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ABSTRACT Time synchronization is an essential problem for energy-harvesting wireless sensor networks
(EH-WSNs), which is closely related to efficient resource schedules, energy harvesting, data fusion, location,
etc. With the advantage of being more robust than master controlling synchronization, distributed time
synchronization algorithms are usually used to EH-WSNs for cooperating sleeping nodes. This paper
proposes a novel accelerated time co-synchronization algorithm based on the storage-and-prediction method
to improve the convergence rate. In this algorithm, each node in the network first predicts the estimated
current time state value according to previous time state values stored in the local node, and then adjusts
the time state value according to the estimated time state value deviations between all its adjacent nodes.
Theoretical analysis in a more general case shows that the proposed algorithm can improve the convergence
rate of distributed time synchronization when selecting the appropriate parameter, and the closed-form
solution of the optimal parameter is also given. Finally, the simulation of comparing the classical algorithm
with the proposed algorithm based on different scenarios is completed.

INDEX TERMS Energy-harvesting, wireless sensor network, time synchronization, distributed consensus,
convergence rate.

I. INTRODUCTION
Wireless sensor networks (WSNs) have broad application
prospects in various fields such as military, environmen-
tal, industrial, medical and many other fields. The energy
limitation of nodes in WSNs is one of the most important
constraints as they are generally powered by batteries. With
the development of energy harvesting technology, researchers
have put forward the energy harvesting wireless sensor net-
works (EH-WSNs) to cope with the problem of the battery
power limitation due to the difficulty of replacing batteries.
EH-WSNs collect energy from the environment by energy
harvesting technology to extend the lifetime of nodes.

Many researchers have studied the application of energy
harvesting technology in WSNs. Paper [1] proposed an
indoor energy harvesting system mixes light and heat to
enhance the performance of indoor wireless sensor networks.
A prototype hardware platform to collect solar and wind
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energy, which can realize long-term monitoring in wireless
sensor networks, is designed Paper [2]. Paper [3] designed a
multi-source energy collector to collect environmental energy
including wind, solar, and thermal energy. Paper [4] uti-
lized LoRa technology to propose energy harvesting technol-
ogy based on photovoltaics and thermoelectric generators to
collect energy for floating devices and use multi-hop tech-
nology to expand the communication range. Another way
to obtain energy is harvesting radio frequency (RF) energy
from wireless signals which is lower in cost and smaller in
equipment size [5]. Paper [6] proposed a RF-based energy
harvesting technology to power the sensor nodes, and it
designed a novel compact folded dipole rectenna to improve
the energy harvesting capability. Paper [7] analyzed the wire-
less radio frequency energy harvesting network based on the
Boolean-Poissonmodel when the sensor nodes collect energy
simultaneously.

However, in EH-WSNs, energy harvesting provides lim-
ited and unstable energy. Sensor nodes need to accumulate
energy and fall into intermittent sleeping [8]–[13]. When
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sensor nodes are awake for communication, the transmit-
ting nodes and the receiving nodes should be active at the
same time. Therefore, the transmitting nodes and receiving
nodes need to determine the execution time of communi-
cation according to the network common time, hence time
synchronization is an important premise of EH-WSNs [14].

Distributed average consensus algorithms are usually used
for time synchronization in EH-WSN because it has no ref-
erence nodes and does not depend on network topology.
Distributed time synchronization algorithms, such as dis-
tributed consensus and gossip algorithms, calculate the
weighted sum of current time values of each node and
all its neighboring nodes to serve as the next local time
values [15]–[22]. When the network is fully connected,
the weight matrix is a doubly stochastic, symmetrical and
non-negative matrix, it has been proved that the algorithm
will converge and achieve consensus [23]. However, the con-
vergence rate and synchronization accuracy of the algorithm
is affected by the network topology. Because the distributed
average consensus algorithm converges gradually via contin-
uous iterative operation, its convergence rate is very slow and
is determined by the initial time state of nodes, the number of
network connections, and the topology structure. In practice,
convergence rate is a key factor that limits the application of
distributed average consensus algorithms. Therefore, how to
improve the convergence rate of distributed average consen-
sus algorithm has been the focus of researchers.

Much work has been conducted in the literature to improve
the convergence rate of distributed average consensus algo-
rithms [24]–[29]. Early research on distributed average
consensus algorithms determined the weight matrix mainly
based on the node degree. However, such algorithms have a
slow convergence rate in random topology [15], [30]. Later
improvements on the algorithm can be roughly divided into
four categories of methods. The first method is to optimize
the weight matrix. Because the convergence rate of the dis-
tributed average consensus algorithm is related to the sub-
large eigenvalue of the weight matrix, faster convergence
rate and a better convergence effect can be achieved through
the optimization of the weight matrix [16], [31]–[36]. There-
fore, minimizing the spectral radius of the weight matrix can
serve to improve the convergence rate. However, the spectral
radius is constrained by the network topology and may be
unpractical.

Another way to improve the convergence rate of dis-
tributed average algorithms is by using the information of
second-order neighbors [37], [38]. Although this method can
achieve a faster convergence rate, the information of second-
order neighbors cannot be directly acquired by the local
node, it should be forwarded through a relay node in two
hops, which increases the communication overhead and node
power consumption. The third method is a nonlinear iterative
method, in which the stability of the algorithm is a key
issue [39]. The last category of methods uses the historical
information stored on nodes to improve the convergence rate.
In such methods, the former and current state values of nodes

are used for the calculation of state updates [26], [40]–[42].
Moreover, some researchers showed that better convergence
performance can be achieved by using a predictor to estimate
the future value based on the past state value of the node, and
then updating the state value by the weighted sum of the esti-
mated value [43]–[49]. In distributed time synchronization
algorithms, it has been shown that jointly exploiting the stored
information and predicted information can greatly improve
the convergence rate. However, the selection of predictor
parameters will greatly affect the accuracy and convergence
rate of time synchronization. Moreover, the calculation of
optimal predictor parameters is very complex, making param-
eter optimization a major challenge in the last type of method.

In the paper [50], the convergence of the distributed aver-
age linear iterative algorithm has been theoretically ana-
lyzed based on second-order storage information under the
condition that the network topology is fully-connected and
the weight matrix is doubly stochastic, symmetric and non-
negative. However, the effect of algorithm parameters on the
convergence rate of the algorithm is not fully discussed in this
paper. When comparing the convergence rate with the tradi-
tional distributed average algorithm, paper [50] proved that
the optimal parameters exist to make the new storage-based
scheme converge faster than traditional schemes, but the con-
vergence rate of the algorithm with non-optimal parameters
was not discussed. Based on [50], paper [51] discussed a
general case. It theoretically analyzed the convergence per-
formance of a new algorithm and the influence of different
parameters on the convergence rate of the algorithm when the
weight matrix is not necessarily non-negative. It also gave the
solution of the optimal parameter to archive the convergence
of the algorithm. However, paper [51] considered the case that
the weight matrix is symmetric, and the asymmetric matrix is
not in the scope of discussion. Besides, the improvement of
convergence rate has not been verified by simulations.

In this paper, we propose a novel accelerated distributed
time synchronization algorithm, which uses storage and pre-
dictors to improve the convergence rate. The algorithm first
predicts the current time base reference value based on the
node’s previous time state value, and then adjusts the current
time reference value based on the deviation from the neigh-
bor’s time reference value. The selection of predictor param-
eters in the algorithm is entirely based on local information.
In this paper, the convergence conditions of the second-order
model of the algorithm are proved theoretically under the
premise that the network is fully-connected and the weight
matrix is a real stochastic matrix. The influence of algorithm
parameters on the convergence rate is analyzed, and the con-
vergence rate of the algorithm is compared with that of the
classical algorithm. The optimal convergence solution of the
predictor parameter is derived. Finally, we show simulation
results for different setups and scenarios.

The remainder of the paper is organized as follows.
Section II reviews related works. Section III introduces
energy-harvesting wireless sensor networks and the classical
distributed time synchronization algorithm for EH-WSNs.
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Section IV describes the theoretical model of the proposed
novel time synchronization algorithm for EH-WSNs, analy-
ses the convergence and compares the convergence rate of
two algorithms. Section V simulates our proposed time syn-
chronization algorithm for EH-WSNs. Finally, conclusions
are presented in Section VI.

II. RELATED WORK
Distributed synchronization algorithm can be applied to the
time synchronization problem of distributed network. The
key problem in distributed synchronization is how to improve
the convergence rate. In the past few years, methods for accel-
erating distributed synchronization algorithms have been
widely discussed. Paper [16] proposed a neighbor algorithm
for the clustering network, in which each node selects its
own weight based on the information of its neighbor nodes.
The convergence of the algorithm is mainly determined by
the weight of links connecting different clusters. The neigh-
bor algorithm can be used to identify such links and give
them higher weights to improve convergence rate. Paper [31]
and [32] transformed the problem of improving the con-
vergence rate into the problem of minimizing the sub-large
eigenvalues of the weight matrix, which is a semi-definite
programming problem. By using the sub-gradient method,
the optimization problem can be solved, and the convergence
rate is hereby improved. Paper [33] improved the convergence
rate by properly selecting an asymmetric weight matrix,
and it achieved a faster convergence rate than the algorithm
using symmetric optimal weight and theMetropolis-Hastings
weight. A distributed weight graph updating algorithm is
proposed in [34], in which the weight at the next moment
is selected adaptively according to the current value of the
weight. The adaptive weight design can improve the con-
vergence rate of the algorithm and the robustness of the
network. Paper [35] and [36] not only optimized the weight
matrix, but also used the storage information of node state
for iterative updating. The node state information is updated
by the last moment iteration, which further improves the
convergence rate. In this kind of algorithms, the spectral
radius of the weight matrix determines the convergence rate
of the algorithm. Therefore, these algorithms optimize the
spectral radius to be as small as possible to improve the
convergence rate. However, the spectral radius is constrained
by the network topology. Meanwhile, when the optimization
problem is transformed into a semi-definite programming
problem, which demands much work in initialization.

Considering the importance of second-order neighbors,
many researchers proposed to improve the network con-
vergence performance based on second-order neighbors’
information. Paper [37] and [38] used the information of
both neighbors and second-order neighbors in each itera-
tion. Compared with the classical algorithm that only uses
the information of first-order neighbors, this algorithm can
achieve a faster convergence rate. However, the information
of second-order neighbors is not obtained via a direct connec-
tion, it is forwarded to the local node through two hops, which

increases network traffic and control overhead. In addition,
nonlinear iterative methods have been proposed to improve
the convergence rate. Paper [39] proposed a nonlinear itera-
tive algorithm, in which the selection of parameters is closely
related to the sub-large eigenvalues and the maximum eigen-
values of the Laplacian matrix. When the weight matrix
satisfies certain conditions, the nonlinear iterative algorithm
can converge to the initial mean value, and the convergence
rate of the algorithm is better than the classical linear iterative
algorithm. However, because the algorithm adopts nonlinear
iteration, the stability of the system becomes an issue of
concern.

In recent years, the main research focus of distributed
average algorithms is to use the storage information of nodes
to improve the convergence rate. Paper [40] proposed an
acceleration framework of the storage-based gossip algo-
rithm, in which each node uses a multi-order shift register
to store the past values. Taking the second-order as an exam-
ple, the paper proved the convergence of the algorithm, and
compared the performance of the algorithm with different
order shift registers by simulation. However, the paper did
not prove that the algorithm can improve the convergence
rate theoretically. Paper [41] made further theoretical analysis
of [40]. It analyzed the convergence of the algorithm in
the case of two registers under the assumption of symmetry
weighed matrix, then theoretically proved that the acceler-
ated gossip algorithm has a faster convergence rate than the
standard gossip algorithm. The necessary conditions for the
convergence of symmetric gossip algorithm in the case of
multiple registers are also given, but the convergence rate
is not discussed. Paper [42] presented a system consisting
of filters and time-delays, and then converts the problem
of maximization of convergence rate to the minimization of
the maximum spectral radius of the system transfer func-
tion. The paper only demonstrates that the algorithm can
improve the convergence rate by simulation, it does not prove
it by the theoretical method. Paper [26] proposed a distributed
average consensus algorithm for fixed undirected graphs. The
algorithm uses the classical algorithm and adds a momentum
term to the differential iterative equation to speed up the linear
iteration. The convergence time is linearly related to the num-
ber of nodes. Compared with the classical algorithm, the con-
vergence rate of the algorithm in the two-dimensional grid
graph and geometric random graph can be greatly improved.
However, the calculation process of algorithm parameters is
complex, and the selection method of algorithm parameters
is not given in the paper.

Another similar method is using a predictor. Paper [43]
proposed a faster distributed average algorithm, which com-
bines linear predictor and standard consensus algorithm. The
convergence of second-order prediction is analyzed, and the
optimal parameters are derived. However, only the second
largest and smallest eigenvalues of the weight matrix are con-
sidered in the optimization of parameters, and the suboptimal
solution is given. Paper [47] proposed a distributed average
algorithm of polynomial filter, which filters the current value
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based on the past state value, so it can be regarded as a
linear prediction process. The algorithm can achieve a faster
convergence rate. However, the input of the filter in the paper
is not the stored actual state value, but the 1 classical iteration
value. Besides, the optimal filter coefficient is determined
by the semi-definite programming method which is not very
suitable in practice. Paper [48] obtained mixed parameter
feasible domain and optimalmixing parameter for the conver-
gence of the distributed average consensus algorithm using
a linear predictor in undirected networks, but it does not
theoretically analyze the convergence rate of the algorithm.
Paper [49] theoretically deduced the advantages of predic-
tive synchronization algorithm. The closed expression of the
optimized mixed parameter is obtained, and the optimal value
of the mixed parameter and the upper bound of the spectral
radius of the weight matrix of the fast convergence algorithm
is derived. However, the calculation process of algorithm
parameters in it is complex, which is not very suitable in
practice.

Based on the above related work, this paper proposes a dis-
tributed time synchronization algorithm for EH-WSN, which
uses storage and predictor. The improvement of convergence
rate is proved by theory without the assumption of the dou-
bly stochastic and symmetric weight matrix. Simulations in
different scenes are completed.

III. ENERGY-HARVESTING WIRELESS
SENSOR NETWORKS
Energy-harvesting wireless sensor networks have been pro-
posed as a main solution to tackle the challenge of energy
limitation in wireless sensor networks. A general energy-
harvesting wireless sensor network is shown in Fig.1. Widely
distributed sensor nodes are used to monitor a certain area,
the data collected by a sensor node is sent to the sink node in
a multi-hop manner. Each sensor node could harvest energy
to extend the lifetime when the power fails. Due to severe
energy constraints, the intermittent sleeping method is widely
adopted in EH-WSHs. To ensure reliable communication in
such networks, both the transmitting and receiving nodes
should be active according to the consented network time.
Therefore, as a prerequisite for communication, cooperative
sensing and energy management, time synchronization is of
great importance in EH-WSNs.

Distributed time synchronization algorithms are usually
used in EH-WSNs for the coordination of sleeping nodes.
Compared with centralized algorithms that use the master-
slave type of control mechanisms, distributed synchroniza-
tion algorithms can achieve higher robustness in large-scale
networks. By allowing nodes in the network to exchange
information iteratively to update their local time, all nodes in
the network will finally achieve time synchronization. Since
there is no central control node in the distributed time syn-
chronization algorithm, each node communicates only with
its neighbors to achieve a consensus time.

Consider an energy-harvesting wireless sensor network
composed of N energy harvesting nodes, which can be

represented by a connected undirected graph G = (V ,E),
where V = {1, 2, . . . ,N } is the set of nodes in the network
and E is the set of links between nodes. For the classical
distributed time synchronization algorithm, the idea is to
adjust the state value of the local node based on the state value
of its neighbor nodes, and finally achieve synchronization
throughmutual adjustment. The iterative equation of classical
algorithm is shown as below:

xi(n+ 1) =
N∑
j=1

wijxj(n), i ∈ {1, 2, . . .N } (1)

where N > 1 is an integer, and xi(n) is the time state value of
node i at the nth adjustment. wij is a constant value satisfying
Equation (2)-(4):

wij =

wij, j ∈ Ni, i ∈ {1, 2 . . . ,N }1−
∑
k∈Ni

wik , j = i, i ∈ {1, 2 . . . ,N } (2)

wij = 0, j /∈ Ni, i ∈ {1, 2, . . . ,N } (3)
N∑
j=1

wij = 1, i ∈ {1, 2 . . . ,N } (4)

where Ni is the set of neighbors of node i. Fig. 2 shows an
example of the EH-WSN topology.

Equation (1) can be expressed as matrix form:

X (n) = WX (n− 1) = W nX (0) (5)

where X (n) =
[
x1 (n) x2 (n) · · · xN (n)

]T , which is the time
state value vector of network nodes after n iterations, and

W =


w11
w21

w12 · · · w1n
w22 · · · w2n

...

wn1

... . . .
...

wn2 · · · wnn

, which is an N × N stochastic

matrix. Each element in W is a real number.
Suppose that µi, i ∈ {1, 2, . . . ,N } denote the eigenvalue

of the weight matrix W . Obviously, the unique maximum
eigenvalue of matrix W equals to 1, i.e. |µ1| = 1. When
all the remaining eigenvalues fall in the unit circle of the
complex plane, X (n) can converge to a finite value, i.e.
|µN | ≤ |µN−1| ≤ . . . < |µ1| = 1. The convergence rate
of the algorithm depends on the second largest eigenvalue of
W . And the smaller the secondary eigenvalue, the faster the
convergence rate of the algorithm.

IV. THE CONVERGENCE-ACCELERATED DISTRIBUTED
TIME SYNCHRONIZATION ALGORITHM
In order to improve the convergence rate of the classical dis-
tributed time synchronization algorithm, an accelerated time
synchronization algorithm based on storage and prediction
scheme is proposed in this paper. The new algorithm not
only considers the current state value of the node, but also
considers the previous state value.
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FIGURE 1. The energy-harvesting wireless sensor network.

A. THE GENERAL THEORETICAL MODEL OF
THE NOVEL ALGORITHM
It is assumed that each node predicts the current state
value based on its previous M + 1 stored state information
values:

x̂i(n) = xi(n− 1)+
M∑
m=1

am (xi(n− m)− xi(n− m− 1)) (6)

where x̂i(n) is the predicted value of node i at the nth adjust-
ment, and am is a real constant, indicating the prediction
parameter.

Then, the nth state value can be obtained by using the
weighted coupling of the time deviation with neighbor nodes
to modify the predicted value:

xi(n) = x̂i(n)−
∑
j∈Ni

wij
(
x̂i(n)− x̂j(n)

)
(7)
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FIGURE 2. An example of the EH-WSN topology.

According to Equation (2)-(4), Equation (7) can be pre-
sented as:

xi (n) =
∑
j∈Ni

wij
{
xj (n− 1)

+

M∑
m=1

am
(
xj (n− m)− xj (n− m− 1)

)}
(8)

Thus, the matrix form of (7) is as follows:

X (n) = (1+ a1)WX (n− 1)+ . . .

+ (aM − aM−1)WX (n−M)

−aMWX (n−M − 1) (9)

To be further define

U (n) =
[
XT (n) ,XT (n− 1) , . . . ,XT (n−M)

]T
(10)

B =


(1+ a1)W · · · (aM − aM−1)W −aMW

I
I

I

 (11)

Equation (9) can be expressed as follows:

U (n) = BU (n− 1) (12)

So far, the general theoretical model of the new algorithm
has been established. It can be seen that the higher the predic-
tion order, the more complex the model is. However, no mat-
ter what the prediction order is, after appropriate equivalent
transformation, the model can be transformed into the matrix
form of a similar general model. At the same time, we can
see that the classical time synchronization model is a special
case of this model.

B. THE SECOND-ORDER MODEL OF THE
NOVEL ALGORITHM
Then, we will focus on the case of second-order model, that
is, M + 1 = 2. And the Equation (6) can be given as:

x̂i(n) = xi(n− 1)+ a [xi(n− 1)− xi(n− 2)] (13)

And we can obtain:

xi (n) =
∑
j∈Ni

wij
{
(1+ a) xj (n− 1)

−axj (n− 2)
}

(14)

Thus, Equation (14) could be rewritten as the matrix form:

X (n) = (1+ a)WX (n− 1)− aWX (n− 2) (15)

Finally, the second-order model of the new algorithm is:

U (n) = BU (n− 1) (16)

The vector U (n) and matrix B was defined as follow:

U (n) =
[

XT (n)
XT (n− 1)

]
(17)

B =
[
(1+ a)W −aW

I 0

]
(18)

Weather the convergence rate of second order model algo-
rithm is faster than that of classical distributed time synchro-
nization algorithm depends of the second large eigenvalues
of matrix W and matrix B.

C. THE CONVERGENCE ANALYSIS OF THE
SECOND-ORDER MODEL
In this part, we will analyze the convergence of the second-
order model of the new algorithm. From the previous anal-
ysis, we can see that the convergence of the second-order
model (16) depends on the eigenvalue characteristics of its
weight matrix B. If the secondary spectral radius of matrix
B is not more than 1, then the algorithm will eventually
converge, and the convergence rate depends on the second
largest eigenvalue of B. It is noted that the eigenvalues of the
weight matrix B are closely related to the eigenvalues of the
weight matrixW . The comparison of the convergence rate of
the two synchronization algorithms depends on the analysis
and comparison of the eigenvalues of the weight matrix B
and W . So, the comparison of the convergence rate can be
attributed to the comparison of the second largest eigenvalue
of the weight matrix B and W .
Suppose that λ is a eigenvalue of the weight matrix B,

and the corresponding feature vector is
[
z1 z2

]T , and µ is
a eigenvalue of the weight matrix W , and the corresponding
feature vector is z2. It is easy to prove that λ and µ have the
following relationship:

µ =
λ2

(1+ a) λ− a
(19)

From Equation (19) we can obtain:

λ2 − µ (1+ a) λ+ µa = 0 (20)

Next, we will discuss the convergence of the proposed
storage algorithm when µi is real or complex, respectively.
Firstly, we consider the case that µi is a real number.
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1) THE ANALYSIS OF CONVERGENCE CONDITIONS
It can be seen from Equation (20) that there may be two
eigenvalues λi1, λi2 of the weight matrix B corresponding
to µi. Provided that the classical model is convergent, then
the largest eigenvalue of the matrix W must equal one,
and the others are all smaller than one. In order to ensure that
the second-order model is convergent, the eigenvalue of its
weight matrix B must satisfying |λ2N | ≤ |λ2N−1| ≤ · · · <
|λ1| = 1.
Since the classical model must have eigenvalues µ1 = 1,

by substituting it into the Equation (20) we can obtain:

λ21 − (1+ a) λ1 + a = 0 (21)

And the solution is obtained:

λ11 = 1, λ12 = a (22)

According to |λ2N | ≤ |λ2N−1| ≤ · · · < |λ1| = 1, we can
obtain |a| < 1, i.e. −1 < a < 1. It should be note that a
is a real number. Then, we will prove the following result.
For the stochastic matrix W ∈ RN×N , when W T

= W and
−1 < a < 1, the second-order model of the new algorithm is
convergent.

Let ρ2(B) be the second largest spectral radius of matrix B.
If ρ2(B) < 1, the second-order model will eventually be
convergent. And the smaller ρ2(B), the faster the convergence
rate of the algorithm. Apparently, the second-order model has
a special eigenvalue that equals one, the further work is to
prove that the other 2N − 1 eigenvalues are smaller than one.

From Equation (20) we can obtain:
λi1 =

µi (1+ a)+
√
µ2
i (1+ a)

2 − 4µia

2

λi2 =
µi (1+ a)−

√
µ2
i (1+ a)

2 − 4µia

2

(23)

Here we want to compare the relationship between the
modulus of eigenvalues of the weight matrix B and. Since
the weight matrix W is real symmetric matrices, its eigen-
values µi are all real number. Therefore, we define ρi =
max{|λi1| , |λi2|}. If1 = µ2

i (1+a)
2
−4µia ≥ 0, then λi1 and

λi2 are real. If µi > 0, then |λi1| > |λi2|, and ρi = |λi1|; if
µi ≤ 0, then |λi1| ≤ |λi2|, and ρi = |λi2|. On the other hand,
if1 = µ2

i (1+ a)
2
− 4µia < 0, then λi1 and λi2 are complex,

and ρi = |λi1| = |λi2|.
Firstly, we discuss the case of µi being non-negative, i.e.

0 ≤ µi ≤ 1 . Note that if µi=0, then ρi=0. If µi=1, then ρi =
ρ1=1. Next, we analyze the relationship between the spectral
radius of the weight matrix W and B, i.e. the relationship
between ρi and |µi|.

1) a=0
Obviously, we can obtain that ρi = |µi|. Therefore, ρi is an
increasing function of |µi|.

2) −1 < a < 0
Obviously, we can see that1 = µ2

i (1+a)
2
−4µia ≥ 0, then

ρi =
µi (1+ a)+

√
µ2
i (1+ a)

2 − 4µia

2
(24)

And the partial derivative of |µi| is

∂ρi

∂ |µi|
=

1
2

(1+ a)+ µi(1+ a)2 − 2a√
µ2
i (1+ a)

2 − 4µia

 (25)

Therefore, ρi is an increasing function of |µi|.

3) 0 < a < 1
i) If 1 = µ2

i (1 + a)2 − 4µia ≥ 0, i.e. 4a
(1+a)2

≤ µi < 1,
we can obtain

ρi =
µi (1+ a)+

√
µ2
i (1+ a)

2 − 4µia

2
(26)

And the partial derivative of |µi| is

∂ρi

∂ |µi|

=
1
2

 (1+ a)
√
µ2
i (1+ a)

2 − 4µia+ µi(1+ a)2 − 2a√
µ2
i (1+ a)

2 − 4µia


(27)

It is formidable to see the monotony here, thus let

f (µi) = (1+ a)
√
µ2
i (1+ a)

2
− 4µia+ µi (1+ a)2 − 2a

(28)

where µi ∈ [ 4a
(1+a)2

, 1).
Then,

∂f (µi)
∂µi

=

(1+ a)2
[
µi (1+ a)+

√
µi (1+ a)2 − 4µia

]
− 2a√

µ2
i (1+ a)

2
− 4µia

>
(1+ a)2µi − 2a√
µ2
i (1+ a)

2
− 4µia

≥

(1+ a)2 4a
(1+a)2

− 2a√
µ2
i (1+ a)

2
− 4µia

=
2a√

µ2
i (1+ a)

2
− 4µia

(29)

Therefore, f (µi) is the increasing function ofµi whenµi ∈
[ 4a
(1+a)2

, 1). And

f (µi) ≥ f
(

4a

(1+ a)2

)
= 2a > 0 (30)

So ∂ρi
∂|µi|

> 0, and ρi is an increasing function of |µi|.
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FIGURE 3. The relationship between
∣∣ρi

∣∣, ∣∣µi
∣∣ and a.

ii) If 1 = µ2
i (1 + a)

2
− 4µia < 0, i.e. 0 < µi <

4a
(1+a)2

,
we can obtain

ρi =
1
2

√
[µi (1+ a)]2 + [

√
µ2
i (1+ a)

2 − 4µia]2

=
√
µia (31)

Obviously, ρi is an increasing function of |µi|.
The analysis of the situation when −1 < µi < 0 is similar

to the above, which is omitted here.
In summary, when a ∈ (−1, 1), ρi is the increasing func-

tion of |µi|. Thus, for ∀i ∈ (2, .., 2N − 1),we can obtain
ρi < ρ1 = 1. That is to say, the largest eigenvalue of the
matrix B equals one, and the others are smaller than one.
So far, the convergence of the new algorithm has been proved.

Fig. 3 shows the relationship between the eigenvalues of
two matrices and the parameter a.

2) THE CONVERGENCE RATE
Next, we will compare the convergence rate of the second-
order model with that of the classical model. Because the
convergence rate of the algorithm depends on the sub-spectral
radius of the weight matrix. Therefore, we compare the sub-
spectral radius to compare the convergence rate of two mod-
els. Noticing that ρi is the monotonic increasing function of
|µi|, we can know that when |µi| = |µ2|, ρi = ρ2.
Similarly, we need to discuss the convergence rate in dif-

ferent cases. We mainly discuss the case of µ2 being non-
negative, i.e. 0 ≤ µ2 < 1, and the analysis of −1 < µ2 < 0
is similar to that, which is omitted here.

1) −1 < a < 0
From Equation (24) we can obtain:

ρ2 =
µ2 (1+ a)+

√
µ2
2(1+ a)

2 − 4µ2a

2
(32)

And then,

ρ2

|µ2|
=

1
2

[
(1+ a)+

√
(1+ a)2 −

4a
µ2

]
>

1
2

[
(1+ a)+

√
(1+ a)2 − 4a

]

=
1
2
[(1+ a)+ (1− a)]

= 1 (33)

Thus, ρ2 > |µ2|. It indicates that the convergence rate
of the classical model is faster than that of the second-order
model.

2) 0 < a < 1
i) If 0 < µ2 <

4 a
(1+a)2

, from Equation (31) we can obtain
ρ2 =

√
µ2a. And then,

ρ2

|µ2|
=

√
a
µ2

(34)

If a > µ2, then ρ2 > |µ2|, it indicates that the convergence
rate of the second-order model is slower than that of the
classical model.

If a = µ2, then ρ2 = |µ2|, it indicates that the convergence
rate of the second-order model is as fast as that of the classical
model.

If a < µ2, then ρ2 < |µ2|, it indicates that the convergence
rate of the second-order model is faster than that of the
classical model.

ii) If 4a
(1+a)2

≤ µ2 < 1, from Equation (26) we can obtain

ρ2 =
µ2 (1+ a)+

√
µ2
2(1+ a)

2 − 4µ2a

2
(35)

And then,

ρ2

|µ2|
=

1
2

[
(1+ a)+

√
(1+ a)2 −

4a
µ2

]

<
1
2

[
(1+ a)+

√
(1+ a)2 − 4a

]
=

1
2
[(1+ a)+ (1− a)]

= 1 (36)

Thus, ρ2 < |µ2|, it indicates that the convergence rate
of the second-order model is faster than that of the classical
model.

3) a=0
Obviously, we can obtain ρ2 = |µ2|, it indicates that the
convergence rate of the second-order model is as fast as that
of the classical model.

Because the convergence of the second-order model
depends on the eigenvalue characteristics of its weight matrix
B and the smaller the secondary eigenvalue, the faster the con-
vergence rate of the algorithm. Therefore, when ρ2 reaches
the minimum, the second-order model has the fastest con-
vergence rate. From Equation (23) we can see that when
1 = µ2

2(1 + a)2 − 4µ2a = 0, ρ2 gets the minimum, i.e.
ρ∗2 = 1−

√
1− µ2, and

a∗ =
2− µ2 − 2

√
1− µ2

µ2
(37)

57134 VOLUME 9, 2021



Q. Yang et al.: Convergence-Accelerated Distributed Time Synchronization Algorithm for EH-WSNs

FIGURE 4. The relationship between v1 and v2 when (a) 1+ a > a
|λ|

and
(b) 1+ a < a

|λ|
.

Then, we further consider the case when µi is complex
number. We express a complex number in the form of mod-
ulus and argument: µ = |µ| ejφµ , λ = |λ| ejφλ , Equation (19)
could be expressed as following:

|µ| ejφµ =
|λ|2 ej2φλ

(1+ a) · |λ| · ejφλ − a
(38)

Suppose that k = µ/λ, that is: |µ| = |λ| · |k| and ejφµ =
ej(φλ+φk ). Then Equation (40) can be rewritten as

1
|k|
e−jφk +

a
|λ|

e−jφλ = 1+ a (39)

Let v1 = a
|λ|
e−jφλ and v2 = 1

|k|e
−jφk , then v1 + v2 =

1 + a. Fig. 4 shows the vector relationship between v1 and
v2. |k| is an indicator of the convergence rate of the second-
order model algorithm. We hope |k| to be larger to get faster
convergence rate, which is equivalent to get a smaller |v2|.
According to Equation (39) and as shown in Fig. 5, to get the
fastest convergence rate, we should obtain:

4) IF a > 0 and 1+ a > a
|λ|

φλ = φk = 0 (40)

And then

|λ|2 − |µ| (1+ a) |λ| + |µ| a = 0 (41)

FIGURE 5. The values of v1 and v2 when the convergence rate of the
proposed algorithm is fastest for (a) if a > 0 or a < 0 when 1+ a > a

|λ|

and (b) if a > 0 or a < 0 when 1+ a < a
|λ|

.

5) IF a > 0 AND 1+ a < a
|λ|{
φλ = 0
φk = π

(42)

And then

− |λ|2 − |µ| (1+ a) |λ| + |µ| a = 0 (43)

6) IF a < 0 AND 1+ a > a
|λ|{
φλ = π

φk = 0
(44)

And then

|λ|2 − |µ| (1+ a) |λ| − |µ| a = 0 (45)

7) IF a < 0 AND 1+ a < a
|λ|

φλ = φk = π (46)

And then

− |λ|2 − |µ| (1+ a) |λ| − |µ| a = 0 (47)
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FIGURE 6. The convergence performance of the second-order algorithm
with different parameter a.

FIGURE 7. The topological structure diagrams of (a) grid topology and (b)
random topology.

The convergence analysis of these four cases is similar to
some cases when µi is a real number.
Based on the above analysis, we can draw the following

conclusions: It is assumed that the classical model is conver-
gent, and µ2 is the second largest eigenvalue of W , then the
second-order model has the following characteristics:

When−1 < a < 1, the second-order model is convergent.
When a=0 or a = µ2, the second-order model is conver-

gent as fast as the classical model.
When −1 < a < 0 or µ2 < a < 1, the convergence rate

of the second-order model is slower than that of the classical
model.

When 0 < a < µ2, the convergence rate of the second-
order model is faster than that of the classical model.

When a = a∗ = 2−µ2−2
√
1−µ2

µ2
, the second-order model

has the fastest convergence rate.
All the conclusion mentioned above can be presented as

Fig. 6.

FIGURE 8. Time base adjustment of each node using the Metropolis
weight matrix with N = 25, R = 100, r = 0.4R and a = a∗ in (a) grid
topology and (b) random topology.

V. SIMULATION AND ANALYSIS
A. SIMULATION SCENE
The simulation scene settings are as follows: N nodes
distribute in the two-dimensional space of R × R, and the
communication radius of each node is r . Provided that the
coordinates of node i and node j is (xi, yi) and

(
xj, yj

)
respect-

tively, and if the Euclidean distance dij between node i and j
is less than r , node i and node j can communicate directly.

There are two kinds of topology structure as shown
in Fig. 7. In grid topology structure,N nodes distribute around
in a rectangular area of R×R, and these nodes have been ran-
domly uniformly deployed. The distance between two nodes
in grid network is R/(

√
N−1). In random topology structure,

N nodes randomly distribute in the square area of R× R and
the connectivity probability of random networks is 0.96.

B. DIFFERENT WEIGHT MATRIX ALGORITHM SETTINGS
There are three weight matrix algorithms:

1) UNIFORM ALGORITHM

wij =


α, j ∈ Ni
1− α |Ni| , i = j
0, i 6= j, j /∈ Ni

(48)

where α ∈ [0, 1] is the optional parameter.
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FIGURE 9. The relation between the normalized maximum time deviation
and iteration times for variable communication radius r and node number
N using the Metropolis weight matrix with R = 100 and a = a∗ in (a) grid
topology and (b) random topology.

2) METROPOLIS ALGORITHM

wij =



1

max
{
di, dj

}
+ 1

, j ∈ Ni

1−
∑
j∈Ni

1

max
{
di, dj

}
+ 1

, i = j

0, i 6= j, j /∈ Ni

(49)

3) MAX-DEGREE ALGORITHM

wij =


1

d + 1
, j ∈ Ni

1−
di

d + 1
, i = j

0, i 6= j, j /∈ Ni

(50)

where d is the largest node degree in the network.

C. ANALYSIS
1) THE CONVERGENCE PERFORMANCE
At the first, we will discuss the convergence of the proposed
algorithm. Fig. 8 shows the time base adjustment of each node

FIGURE 10. The relation between the normalized maximum time
deviation and iteration times under different weight matrix algorithms
with N = 25, R = 100, r = 0.4R and a = a∗ in (a) grid topology and
(b) random topology.

in grid topology and random topology using the Metropolis
weight matrix with N = 25, R = 100, r = 0.4 R and a = a∗.
It can be seen from the figure that the time base of each
node can eventually converge to the same value after a certain
number of iterations no matter in grid topology or random
topology, which verifies the convergence of storage algo-
rithm. And it can be roughly seen that the time base of each
node in grid topology converges faster than that in random
topology.

2) THE CONVERGENCE RATE
Next, we will discuss the convergence rate of the proposed
algorithm. The simulation work has been run 1000 times.

Fig. 9 shows the relationship between the normalized
maximum time deviation and the iteration times under dif-
ferent communication radius r and node number N using
the Metropolis weight matrix in grid network topology and
random network topology. It can be seen from Fig. 9 that
with the increase of communication radius, the convergence
rate of the algorithm increases. This is because when the
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FIGURE 11. The relation between the normalized maximum time
deviation and iteration times under different parameter a using the
Metropolis weight matrix with N = 25, R = 100 and r = 0.4R in (a) grid
topology and (b) random topology.

communication radius of the node increases, the number of
neighbor nodes that the node can communicate increases.
So the time state information of neighbor nodes that the node
can obtain increases, and then it is faster for nodes to reach a
consistent state. Besides, with the increase of node numberN ,
more information is used to update the time value of nodes,
and the convergence rate of the algorithm increases.

Fig. 10 shows the influence of different weight matrix algo-
rithm selection on the convergence rate of the algorithm in
grid network topology and random network topology. Where
‘S’ represents the proposed algorithm and ‘C’ represents the
classical algorithm. From Fig. 10, it can be seen that nomatter
which weight matrix algorithm is chosen, the convergence
rate of the storage system is significantly better than that of
the classic system. And it can be seen that the Metropolis
algorithm is slightly better than the Max-degree algorithm,
while the Max-degree algorithm is slightly better than the
Uniform algorithm. At the same time, the influence of three
weight algorithms in grid topology and random topology on
convergence is very different. The convergence rate in grid
topology is faster than that in random topology.

FIGURE 12. The relation between iteration times when δ=10−14 and the
parameter a under different weight matrix algorithms with N=25,
R=100 and r=0.4R in (a) grid topology and (b) random topology.

Fig. 11 and Fig. 12 show the influence of different parame-
ter a on the convergence rate of the algorithm in grid network
topology and random network topology. Fig. 11 shows the
relationship between iteration times and parameter a when
the normalizedmaximum time deviation reaches the accuracy
δ = 10−14, and compares the convergence rates of differ-
ent synchronization algorithms with different weight matrix
algorithms. Fig. 12 shows the relationship between the nor-
malized maximum time deviation and iteration times under
different parameter a using the Metropolis weight matrix .
It can be seen from Fig. 11 and Fig. 12 that no matter what
weight matrix is adopted, when a = 0 or a = µ2, the con-
vergence rate of the storage algorithm is the same as that of
the classical algorithm. When −1 < a < 0 or µ2 < a < 1,
the convergence rate of the storage algorithm is slower than
that of the classical algorithm. When 0 < a < µ2, the con-
vergence rate of the storage algorithm is faster than that of
the classical algorithm. When a = a∗ = 2−µ2−2

√
1−µ2

µ2
,

the speed of convergence of storage system gets the optimal
value. The simulation results are consistent with the theoreti-
cal derivation, which proves the correctness of the theoretical
derivation.
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VI. CONCLUSION
An accelerated time co-synchronization algorithm for
energy-harvesting wireless sensor networks is proposed in
this paper. This algorithm based on the weight sum of storage
previous time reference and the current time reference to
predict the next state estimate local time reference, after that,
the next state local time reference is calculated by its estimate
local time reference and all its neighbors estimate time refer-
ence. A general theoretical model for the novel algorithm is
built to analysis its convergence characteristics. We establish
a second-order model to analysis the convergence conditions,
which is strictly proof based on matrix theory. Secondly,
the convergence rate of the classical synchronization model
and the proposed second-order synchronization model is
compared theoretically by the second largest eigenvalue of
weight matrix under more general assumptions. Then the
influence of the algorithm parameter on the convergence
rate is analyzed, based on which the optimal parameter is
derived to reach the fastest convergence rate. Simulations on
different scenarios shows that the theoretical analysis results
are consistent with the simulation results, and the proposed
algorithm gets a faster convergence rate than the classical
distributed consensus algorithm.
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