images, for 2009 http://www.gavrila.net/
training 15.6k humans, 6.7k Datasets/Daimler_Pedestrian_
negative images and for testing Benchmark_D/Daimler_
56.5k humans, 21.8k positive Mono_Ped__Detection_Be/
images. daimler_mono_ped_
_detection_be.html
Daimler-CB [304], [305] It has 2.4k humans for training 2006 http://www.gavrila.net/
with 15k negative images and Datasets/Daimler_Pedestrian_
for testing 1.6k humans and Benchmark_D/daimler_
10k negative images. pedestrian_benchmark_d.html
Penn—Fudan [306] This data-set contains 170 2007 https://www.cis.upenn.edu/
colour images with 345 ~jshi/ped_html/
humans.
H3D [290] It contains colour images in 2009 https://www?2.eecs.berkeley.
which 1500 humans for edu/Research/Projects/CS/
training and 500 humans for vision/shape/h3d/
testing with 107 positive
images.
CvC [371, [307] It contains colour images, and 2007 http://www.cvc.uab.es/adas/
for training, it has 2000
humans and 6175 negative
images.
TUD-Brussels [308] It contains colour images in 2009 http://www.d2.mpi-inf.mpg.de/
which 1776 humans, 218 tud-brussels
negative images and 1098
positive images are for training
while 1498 humans and 508
positive images are for testing.
TUD-det [309] It contains colour images in 2008 https://www.pgram.com/
which 400 humans, 400 dataset/tud-pedestrians/
positive images are for training
and 311 humans, 250 positive
images are for testing.
ETH [38], [310] It contains colour images in 2007 http://www.vision.ee.ethz.ch/
which 2388 humans are for aess/dataset/
training, and 12k humans are
for testing.
USC-A [298] It contains grey images in 2005 http://www.iris.usc.edu/
which 205 positive images and Vision-Users/OldUsers/bowu/
313 humans are for testing. DatasetWebpage/dataset.html
USC-B [298] It contains grey images in 2005 http://www.iris.usc.edu/
which 54 positive images and Vision-Users/OldUsers/bowu/
271 humans are for testing. DatasetWebpage/dataset.html
usSc-C [311] It contains grey images in 2007 http://www.iris.usc.edu/

which 100 positive images and
232 humans are for testing.

Vision-Users/OldUsers/bowu/
DatasetWebpage/dataset.html

of HoG and ABM (Active Basis Model). Wang et al. com-

In [182], Sabzmeydani et al. introduced a features set

bined HoG features with LBP (Local Binary Pattern) [75] named ‘“‘Shapelet” to solve the issue of recognizing humans
for human detection to solve the partial occlusion issue; in still scenes. These features were constructed of low-level
this method showed impressive performance on “INRIA” features which consisted of gradient responses in scenes.
dataset. Next, an “AdaBoost” classifier had been applied in a features
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TABLE 10. (Continued.) Publicly accessible human detection data-sets.

name publication description year url
Caltech [38], [296] It contains colour images in 2009 https://dbcollection.
which 192k humans with 61k readthedocs.io/en/latest/
negative images and 67k datasets/caltech_ped.html
positive images for training. It
has 155k humans with 56k
negative images and 65k
positive images for testing.
MS COCO [312] It consists of 330K images 2014 https://cocodataset.org/
with 2500k labelled instances.
It has a total of 80 object
classes, including human
object.
ImageNet [313] The largest data-set is freely 2009 http://www.image-net.org/
available on the internet that
contains 14.19 million images
with 20k categories.
PASCAL VOC [22], [185], [314] It contains 8,776 images with 2007 http://host.robots.ox.ac.uk/
20 classes. pascal/VOC/
EuroCity Persons [315] It has 47.3k colour images 2019 https:
including 238.2k humans, /leurocity-dataset.tudelft.nl/
annotations and bounding eval/user/login?_next=/eval/
boxes are provided. downloads/detection
PETA [316] It contains 19k colour images 2014 http://mmlab.ie.cuhk.edu.hk/
including 8705 humans, projects/PETA htm
image resolution range starts
from 17 x 39 to 169 x 365.
WiderPerson [317] It contains 13.4 colour images 2019 http://www.cbsr.ia.ac.cn/
with 400K annotations, 8k users/sfzhang/WiderPerson/
images for training, 1k images
for validation and 4.4k images
for testing.
Supervisely Person [318], [319] It contains 5.7k images with 2018 https://supervise.ly/explore/

6.9k annotated human

projects/

instances.

supervisely-person-dataset-23304/
datasets

set for learning purpose. Finally, “Shapelet” features had
been used as input while training another classifier called
“AdaBoost™ to categorize between human and non-human.
The experimental results showed that the model performed
better on “INRIA” dataset.

In [85] Walk et al. executed motion features from optic
flow which showed extensive performance on videos, sur-
prisingly in the event of low-quality image sequences.
Besides, the authors introduced a dynamic feature named
“CSS” which is derived from self-similarity that continu-
ously increases the performance of detection over various
datasets not only in still images but in video sequences as
well. Finally, the authors combined these two techniques
with HoG features that surpassed until 20 percent of the
state-of-the-art. ““AdaBoost” and “Linear SVM”™ classifier
were applied to categorize and analyze the performance on
“Caltech”, “TUD-Brussels’ and “INRIA” datasets.

In [183], Chen et al. advocated a system to detect human in
infrared images employing ““improved Shape Context feature
(ISC)” that is more stable to object distortion. The authors
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applied ““Bilateral Filtering” for images in order to retain
the extensive sharp edges information and to simplify the
extracting task of the “Shape Context feature (SC)’. The
outcomes indicated that this method is apt to infrared images.

In [184], [185], Felzenszwalb et al. presented a human
detection framework based on pictorial structures named
“Deformable Part Model (DPM)”. The authors used a
scanning window technique that consisted of a com-
prehensive ‘“‘root filter” and multiple “part filters”. A
latent variable “MI-SVM” construction called “latent SVM
(LSVM)” is applied to train models using partly-labelled
data. Deformable part-based methods obtained state-of-the-
art achievement for object identification. However, it is not
salient because of its dependency on heuristic initialization
during training for the sake of the optimization of non-convex
cost function.

In [186], Dollar et al. examined the ‘‘integral channel
features” performance for object classification purposes,
particularly human class. The ‘““integral channel features”
general concept is that various recorded image channels
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are calculated employing non-linear and linear input image
transformations. After that, features such as ‘“local sums”,
“Haar features”, “histograms”, and their various general-
izations are computed accurately applying integral images.
The authors demonstrated ’integral channel features’ outper-
formed several features (for example, “‘histogram of oriented
gradient (HOG)”) if designed appropriately. The experimen-
tal works had been conducted mostly on “INRIA” dataset,
and then the results had been shown on “Caltech” dataset
as well. In [189], Dolldr et al. presented two opposing
frameworks: “‘promising neighbors excitation” and “‘infe-
rior neighbors inhibition” detectors to communicate with
“crosstalk cascades”. Subsequently, the authors introduced
an optimized application integrated with current approaches
in “fast multi-scale feature” computation which achieved
state-of-the-art accuracy.

In [187], Li et al. advocated an improved ‘‘Implicit Shape
Model (ISM)”* in which the authors examined six familiar key
point detectors to find out the best one to detect human and
on-road traffic. The experimental result showed that ““Harris
Detector” was the best detector. Then, a fuzzy function was
used to overcome the original “‘shape context local feature”
detector’s shortcomings. Lastly, the authors applied “Mean
shift” instead of “‘k-means algorithm” for codebook creation
accurately on datasets.

In [188], Mehralian et al. developed a dynamic method
based on sliding window to detect human in static images
and image sequences. All windows were split into overlap-
ping cells. From these cells, features were extricated which
were derived from gradient distribution analysis. The authors
applied “Principal component analysis (PCA)” on a cell
computation to get the cell features. Finally, “Support Vector
Machine (SVM)” was used to classify the features and tested
on “INRIA” dataset. The presented model is more stable in
noise and showed impressive detection accuracy compared
with “Histograms of Oriented Gradient (HOG)” method.
Benenson et al. [190] presented a novel human descriptor
which enhanced not only quality but also speed by handling
various computation of scales and transferring successfully
over the state-of-the-art. This model provided an excellent
detection rate on monocular images. In addition, the authors
developed a dynamic technique for utilizing *“geometric con-
text” retrieved from stereo images.

In [191], Levi et al. addressed part-based ““Accelerated
Feature Synthesis (AFS)” technique that used various tactics
for decreasing the searching locations number for all parts.
The authors developed the “KDFerns” method to compare
all locations of the image with the model parts subset only.
By applying “spatial inhibition” and an object-level ““coarse-
to-fine” technique, candidate part positions for a particular
part were additionally decreased. This method achieved real
time running efficiency while maintaining the same accuracy
of the main ‘““Feature Synthesis’ on “INRIA” and ““Caltech”
datasets. Meanwhile, Schwartz er al. described an “‘edge-
based features’ [193] technique in which the authors applied
“Partial Least Squares (PLS)” analysis that outperformed the
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state-of-the-art methods on “INRIA”, “DaimlerChrysler”,
and “ETHZ pedestrian” datasets. Park et al. [198] presented
a multiresolution technique that behaved like a ‘““deformable
part-based” method. The authors applied this model on ““Cal-
tech” dataset and reduced the detection missed rate to 29 per-
cent.

In [194], Lin et al. presented a learning-based ‘‘sliding
window-style” global descriptor to learn and to categorize
the image patterns of human/non-human by splitting up
the human poses and shapes simultaneously, and remov-
ing articulation-nonreactive features. The authors used ““His-
tograms of oriented gradients (HoG)” as a low-level fea-
ture source and ‘‘kernel SVMs” for classification. The pro-
posed method showed impressive result on “INRIA’ dataset.
Besides, “MIT-CBCL pedestrian™ dataset was also used to
evaluate the performance of the methods. Later, in [197],
the authors introduced a learning part-based method which
included an iterative feature generation and pruning process.
The authors used ““Predictive Feature Selection (PFS)” with
“linear SVM”’ for feature pruning. This model was evaluated
on “INRIA”, “Caltech” and another customized datasets
where it made progress the state-of-the-art on ‘“‘Caltech”
dataset.

In [199], Maji et al. introduced a “multi-level histograms
of oriented edge energy” based dynamic features in which
the authors used ‘‘intersection kernel SVMs (IKSVMs)”
for classification. The authors applied the method on vari-
ous datasets wherein this method showed impressive result
on “INRIA” dataset and improved the detection speed on
“Caltech” dataset. In [200], Yao et al. compared vari-
ous detectors including “SIFT” & “SURF” descriptors for
human detection in which the authors used “AdaBoost” and
“SVM” for classification. The authors applied these descrip-
tors on “‘Diamler”, and “INRIA” datasets and the experiment
showed significant result on “INRIA” dataset.

VII. SUGGESTIONS, OPEN PROBLEMS AND FUTURE
DIRECTIONS

In the subsequent sections, various suggestions are given to
improve the described feature extraction techniques in terms
of speed and accuracy. Various open problems and future
directions are also provided for those who are keen to work
in the area of human detection.

A. SUGGESTIONS
Actual object detection research started in 2001 after the dis-
covery of the Viola-Jones technique. Several research articles
have been published since to improve the Viola-Jones algo-
rithm. For any object detection, accuracy is the most impor-
tant factor while maintaining the speed. If linear SVM model
[320] is to applied to predict feature image in training dataset
and change the scaling factor using genetic algorithm [321],
the efficiency of Viola-Jones algorithm can be increased.
The structure of Scale Invariant Feature Transform (SIFT)
is complicated and its computational time is high. To increase
its efficiency and reduce its computational time a hybrid
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method has been proposed. First, the linear combination
of cityblock distance and chessboard distance should be
used instead of euclidean distance to increase the SIFT fea-
ture matching efficiency. Besides, character point should be
reduced while evaluating part-feature results [322]. In the
next step, SIFT descriptor should be improved with the polar
histogram orientation bin. Here, rectangular region should be
replaced with a circular region because of its’ greater invari-
ance in rotation [323]. Finally, to achieve higher accuracy
a fuzzy closed-loop control technique should be employed.
In open-loop techniques, the outcome of each step relies
on the preceding step. Hence, errors are accrued on the
whole recognition system and generated to the ultimate step.
Thus, the end result appears to be vulnerable to error and
is unreliable. This issue can be solved by applying a fuzzy
control technique. The approach is non-linear and there is no
mathematical model available [324].

In order to increase the accuracy and speed of SURF
algorithm, a new method has been proposed which is com-
bined with the conventional SURF technique. At the begin-
ning step, SURF (Speeded-Up Robust Features) combined
with FAST method should be used to detect and describe
the feature points of images. Laplace operator should be
employed on weighted FAST feature points to get the quick
matching result on the target extraction. For this operation,
another feature point extraction will be secured. As a result,
SURF descriptors will get more robustness in a matter of
quick matching [325]. Later, RANdom SAmple Consensus
(RANSAC) should be employed to eliminate the mismatch
pairs. RANSAC algorithm is more effective and robust com-
pared to other estimation methods [326].

Numerous methods have been developed until recently to
improve the performance of Bag of Words model. A dynamic
technique has been suggested to increase the accuracy for
object categorization based on Bag of Words algorithm. First
of all, Difference-of-Gaussian (DoG) will be employed to
detect the interest points as key point detection is one of
the most important steps for extracting the features of Bow
model [327]. Secondly, SIFT feature should be replaced with
PCA-SIFT to describe the key points of the local descriptor.
This is because PCA (principal component analysis) reduces
the dimensionality of SIFT descriptor. Therefore, not only
image retrieval performance will be increased but matching
will be faster as well. Next, vector quantization clustering
algorithm k-means should be replaced by random forest
method to overcome the limitation of k-means. By applying
random forest clustering, accuracy will be increased and
computational cost will be reduced [328]. Finally, for the
purpose of image annotation, classification algorithm-linear-
SVM should be applied because of its efficiency and robust-
ness [329].

Since HoG (Histograms of Oriented Gradients) is one of
the most popular object detection descriptors in computer
vision, many studies based on HoG algorithm have been
carried out to improve its techniques. After comparing and
analyzing many related studies, a novel hybrid method has
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been proposed to increase its accuracy and speed. In the first
stage, PCA (Principal Component Analysis) and HoG will be
combined together. PCA is employed to HoG features for get-
ting the score vectors (PCA-HoG). PCA reduces the dimen-
sionality of HoG descriptor; consequently, original descrip-
tor will become more robust in object detection. Next, SFS
(Stepwise Forward Selection) or SBS (Stepwise Backward
Selection) technique will be applied to select an appropriate
part of PCA-HoG element vectors. Then, classifier will use
these PCA-HoG element vectors as an input to categorize
the particular object [330]. Finally, SVM classifier will be
replaced by GA-XBoost [331] to increase the classification
accuracy.

Among all the computer vision algorithms, Deformable
Part Model shows the highest detection accuracy. In contrast
to other improved techniques, DPM is slower in speed. Con-
sequently, a new dynamic technique has been recommended
to make DPM faster and more accurate. At the initial stage,
we recommend replacing the HoG descriptor with WHoG.
Weighted Histograms of Oriented Gradients (WHoG) [73]
is a combination of global shape descriptors and local point
descriptors which describe object detection with diverse tex-
tures. Bottom-up pose clustering method is used to handle
intense pose variations. Two CNNs work parallel there; one
is input pose taker templates and the other is taker of color
information. First, the authors explain pose clustering tech-
nique and employ an improved HoG descriptor (WHoG)
to make a pose-specific bird detector. WHoG generates a
result for every candidate posture, with the maximum score
indicating the recognized position for that specific posture.
In the subsequent step, scale invariant color components have
been used to make a spices-specific object detector. WHoG
finds out the object and defines its position exactly in any
particular picture by allocating additional weight to fringe
and less load to body structures or stripes. WHoG can be
used to detect any kind of object that conveys intestinal
designs or textures. This approach can detect textured objects
in opposition to background clutter. In addition, it has an
immense dimensional articulation as well as pose variety such
as small objects like birds. Integration of properly schematic
scale invariant color features into the method increases the
detection accuracy. This method minimizes computational
complication and shows a great performance progress on a
comprehensive dataset: CUB-200-2011. Finally, WHoG fea-
tures will be used to train the latent SVM (LSVM) classifier.

B. OPEN PROBLEMS AND FUTURE DIRECTIONS

1) OPEN-WORLD LEARNING AND ACTIVE VISION

Rapid changes in fashion trends and latest inventions require
the detection systems to be continuously modified, intro-
ducing new classes, or upgrading existing ones in order to
identify objects more effectively and accurately. Following
an unsupervised way, new classifiers can be built using the
existing one without any extra effort of learning new object
classes.
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2) MULTI-MODAL DETECTION

New sensory modalities have been developed very recently,
especially depth and thermal cameras [332], [333]. The meth-
ods used for visual images are, however, often used for ther-
mal images and to a lesser extent for profound depth images.
While thermal images help differentiate the foreground from
the background, this can only be used for infrared light
irradiating artifacts (e.g., mammals, heating). It is simple
to segment objects using depth images but generic methods
have not been proposed for detecting particular classes (i.e.,
human class) as higher resolution images are required to do
so. Depth and thermal cameras alone do not seem sufficient
for object detection, at least with their current resolution, but
progress can be expected with the advancements in sensing
technology.

3) OBJECT-PART RELATION

Detecting the object first or the parts first is a very basic
dilemma during the detection process with no exact solution.
This search of object and its parts needs to be carried out
simultaneously where each of these provides feedback to each
other. Doing this still remains a great problem which relates
to the usage of context information. Furthermore, in the case
of the object component, the interaction of many hierarchies
can also be broken down into sub-parts, and what should be
done first is not clear in general.

4) PIXEL-LEVEL DETECTION (SEGMENTATION) AND
BACKGROUND OBIJECTS

Successful detection of all objects in a single scene along with
a proper understanding of the scene will require pixel level
detection of the objects and a 3D model of the scene where
most detectors till date use 2D images. Accordingly, object
detection and image segmentation require integration at some
point. Achieving this automatic worldview is still far from
reality and active vision mechanisms could be important to
achieve this [334], [335].

5) OCCLUSION

Although relevant research has been carried out by [298], par-
tial occlusion remains an influential problem, but no solution
exists as of now. For this type of problem, the deformable
part-based model [185] has succeeded to a certain extent.
However, further improvement in performance remains an
open problem.

6) MULTI-VIEW, MULTI-POSE, MULTI-RESOLUTION
Detection of human object have been designed by various
methods under a single view. Among these methods, only
deformable part-based models are able to deal with particular
pose variations, whereas other methods are unable to handle
multiple view and large pose variations.

7) EFFICIENCY
Efficiency is a prime concern in any object detection sys-
tem. It does not imply real-time performance, and works
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for instance, deformable part-based model [185] is efficient
and robust, yet not quick enough for real-time solutions.
Nonetheless, the usage of specialized software such as GPU
provides real-time run for some methods like deep learning.

8) DETECTOR SELECTION

With so many options in feature representation and classifier,
selecting the best option is not an easy choice. In this article,
we have presented various techniques with their successes
and shortcomings. We have provided the options in which
to select techniques which perform the best on a particular
data-set. The major advantage of vision-based technique is
that it does not need a huge data-set like deep learning.
Recently, there is a big hype regarding deep learning — with
valid reasons such as high accuracy. We do not have to
handcraft design the features; rather they will automatically
learn so. However, it requires massive data to train and
prepare computational resources. Due to its semi-blackbox
nature, debugging can be challenging. Combination of both
machine-learning and deep learning can be very useful where
researchers can use deep learning to extract the best features
and then researchers can choose a machine-learning classifier
that produces the best result of a particular data-set.

VIIl. CONCLUSION
In the most recent decade, human detection topic has gained
impressive attention among the research community due to
its large number of applications. This article provided a com-
prehensive review on the state-of-the-art feature extraction
techniques followed by various classifiers. It also critically
analyzed the various techniques by explaining the possible
pros and cons in the light of the application scenarios. The
distinguishing characteristic of the article is that it presented
amore detailed evaluation and analysis of the existing feature
extraction techniques with their invariants, which were other-
wise not included in the currently available literature works,
with respect to various performance indicators, such as log-
rate and accuracy. Various publicly available datasets for
the feature extraction techniques for human detection were
reported in conjunction with a concise description. Although
techniques such as Viola-Jones and SURF can detect objects
in real-time and overcome sift limitations, they are still sen-
sitive to illuminated conditions. Other techniques such as
SIFT, BoW, and OMs do exist and provide other interesting
benefits which include insensitivity to occlusion and clut-
ters, simplicity, and low-order element construction, but they
are expensive from a computational standpoint. HoG is yet
another technique that possesses some interesting features
such as its invariance towards photometric and geometric
transformations and illuminated conditions but faces a set-
back as it misses the context of spatially neighboring pixels.
Upon thoroughly reviewing all the existing feature extrac-
tion techniques, it was concluded that the DPM technique per-
forms relatively better than its counterparts primarily because
it can provide an optimum performance across multiple
aspects such as the ability to handle particular pose variations,
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multiple views, and is application-free i.e., works reason-
ably well in real-time systems. However, the technique also
poses certain limitation which deserve additional attention
and scrutiny. The DPM technique is compute-intensive since
it depends on the heuristic initialization during the training
process in order to optimize the non-convex cost function.
Despite this, the DPM technique is still relatively superior
compared to the other existing techniques for human detec-
tion which can find fundamental importance in many real-

time

applications involving human detection systems. This

article is not only for the researchers in the area of computer
vision but also intended for people who are keen on delving
into the area of human detection utilizing machine learning
algorithms. As presented in the preceding section, possible
future research directions includes but not limited to further
enhancement of the speed, computational training time, and
the accuracy of algorithms.
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