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ABSTRACT To efficiently simulate the bandpass electromagnetic problems by employing the finite-
difference time-domain (FDTD) algorithm, unconditionally stable implementation is proposed based upon
the complex envelope method and the Crank-Nicolson Direct-Splitting (CNDS) algorithm. To further absorb
outgoing waves and reduce wave reflections in open region problems, absorbing boundary condition with
improved absorption is proposed by incorporating the proposed scheme with the higher order perfectly
matched layer (PML) formulation. The proposed scheme takes advantage of the complex envelope method,
the CNDS algorithm and the higher order PML formulation in terms of simulating bandpass signals and
enhancing absorption and improving computational efficiency. Numerical examples are carried out to further
demonstrate the effectiveness and efficiency. Through the resultants, it can be illustrated that the proposed
scheme can not only obtain considerable accuracy, favorable absorbing performance, outstanding efficiency
in the simulation of bandpass open region problems but also maintain the stability of the algorithm when the
time step surpasses far beyond the Courant-Friedrich-Levy condition.

INDEX TERMS Complex envelope (CE), Crank-Nicolson direct-splitting, finite-difference time-domain
(FDTD), perfectly matched layer (PML).

I. INTRODUCTION
With outstanding advantages in simulating electromagnetic
problems, the finite-difference time-domain (FDTD) algo-
rithm has gained considerable attention in past recent
decades [1]–[4]. The time and spatial sampling of the con-
ventional FDTD is based on the lowpass-limited sampling
theorem which has been verified to be inefficient in band-
pass simulation [5]. The reason is that the time step must
be calculated according to the maximum frequency result-
ing in the degeneration of efficiency and accuracy when
calculating bandpass signals [1], [6]. In order to alleviate
such phenomenon and overcome such drawback, the complex
envelope (CE) method is introduced into the implementation.
Based on the bandpass-limited sampling theorem, the time
step of CE-FDTD algorithm can be calculated according to
the bandwidth rather than the maximum frequency [7], [8].
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That means the time step of the CE-FDTD algorithm can be
enlarged for several times compared with the conventional
FDTD algorithms.

As a time explicit algorithm, the stability of the conven-
tional FDTD algorithm is severely limited by the Courant-
Friedrich-Levy (CFL) condition [9]. By employing the
FDTD algorithm to the large amount of time step problems,
the simulation duration will be unacceptable. Uncondition-
ally stable algorithms are carried out to remove the CFL
condition and improve the efficiency during the calcula-
tion. The Crank-Nicolson (CN) scheme which can obtain
the solution of equations accurately has gained considerable
attention [10]. The original CN scheme can merely solve
the Maxwell’s equations in one-dimensional problems [11].
In multi-dimensional problems, large sparse matrices will
be formed resulting in the computation much more expen-
sive [12]. Thus, a series of approximate CN algorithms
are developed in two-dimensions, such as CN approximate-
decoupling and CN Douglas-Gunn [13], [14]. It should be
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noticed that the approximate CN algorithms in 2-D cases
cannot be expanded to 3-D cases directly [15]. Recently, CN
cycle-sweep (CS), CN approximate-factorization-splitting
(AFS) and CN direct-splitting (DS) schemes are introduced
to three-dimensions [16], [17]. However, it has been proven
that CNCS is a conditionally stable implementation [18],
[19]. The CNAFS scheme is implemented by adding higher
order disturbance terms at both sides of the equations. Thus,
the resultants can be spitted by the AFS procedure into
three sub-steps resulting in the forming of three tri-diagonal
matrices of each components which can be efficiently solved
by the Thomas decomposition [20], [21]. According to the
CNDS scheme, the field matrices can be spitted by two sub-
steps. By approximating the coupled equations, each field can
be solved by two tri-diagonal matrices of each components.
Furthermore, by introducing moderate auxiliary variables,
the efficiency can be further improved [19]. Compared with
CNDS and CNAFS schemes, it can be concluded that the
CNDS scheme can obtain better computational efficiency,
considerable accuracy and outstanding absorption during the
simulation [19], [20].

To solve different kinds of open region problems, absorb-
ing boundary condition must be introduced to terminate
unbounded lattice. The perfectly matched layer (PML) is
regarded as the most powerful ones [22]. As the Berenger’s
PML is implemented by split-field formulation, several
auxiliary variables should be introduced resulting in the
decrement of efficiency and absorbing performance. To not
only overcome such problem but also improve the accu-
racy, the stretched coordinate PML (SC-PML) and complex-
frequency-shifted (CFS) PML schemes are proposed [23],
[24]. The SC-PML and CFS-PML have advantages of
simplifying the implementation at the corners and edges of
the PML regions, reducing late-time reflections and atten-
uating low-frequency evanescent waves, respectively [23],
[25]. In order to further improve the calculation accu-
racy, the higher order FDTD is incorporated with PML
formulation [26]. However, by employing them to low-
frequency problems, it has been demonstrated that the absorb-
ing performance becomes unacceptable. The reason is that
the low-frequency propagation waves cannot be efficiently
absorbed [27]. Thus, the higher order PML is carried out not
only to alleviate such problem but also to further enhance the
absorbing performance [28].

Until now, several published works which combine the
approximate CN algorithms and higher order PML are
mainly focus on the 2-D situations [29], [30]. Although
CNAFS-PML and CNDS-PML schemes are proposed [19],
[20], they are implemented by CFS-PML according to the
lowpass-limited sampling theorem. Thus, they are ineffi-
ciency in low-frequency and bandpass problems.

Here, based upon the CE method, the higher order PML
formulation and the CNDS algorithm, unconditionally sta-
ble higher order CNDS-PML is proposed for bandpass
open region problems, denoted as CE-CNDS-HO-PML.

Numerical examples are carried out in 3-D cases for the
further demonstration.

II. FORMULATION
For simplifying the equations without losing the generality,
Ex andHz are chosen as examples for the demonstration of the
formulation In the higher order PML regions, the source-free
Maxwell’s equations in the frequency domain can be written
as

jωε0Ex = S−1y ∂yHz − S−1z ∂zHy (1)

−jωµ0Hy = S−1z ∂zEx − S−1x ∂xEz (2)

where Sη, η = x, y, z is the higher order stretched coordinate
variables with CFS factor which can be defined as

Sη =
(
κη1 +

ση1

αη1 + jωε0

)(
κη2 +

ση2

αη2 + jωε0

)
(3)

where κηn, n = 1, 2 is selected as κηn ≥ 1, σηn and αηn are
positive real. By employing the partial fraction method, S−1η
can be given as

S−1η = kη
jω + aη1
jω + bη1

jω + aη2
jω + bη2

(4)

where κη = 1
/(
κη1κη2

)
, aηn = αηn

/
ε0 and bηn = aηn +

aηn
/
κηn. By substituting (4) into (1) and (2), one obtains

jωε0Ex

= ky
jω + ay1
jω + by1

jω + ay2
jω + by2

∂Hz
∂y
− kz

jω + az1
jω + bz1

jω + az2
jω + bz2

∂Hy
∂z

(5)

jωµ0Hy

= kx
jω + ax1
jω + bx1

jω + ax2
jω + bx2

∂Ez
∂x
− kz

jω + az1
jω + bz1

jω + az2
jω + bz2

∂Ex
∂z

(6)

By introducing the auxiliary variables Fxηn and Gyηn into
the equations (5) and (6), one obtains

jωε0Ex =
(
jω + ay1

)
Fxy2 − (jω + az1)Fxz2 (7)

jωµ0Hy = (jω + ax1)Gyx2 − (jω + az1)Gyz2 (8)

where the auxiliary variables Fxηn and Gyηn almost have the
similar forms, Fxηn are given as examples, written as

Fxη1 = kη
1

jω + bη1

∂Hη̃
∂η
⇒ jωFxη1 + bη1Fxη1

= kη∂ηHη̃ (9)

Fxη2 =
jω + aη2
jω + bη2

Fxη1 ⇒ jωFxη2 + bη2Fxη2

= jωFxη1 + aη2Fxη1 (10)

where η̃ is the complement of η, for example, when calculat-
ing Ex , η = ywhile η̃ = z. By substituting (9)-(10) to (7)-(8),
one obtains

jωε0Ex =
(
ay2 − by1

)
Fxy1 +

(
ay1 − by2

)
Fxy2 + ky∂yHz

− (az2 − bz1)Fzx1 − (az1 − bz2)Fzx2 − kz∂zHy
(11)
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jωµ0Hy = (ax2 − bx1)Gyx1 + (ax1 − bx2)Gyx2 + kx∂xEz
− (az2 − bz1)Fzx1 − (az1 − bz2)Fzx2 − kz∂zHy

(12)

By employing the CE method, bandpass signal can be
expressed as the following expression as 8 = Re

{
8̂ej$ t

}
,

where the operator Re {·} represents the real part of the
equation, $ is the carrier frequency, 8 is the original field
component and 8̂ is the CE bandpass signal. By transforming
(11-12) into the time domain according to the relationship
jω ↔ ∂

/
∂t , rewriting the resultants according to the CE

method and rearranging the resultants, one obtains

Ên+1x = c1Ênx + p1eyF̂
n
xy1 + p2eyF̂

n
xy2

+p3eyδy
(
Ĥn+1
z + Ĥn

z

)
−p1ezF̂nxz1 − p2ezF̂

n
xz2 − p3ezδz

(
Ĥn+1
y + Ĥn

y

)
(13)

Ĥn+1
y = c1Ĥn

y + p1hxĜ
n
yx1 + p2hxĜ

n
yx2

+p3hxδx
(
Ên+1z + Ênz

)
−p1hzĜnyz1 − p2hzĜ

n
yz2 − p3hzδz

(
Ên+1x + Ênx

)
(14)

where c1 = (2− j$1t)
/
(2+ j$1t), c2 = 1

/
(2+ j$1t),

p1eη=2c21t
(
aη2 − bη1

)/
ε0, p2eη = 2c21t

(
aη1 − bη2

)/
ε0,

p3eη = 2c21tkη
/
ε0, p1hη = 2c21t

(
aη2 − bη1

)/
µ0, p2hη =

2c21t
(
aη1 − bη2

)/
µ0 and p3hη = 2c21tkη

/
µ0. The oper-

ator δη is the first order finite-difference form by employing
the CN scheme, for example,

δyĤn
z =

(
Ĥn
z

∣∣∣
i+1/2,j+1/2,k

− Ĥn
z

∣∣∣
i+1/2,j−1/2,k

)/
(21y)

(15)

The auxiliary variables can be given according to the CE
method in the time domain as

F̂n+1xη1 = p4ηF̂nxη1 + p5ηδηĤη̃ (16)

(j$ + ∂t) F̂xη2 + bη2F̂xη2 = (j$ + ∂t) F̂xη1 + aη2F̂xη1
(17)

where p4η =
(
2− j$1t − bη11t

)/(
2+ j$1t + bη11t

)
,

p5η = 21tkη
/(

2+ j$1t + bη11t
)
, p6η =

(
2 − j$1t−

bη21t
)/(

2+ j$1t + bη21t
)
, p7η=

(
2+ j$1t + aη21t

)/(
2+ j$1t + bη21t

)
and p8η = (2− j$1t − aη21t

)/(
2+ j$1t + bη21t

)
. It can be observed that the coupled

equations can be updated by employing (13)-(14) directly.
By this means, large sparse matrices will form during each
iteration steps resulting in the computation much more
expensive which becomes unrealistic sometimes. Thus, the
CNDS-FDTD algorithm is proposed to alleviate such phe-
nomenon. Equations (13)-(14) can be given in thematrix form
as

(I − D1 − D2) 8̂
n+1
= (I1 + D1 + D2) 8̂

n
+ Ân (18)

where I is the identity matrix, I1 = c1I , Ân is the other terms

at nth time step, 8̂ =
(
Êx , Êy, Êz, Ĥx , Ĥy, Ĥz

)T
,

D1

=


0 0 0 0 −p3ezδz 0
0 0 0 0 0 −p3exδx
0 0 0 −p3eyδy 0 0
0 0 −p3hyδy 0 0 0

−p3hzδz 0 0 0 0 0
0 −p3hxδx 0 0 0 0

,

and D2 =


0 0 0 0 0 p3eyδy
0 0 0 p3ezδz 0 0
0 0 0 0 p3exδx 0
0 p3hzδz 0 0 0 0
0 0 p3hxδx 0 0 0

p3hyδy 0 0 0 0 0

.
According to the CNDS procedure, the disturbances terms

D1D28̂
n+1 and D1D28̂

n are added at both sides of the equa-
tions. The resultants can be given as

(I− D1) 8̂
∗
= (I1 + D1 + 2D2) 8̂

n
+ Ân (19)

(I− D2) 8̂
n+1
= 8̂∗ − D28̂

n (20)

By expanding the equations for upation, one obtains

Ê∗x = c1Ênx − p3ez∂z
(
Ĥ∗y + Ĥ

n
y

)
+ 2p3ey∂yĤn

z

+p1eyF̂nxy1 + p2eyF̂
n
xy2 − p1ezF̂

n
xz1 − p2ezF̂

n
xz2 (21)

Ĥ∗y = c1Ĥn
y − p3hz∂z

(
Ê∗x + Ê

n
x

)
+ 2p3hx∂x Ênz

+p1hxĜnyx1 + p2hxĜ
n
yx2 − p1hzĜ

n
yz1 − p2hzĜ

n
yz2(22)

Ên+1x = Ê∗x + p3ey∂y
(
Ĥn+1
z + Ĥn

z

)
(23)

Ĥn+1
y = Ĥ∗y + p3hx∂x

(
Ên+1z + Ênz

)
(24)

It can be observed that Ĥ∗y and Ĥn+1
z are coupled which

cannot be updated explicitly. By substituting Ĥ∗y and Ĥn+1
z

into (21)-(24) for decoupling, one obtains

(1− p3hzp3ez∂z∂z) Ê∗x
= (c1 + p3hzp3ez∂z∂z) Ênx
−2p3hxp3ez∂z∂x Ênz − (1+ c1) p3ez∂zĤ

n
y + 2p3ey∂yĤn

z

+p1eyF̂nxy1 + p2eyF̂
n
xy2 − p1ezF̂

n
xz1 − p2ezF̂

n
xz2

−p1hxp3ez∂zĜnyx1
−p2hxp3ez∂zĜnyx2 + p1hzp3ez∂zĜ

n
yz1 + p2hzp3ez∂zĜ

n
yz2 (25)(

1− p3hyp3ey∂y∂y
)
Ên+1x

= Ê∗x − p3hyp3ex∂x∂y
(
Êny + Ê

∗
y

)
+2p3hyp3ey∂y∂yÊnx + p1hxp3ey∂yĜ

n
zx1 + p2hxp3ey∂yĜ

n
zx2

−p1hyp3ey∂yĜnzy1 − p2hyp3ey∂yĜ
n
zy2 (26)

It can be observed that tri-diagonal matrices are formed at
left sides of (25) and (26) which can be updated by employing
the Thomas decomposition [21].
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FIGURE 1. The sketch picture of the half-space soil/metal plate problem
and its computational domain.

III. NUMERICAL RESULTS AND DISCUSSION
In order to further demonstrate the efficiency and effec-
tiveness of the proposed algorithm, numerical examples
including the half-space soil/metal plate problem and the
target characteristic of metal sphere model are carried out.
To demonstrate the effectiveness of the proposed scheme,
the higher order PML based on the conventional FDTD
algorithm in [32] (FDTD-PML), CNDS based PML in [19]
(CNDS-PML), CNAFS based PML in [20] (CNAFS-PML)
are chosen as examples for comparison.

A. HALF-SPACE SOIL/METAL PLATE PROBLEM
The sketch picture and detail parameters of half-space
soil/metal plate problem is shown in Fig. 1.

As is shown in Fig. 1 that the whole computational domain
has dimensions of 1261x×461y×261z in each directions.
Half of the vertical direction along z-direction is filled with
soil which can be expressed by the lossy media with the
parameters of εr = 7.73 and σ = 0.273 S/m. The metal
plate has dimensions of 1131x × 401y × 11z which can
be expressed by the perfect E conductor (PEC). The metal
plate is located at the quarter along vertical direction of
z-direction. The source which is located at the three-quarter
of vertical z-direction is a modulated Gaussian pulse with the
center frequency and bandwidth of 0.75 GHz and 0.25 GHz,
respectively. The modulated Gaussian pulse can be expressed
by the following forms as

Jz (t) = cos [2π fc (t − t0)] exp

[
−
2π (t − t0)2

τ 2

]
(27)

where fc is the center frequency and τ determinates the band-
width. The receiver is located at the left bottom corner with
the distance of 1 cell from three sides of the PML regions.
The main purpose for the receiver is to observe the waveform
and evaluate the absorbing performance. At each boundaries,
10-cell-PML is employed to absorb outgoing waves and
reduce the wave reflections. Within the PML regions,
the parameters are chosen to obtain the best absorb-
ing performance. The parameters of FDTD-PML and
CE-CNDS-HO-PML are chosen as κη1 = 20, αη1 = 0.6,
mη1 = 2, ση1_max = 1.6ση1_opt , κη2 = 5, αη2 = 0.7,

FIGURE 2. The waveform obtained by different PML algorithms with
different CFLNs and its partial enlargement.

mη2 = 3 and ση2_max = 0.05ση2_opt , where

σηn_opt = (mηn + 1)/(150π1η) (28)

The parameters of CNDS-PML and CNAFS-PML are
κη = 12, αη = 1.4, mη = 2 and ση_max = 2.0ση_opt . The
mesh sizes are chosen as 1x = 1y = 1z = 1 = 3 mm.
The maximum time step of the conventional FDTD algorithm
which satisfies the CFL condition is 5.77 ps. According to CE
method, the time step of CEmethod (1tCEmax) is 23.08 pswhich
is four time larger than1tFDTDmax [5]. The CFL number (CFLN)
is defended as CFLN = 1t

/
1tmax, where 1t is the time

step of the unconditionally stable algorithm. Figure 2 shows
the waveform obtained by different PML algorithms with
different CFLNs and its partial enlargement.

As shown in Fig. 2, the envelope can be directly obtained
by employing the proposed CE method. Furthermore, it can
be concluded that the computational accuracy decreases with
the increment of CFLNs. The reason is that numerical dis-
persion increases with the increment of CFLNs resulting
in such phenomenon. From the partial enlargement, it can
be observed that the proposed scheme shows less shifting
compared with the CNDS- and CNAFS-PMLs indicating that
the proposed scheme holds higher accuracy especially with
larger CFLNs. Such phenomenon indicates the effectiveness
of the proposed algorithm.

The effectiveness of PML algorithm can be reflected not
only by the accuracy but also by the absorption. The absorb-
ing performance of the PML regions can be expressed by the
relative reflection error which can be defined as

RdB (t) = 20 log10
[∣∣E tz (t)− Erz (t)∣∣ / ∣∣max{Erz (t)}

∣∣] (29)
where E tz (t) is the waveform directly obtained from the
receiver and Erz (t) is the reference solution which can be
obtained by enlarging the computational domain and ter-
minating by 64-cell-PML. During the simulation of the
reference solution, the reflected waves from the boundaries
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FIGURE 3. The relative reflection error versus time obtained by different
PML algorithms with different CFLNs (a) FDTD-PML, CNDS-PML,
CNAFS-PML, and CE-CNDS-HO-PML CFLN=1 (b) CNDS-PML, CNAFS-PML,
and CE-CNDS-HO-PML CFLN=10.

cannot reach the receiver. The reason is that the computational
domain is large enough and the PML is thick enough resulting
in the neglecting of reflected waves. Figure 3 shows the rel-
ative reflection error versus time obtained by different PML
algorithms with different CFLNs. For clearance, 6000 steps
during the simulation time of 34 ns is shown respectively in
each figure.

The absorbing performance can be reflected by the max-
imum value of relative reflection error (MRRE), as shown
in Table 1. It can be concluded fromTable 1 and Fig. 3 that the
CNDS- and CNAFS-PMLs hold the similar absorbing per-
formance when CFLN=1. It can be observed that the MRRE
and the late-time reflections can be decreased significantly
by employing the higher order schemes. Among the higher
order schemes, the proposed CE-CNDS-HO-PML can obtain
better absorbing performance and lower late-time reflections

TABLE 1. CPU time, CFLNs, iteration steps, consumption memory, MRRE
and time reduction with different PML algorithms.

compared with FDTD-PML. Thus, it can be concluded that
the absorption of proposed scheme is better than FDTD-,
CNAFS- and CNDS-PMLs indicating the effectiveness of the
proposal.

When CFLN=10, the CNAFS-PML shows better perfor-
mance compared with CNDS-PML indicating the advantages
of CNAFS-PML in terms of the absorption and accuracy. The
absorbing performance of both CNDS- and CNAFS-PMLs
become worse with larger CFLNs. It can be observed that
the MRRE can be significantly reduced by the proposed
CE-CNDS-HO-PML scheme. Overall, the absorbing per-
formance can be improved significantly by employing the
proposed scheme. The CPU time, CFLNs, iteration steps,
consumption memory, MRRE and time reduction with dif-
ferent PML algorithms are shown in Table 1.

It can be concluded from Fig. 3 and Table 1 that absorbing
performance can be significantly improved by employing
the proposed scheme. Especially, the MRRE of proposed
scheme is 9.8 dB lower than FDTD-PML with the time
reduction of 14.8 %. Thus, for FDTD-PML, the proposed
scheme receives better performance both in absorption and
efficiency when CFLN=1. Moreover, the CPU time reduces
by 72.9 % when CFLN=10 compared with the FDTD-PML.
The proposed scheme can receive both better absorption
and improved efficiency compared with the CNDS- and
CNAFS-PMLs with larger CFLNs. Furthermore, the pro-
posed scheme with CFLN=10 can save much CPU time
with considerable absorption which is better than that of
the CNAFS- and CNDS-PMLs when CFLN=1. As can be
concluded that the efficiency of unconditionally stable algo-
rithms can be can be improved by employing larger CFLNs.
The reason is that larger time steps are employed to decrease
the total number of iterations resulting in the improvement
efficiency. The time step of the CE method is much larger
than the conventional time step of the FDTD method. Thus,
the total iteration step of the CE method can be decreased
resulting in the improvement of efficiency.

B. TARGET CHARACTERISTIC OF METAL SPHERE MODEL
The accuracy, efficiency and absorption of the proposed
CE-CNDS-HO-PML are testified through the target charac-
teristic numerical example which can be reflected by the radar
cross section (RCS). The computational domain and its detail
parameters are shown in Fig. 4.
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FIGURE 4. The sketch picture and detail parameters of target
characteristic numerical example.

FIGURE 5. The waveform obtained by different PML algorithms with
different CFLNs and its partial enlargement.

As can be observed that the sphere model is located at the
center of the domain. The sphere model has the radius of
R=50mmwhich can be regarded as PECmaterial. Thewhole
cubic computational domain has dimension of 4R× 4R× 4R
in each directions. The wave incidents along the negative
side along x-direction. The source is a modulated Gaussian
pulse with the center frequency of 1.4 GHz and bandwidth
of 1 GHz. The receiver is located at the corner of the domain
with the distance of 1 cell from three sides of the PML
regions.

It has been testified that such condition can obtain the
worst absorbing performance [33]. All sides of the boundaries
are terminated with 10-cell-PML to absorb outgoing waves
and reduce the wave reflection. The parameters inside the
PML regions are chosen to obtain the best absorbing perfor-
mance both in the time domain and in the frequency domain.
The parameters of FDTD-PML and CE-CNDS-HO-PML are
chosen as κη1 = 12, αη1 = 1.1, ση1_max = 0.4ση1_opt ,
κη2 = 2, αη2 = 0.2, mη2 = 2 and ση2_max = 1.0ση2_opt . The

FIGURE 6. The relative reflection error versus time obtained by different
PML algorithms with different CFLNs in the metal sphere model
(a) FDTD-PML, CNDS-PML, CNAFS-PML, and CE-CNDS-HO-PML CFLN=1
(b) CNDS-PML, CNAFS-PML, and CE-CNDS-HO-PML CFLN=10.

parameters of CNDS-PML and CNAFS-PML are κη = 8,
αη = 0.9, mη = 4 and ση_max = 1.6ση_opt .
The mesh sizes can be chosen as 1x = 1y = 1z = 1 =

1.25 mm. The time step of the conventional FDTD algorithm
is 1tFDTDmax = 2.4 ps. The time step of the CE method is
1tCEmax = 5.76 ps, which is 2.4 times larger than 1tFDTDmax [5].
Figure 5 shows the waveform obtained by different PML
algorithms with different CFLNs and its partial enlargement.
As can be observed that the waveform obtained by different
algorithms when CFLN=1 are overlapped indicating they
hold the similar accuracy. By employing the CE algorithm,
it can be observed that the envelope can be obtained which is
overlapped with the edge of waveform. As can be observed
that the accuracy decreases with the increment of CFLNs due
to the increment of numerical dispersive error. As shown in
the partial enlargement, the CE algorithm shows less shifting
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TABLE 2. CPU time, CFLNs, iteration steps, consumption memory, MRRE
and time reduction with different PML algorithms.

compared with CNDS- and CNAFS-PMLs indicating the
proposed scheme shows advantage in terms of accuracy. The
absorption can be reflected by the relative reflection error ver-
sus time in the time domain. Figure 6 shows relative reflection
error versus time obtained by different PML algorithms with
different CFLNs in the sphere model.

Through Fig. 6, it can be observed that the relative
reflection error is decreased by employing the CNDS- and
CNAFS-PMLs with MRRE of -73.7 dB and -74.1 dB,
respectively, compared with the FDTD-PML with MRRE of
-99.4 dB. By employing the CE method, the MRRE can
be improved with the value of -106.2 dB indicating the
effectiveness of proposed scheme. The absorption becomes
worse with the increment of CFLNs. However, it can be
observed that the MRRE can be decreased by 28.3 dB
and 24.3 dB by employing the proposed scheme compared
with CNDS- and CNAFS-PMLs. In conclusion, the proposed
CE-CNDS-HO-PML can obtain better absorption compared
with the CNAFS- and CNDS-PMLs. The effectiveness of the
proposed scheme can also be reflected by the computational
efficiency. Table 2 shows the CPU time, CFLNs, iteration
steps, consumption memory, MRRE and time reduction with
different PML algorithms.

It can be observed that the CPU time and consumption
memory are increased by employing the unconditionally sta-
ble CNDS- and CNAFS-PMLs algorithms. The reason is
that tri-diagonal matrices must be calculated at each time
step resulting in such condition. Although the consumption
memory of proposed scheme becomes the highest among
these implementations, the CPU time can be significantly
decreased by 14.8 % compared with FDTD-PML when
CFLN=1. The reason is that the time step in the CE algorithm
is terminated by the bandwidth rather than the maximum
frequency. Thus, the total iteration steps can be decreased
by employing the CE method. When CFLN=10, the pro-
posed scheme can maintain considerable absorption with the
time reduction of 76.6 %. Compared with the CNDS- and
CNAFS-PMLs, it can be concluded that not only the absorp-
tion but also the efficiency can be improved at the same time.
This illustrates the effectiveness of the proposed scheme from
the aspect of efficiency.

The accuracy of the proposed algorithm and target charac-
teristics can be reflected by the RCS parameters. The main
reason for selecting the sphere model during the demonstra-
tion is that the RCS of the sphere model has the theoretical

FIGURE 7. The RCS versus frequency obtained by different PML
algorithms with different CFLNs in the metal sphere model (a) Theoretical
solution, FDTD-PML, CNDS-PML, CNAFS-PML, and CE-CNDS-HO-PML
CFLN=1 (b) Theoretical solution, CNDS-PML, CNAFS-PML, and
CE-CNDS-HO-PML CFLN=10.

solution [35]. Figure 7 shows the RCS versus frequency of
the sphere model obtained by different PML algorithms with
different CFLNs. It can be observed from Fig. 7 (a) that
all implementations are almost overlapped indicating they
almost hold the same performance in the frequency domain.
From Fig. 7 (b), it can be observed that the computational
accuracy decreases with the increment of CFLNs. Compared
with the CNDS-PML, the CNAFS-PML shows less shifting
indicating that the CNAFS-PML hold the better accuracy
compared with the CNDS-PML. Furthermore, the proposed
scheme shows the least shifting compared with the theoreti-
cal solution indicating it has the best accuracy among these
implementations within larger CFLNs.

In conclusion, compared with the FDTD-, CNDS- and
CNAFS-PML, the proposed scheme can obtain better absorp-
tion and efficiency which can be reflected by the MRRE,
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CPU time and time reduction. Nowadays, the memory is
cheaper than ever before, one cared more on the efficiency
and accuracy. Although the proposed scheme occupies a little
bit more memory, the efficiency and the accuracy can be
improved.

IV. CONCLUSION
Based upon higher order PML formulation, CE method and
CNDS algorithm, unconditionally stale CE-CNDS-HO-PML
is proposed for bandpass open region problems. The proposed
scheme take advantages of CE method, higher order formu-
lation and CNDS algorithm in terms of enhanced absorp-
tion, improved efficiency and bandpass simulation in open
region problems. Through the resultants, it can be concluded
that the proposed scheme is stable and efficient when the
time step surpasses far beyond the CFL condition. Most
importantly, it can significantly improve the computational
efficiency compared with previous work during the bandpass
simulation. In the future work, such implementation can be
employed into curved boundaries, such as, the spherical coor-
dinate system and column coordinates system, respectively.
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