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ABSTRACT We model the tracking of Bluetooth low-energy (BLE) transmitters as a three layer hidden
Markov model with joint state and parameter estimation. We are after a filtering distribution by Bayesian
approximation using Monte Carlo sampling techniques. In a test environment decorated with multiple BLE
sensors, the tracking relies only on the naturally unreliable received signal strength indicator (RSSI) of the
captured signals. We assume that the tracked BLE transmitter does not provide any other motion or position
related information. Hence, the transition density is designed to be merely a diffusion where the probability
measures are diffused into the neighboring space. This makes the diagonal error covariance factor of the
prediction density, namely the diffusion factor, the most important parameter to be tuned on the fly. We first
show an experimental proof of concept using synthetic data on real trajectories by comparing three parameter
estimation approaches: static, decaying and adaptive diffusion factors. We then obtain the results on real data
which show that online parameter sampling adapts to the observed data and yields lower error means and
medians, but more importantly steady error distributions with respect to a large range of parameters.

INDEX TERMS Bluetooth low-energy, indoor positioning and tracking, parameter estimation, sequential
Monte Carlo, wasserstein interpolation.

I. INTRODUCTION
This work addresses the problem of positioning and track-
ing in indoor environments using the probabilistic sampling
methods with Bluetooth Low-Energy (BLE) signal indicators
as measurements. In a closed indoor area decorated with mul-
tiple BLE sensors, we track the position of a mobile beacon
that transmits only BLE messages but no other information
about its movement or its whereabouts. By the nature of
radio-frequency signals, message transfer is affected by the
factors like occlusion, scattering, reflections and interference
from other devices, resulting with themultipath phenomenon,
mostly because of furnitures and materials used in the archi-
tecture of the building.

The associate editor coordinating the review of this manuscript and

approving it for publication was Byung-Seo Kim .

A. INDOOR POSITIONING
Tracking of objects indoors in real-time has become essential
in many fields such as retail, logistics, marketing and health.
With the aging population of the world, health workers need
assistive systems for tracking elderly or sick people in order
to mitigate their workload [1]. The Covid-19 pandemic has
introduced the contact tracing notion, which can also be
resolved with accurate positioning systems [2]. In marketing
and retail, these systems help make targeted and location
based promotions or advertisements by tracking the client
behaviors [3]. In logistics and industrial environments, indoor
positioning has become a need in asset and shipment tracking
[4] and even for livestock tracking [5].

Indoor positioning systems (IPS) are formed of a group
of appareils used to estimate the micro-locations of the
objects or the people. Target locations are closed environ-
ments where satellite based positioning systems yield highly
inaccurate estimations or fail entirely due to the coverage
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loss of their signals. With the lack of satellite positioning
systems, there appeared diverse modalities, various signal
parameters/statistics and associated processing technologies
adapted to IPS.

Visual information provides themost accurate solutions for
positioning, but requires high amounts of data to be captured,
transferred and processed. The domain has developed several
processing algorithms like visual odometry and scanmatching
that use conventional cameras [6] and depth cameras [7].
Visible light communication that use LED beacons is spe-
cially designed for indoor positioning [8], but lately, with the
introduction of multiple augmented reality (AR) detectors,
AR tags have also become robust alternatives for visual infor-
mation processing [9].

Ultrasound based positioning systems provide accurate
localization at low cost. Such systems use the time-of-flight
(TOF) of sound to estimate the distances between a mobile
receiver and stationary transmitters. Estimations are then
multilaterated to obtain a position [10]. The same phe-
nomenon that uses light modality is commercialized into
range finders and lidars. These systems are specialized in
finding the occluded areas or objects in their ranges, making
them high precision, but expensive indoor positioning alter-
natives [11].

Whereas vision, inertial navigation and radio-frequency
(RF) based data processing solutions coexist in hybrid sys-
tems with the pervasiveness of smart phones [12], low power
consumption and low processing requirements make the pure
RF based systems preferable. Wi-Fi technology is one of the
oldest RF technologies used for indoor positioning because of
its easy-to-use and already installed infrastructure for access-
ing local networks. Signal parameters and preprocessing
techniques prior to position estimations depend mostly on the
experiments performed with Wi-Fi infrastructures in the first
decade of this millenium [13]. A radio-frequency identifica-
tion (RFID) based positioning system consists of two types
of appareils: readers and transponders or tags, which may in
turn be passive or active. Cheap passive tags are powered by
the radio waves emitted by the reader [14], hence narrowing
the emission distance under one meter, whereas active tags
have their own energy sources and can be read from greater
ranges up to hundreds of meters [15]. Ultra wideband is one
of the emerging technologies used for indoor positioning.
With its high data rate which can attain the speeds of up to
100 Mbps, it has become a good solution for near-field data
transmission [16].

BLE transmitters are becoming more ubiquitous everyday,
because of their low energy consumption, high accessibil-
ity and small mass. A properly configured transmitter can
stand online from months to years with conventional bat-
teries. These transmitters can communicate easily with con-
temporary handheld devices, making them readable by any
BLE-ready device [17]. Transmitters are also called beacons,
as they were first thought as stationary objects that broadcast
Bluetooth packets. Recently, thanks to their small volumes
and masses, they are becoming the actual mobile objects of

interest that are being tracked by the help of the surrounding
sensor systems. These cheap devices are attached to items,
assets, animals or people that need to be tracked.

For the RF based positioning systems, there exist a hand-
ful of approaches of signal parameters, the most used of
which are received signal strength indicator (RSSI), time
of arrival (TOA), time difference of arrival (TDOA), angle
of arrival (AOA) and channel state information (CSI). The
downside of RF signals is that they do not work robustly
because of the multipath problems. Therefore, captured data
need to be preprocessed before the actual filtering or esti-
mations of positions are performed [13]. Two of these pre-
processing techniques are trilateration and fingerprinting.
Trilateration is the estimation of positions given the dis-
tances between the tracked object and static landmarks whose
positions are priorly known. The technique directly depends
on the accuracy of these distances, which fluctuates as the
signal parameters fluctuate [18]. In one specific work that
uses the trilateration technique, Cantón Paterna et al. track
a mobile sensortag using the surrounding sensing computers
[19]. They employ multiple BLE channels to mitigate the
effect of fast fading and interferences. The positions are esti-
mated through a trained trilaterationmethod based onweights
and smoothed via Kalman filtering. They reach an error rate
of 1.82 m in a 54 m2 room, and 4.6 m in a 290 m2 room.
Fingerprinting, also called prior scene analysis or RF signal

profiling, generates a RF map of the region of interest. Basi-
cally, an IPS system estimates the positions by comparing
the live measurements with the fingerprints. The accuracy
depends on the profiling density of the corresponding param-
eter, causing a trade-off between the installation overhead
versus the precision [20]. Fingerprinting techniques have
been shown to be more accurate with respect to trilatera-
tion techniques [21]. Similarly, in our experimental setup,
we want to estimate and track the position of a transmitter
that emits BLE packets. These packets are captured and cor-
responding RSSI measurements are generated by the sensors
stationed in the same indoor environment. The locations of
the sensors are not necessarily known as we rely on a finger-
printing technique, but a good coverage is obligatory.

B. INFERENCE WITH MONTE CARLO SAMPLING
We model the system as a state space model (SSM), in which
we observe RSSI measurements and estimate the positions.
The transition densities on the latent chains are assumed to
be Gaussian and gamma. The emission density, that is the
distribution of the RSSI values conditioned on the positions,
is estimated using aWasserstein interpolation technique [20].
We attempt to approximate the nonlinear Bayesian filtering
using the sequential Monte Carlo filter. Sequential Monte
Carlo filters, or namely particle filters or bootstrap filters,
are well known for their efficiency in solving numerically
complex and non-standard problems that were previously
intractable [22]. Moreover, two important properties of the
proposed system restrict us from using linearizable and
exact methods: the emission densities that map the position
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readings to the measured RSSI values are nonlinear and non-
Gaussian, and their indices are also discrete integers.

Monte Carlo sampling techniques have been long used in
positioning and have a popularity in both combining multiple
sensor readings like visual information and inertial informa-
tion and perform better against its counterparts like Kalman
filter family, especially for nonlinear approximation. They are
known to be efficient and easily implemented [23]. Sequential
Monte Carlo (SMC) filters have exclusive use cases in indoor
positioning with RF signals. Nurminen et al. [24] build a
particle filter where pedestrian dead-reckoning (PDR) pre-
dicts the position particles, andWiFi RSSI measurements and
the floor plan correct the predictions and achieve a median
error rate of 0.8 meters. Shubair and Elayan [25] propose
a particle filter based technique for Wireless Sensor Net-
works (WSN) that uses TDOA parameter as measurements.
Their TDOA-PF technique is shown to outperform the other
well known techniques with respect to both accuracy and
robustness. Filipek and Kovarova [26] use BLE transmitters
as signal sources and estimate the distances between several
of these stationary transmitters and use this information for
weighing the particles of the generic SMC filter. The tests are
performed with previously and discretely selected positions,
and the method achieves an error rate of 0.35 meters in
average.

Adaptivity in SMC filters may serve for adjusting differ-
ent parameters, in order to mitigate the estimation errors in
changing conditions in the dynamics or in the environment.
Lang et al. [27] design an adaptive particle filter that is aug-
mented with two resampling steps, one before the prediction
step and the other before the weight update step, so that the
number of particles is decreased in the second resampling
step which in order decreases the computation time. The tests
are performed on a real robot that uses sonar readings as
measurements. As another example, the size of the samples
may be adapted on the fly by measuring the approximation
error. In [28], the approach bases on updating the importance
weights until the Kullback-Leibler (K-L) divergence between
the maximum likelihood estimate and the underlying poste-
rior is under a predetermined bound. The efficiency is boosted
by avoiding unnecessary resamplings.

Despite their popularity, the SMC techniques have an
important disadvantage: it is unclear how to set the noise
parameters of the conditional distributions in the first place.
Efficient adaptive mechanisms are needed to tune these
parameters while performing the actual tracking operation.
In [29], an adaptive noise variance selection strategy was
designed. They obtain a blindness value that is controlled by
two parameters: α for steepness and β for the position of the
transition. The noise variances are adjusted according to the
blindness estimation at the previous iteration, so that noise
in the measurements are never amplified due to the dynamic
components. Whereas our approach is similar to this work,
we cannot control the emission density noise variances.

Auxiliary particle filters (APF) are proposed to solve the
problem of adaptation and imprecisement of the sequential

importance resampling (SIR) method due to a large variance
of the particle weights [30]. Our proposed algorithm may
also be associated with APF because of two stage particle
assignments, but differs by the type of particle association
between two stages. In APFs, firstly auxiliary variable indices
are sampled with respect to some auxiliary likelihood val-
ues and the second stage particles are sampled using these
indices. In our proposed method, we do not analytically link
the first stage particles to the second stage, but sample second
stage particles using the first stage particles as parameters.
When weights are assigned for the second stage particles,
they are also propagated to the first stage. This approach
filters a trajectory of positions and noise parameters jointly.

When parameter estimation is the purpose of the SMC
methods, we generally consider maximum likelihood estima-
tion (MLE) of static parameters [31]. The main objective is
to estimate an unknown static parameter from the data in an
online or offline manner [32], however, we want the noise
parameter to be not only statically estimated, but also to be
adapted with respect to the changing conditions or properties,
like the velocity of the tracked object or noise fluctuations
in the measurement data. A common approach for the SMC
filters to adapt to the changing and/or unknown motion of the
tracked targets is to augment the state with a parameter under
the name augmented particle filters, where the parameter
to be estimated is moved to a new process and parameter
estimations can be performed through this new process if
sufficient data can be supplied [33].

One of the similar methods is the iterated batch importance
sampling (IBIS) method that updates a grid of samples in the
parameter space [34], but IBIS is not recursive and requires to
compute probability density function of every measurement
variable given the previous measurement in closed form.
Papavasiliou [35] addresses the same problem using two lay-
ers of Monte Carlo methods to solve the previous recursivity
issue. The first of these layers generates random grids of
parameters, and a particle filter is run with each of these
first layer parameters. Chopin et al. [36] extend the IBIS
method to a grid of samples in the parameter space that are
updated over time. At each step, a particle filter is used to
process the measurement, and a new grid is generated. These
methods involve nested layers of particle filters [37]. The
nestedmethods have not yet been used for tracking of objects,
nor for indoor positioning domain.

C. PROPOSED WORK
In SMC filters, the prediction step generally tries to model
the dynamics of the tracked object by inserting some motion
related data. In our model, we contrarily assume that we
have very little information on how the object moves: it may
only jump onto the neighboring coordinates. This ‘‘close’’
jumping behavior is defined by a normal distribution, which
may also be named as a diffusion: the particles are diffused
into the environment. A diagonal noise covariance is driven
by a diffusion factor, which can also be indirectly associ-
ated with the velocity of the tracked object, thus becoming

37024 VOLUME 9, 2021



F. S. Daniş et al.: Adaptive SMC Filter for Indoor Positioning and Tracking With Bluetooth Low Energy Beacons

very essential for the SMC filter for accurate position esti-
mation. When this diffusion factor is set to a high value,
the system tends to be in an exploratory behavior, that is,
the predictions are diffused rapidly over a wide area. This
behavior increases the possibility of capturing the highest
likelihood, but conversely the particle set will be distracted
by spuriously similar patches that are highly probable in
the RF map, and they will be updated accordingly, probably
increasing the error. If an excessively low diffusion factor
is chosen, the predictions tend to lag or get totally stalled
and the estimated trajectory cannot catch the true trajectory.
These caveats may lead to a divergence in accurate position-
ing and temporary but relatively highly erroneous position
estimations.

In a diffusion based transition density, the diffusion factor
should be optimized for each trajectory, but an optimum static
parameter can only be properly estimated after at least one
full run of the algorithm. Moreover, a static diffusion factor
optimization approach may be misleading as the velocity
of the object or the emission noise can vary throughout an
experiment. We also show that a decaying diffusion factor
may not be as accurate as a fine tuned constant one. We solve
this issue by sampling the diffusion factor along with the
positions: adaptive diffusion factor.
The contribution of this work is the on-the-fly estimation

of the variable diffusion factor through importance sampling
alongside the position estimations. This is achieved with a
novel version of the nested SMC filter specially tailored
for indoor positioning and tracking. We have two layers of
particles, one for the positions and the other for the diffusion
parameters. The weights evaluated using the measurements
at each step are used firstly to estimate a weighted mean
of positions. Secondly, the weights are propagated through
the diffusion layer and a weighted diffusion factor can also
be computed. We show that an adaptive diffusion factor
is robust to inaccurate temporary estimations. It increases
necessarily as the position estimations are degraded, and
decreases with better position estimations. The results also
show that an adaptive diffusion factor leads to better posi-
tion estimations for BLE-based object tracking in indoor
environments.

In the organization of the paper, Section II presents the
details of the proposed approaches. Section III describes the
test environment and experimental design. The experiments
and results are discussed in Section IV, and we finalize our
paper with conclusions and future options in Section V.

II. METHODOLOGY
A. TRACKING MODEL
We model the problem of ‘‘indoor positioning and tracking
with BLE beacons’’ as a hidden Markov model (HMM),
in which the diffusion parameters constitute a prior latent
layer and the positions form a secondary one, and the RSSI
measurements captured by the distributed sensors are the
observations. We write the generative dependency model as

follows:

k0 ∼ p(k0)

kt ∼ p(kt |kt−1)

x0 ∼ p(x0)

xt ∼ p(xt |xt−1, kt )

yst ∼ p(yt |xt ) (1)

The diffusion layer forms a Markov chain, with a prior
distribution at the initial time, p(k0). The diffusion parameter,
kt , at discrete time, t , is a function of the diffusion parameter
at its previous time, p(kt |kt−1). The secondary latent layer is
initialized likewise with a prior distribution, p(x0), and the
transition density at the current time is conditioned on the
position at its previous time and the diffusion parameter at
the current time, p(xt |xt−1, kt ). We observe only the RSSI
measurements, yst , captured by a sensor, s. RSSI data are
modeled by the emission density p(yst |xt ). The problem forms
the hidden Markov model shown in FIGURE 1. We want
to make a Bayesian approximation to a filtering distribution
p(xt , kt |ys1:t ), and jointly find accurate position estimates of
the tracked object and the diffusion factor given the measure-
ments, or the RSSI values, so far.

FIGURE 1. Proposed HMM with a latent chain for positions that depends
on another one for diffusion factors.

1) TRANSITION DENSITY MODEL
The tracked object is a beacon that emits Bluetooth low
energy packets. We restrict our beacon to reside on a plane,
in which the position is composed of two cartesian coordi-
nates, x = (x, y). We assume that these beacons do not have
any other sensor or processing appliances, hence, we (assume
to) have no access to any internal information about the
movement of the tracked object, but we also assume that the
object moves smoothly in the area so that its current position
is directly related to its position at the previous timestamp (no
kidnapping). This transition is modeled as a diffusion density
which is described by a normal distribution with the previous
position xt−1 as its mean, and a 2× 2 covariance matrix that
is driven by the diffusion factor, ktI2.

p(xt |xt−1, kt) = N (xt−1, ktI2) (2)

The diffusion factor serves as a scale for the noise covari-
ance of the position chain. Therefore, this factor should be
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positive. To guarantee to easily sample positive diffusion fac-
tors, we define the transition density by a gamma distribution.
The shape and scale parameters of the gamma distribution,
a and b, are tuned accordingly to ensure that the diffusion
factor at the previous timestamp, kt−1 is put at its mode, and
a sensitivity value, ν, at its variance:

p(kt |kt−1) = G(at , bt )

with at =
(kt−1)2

ν
+ 1

and bt =
ν

kt−1
(3)

2) EMISSION DENSITY MODEL
The system depends solely on the RSSI measurements, yst ,
captured by a sensor, s, at a discrete time step, t . To obtain
a probability density of the RSSI measurements given the
positions, namely a probabilistic radio map, we use the his-
tograms of RSSI measurements, or fingerprints, previously
captured on several positions in the test environment. Because
we require to evaluate any RSSI measurement on any point,
we utilize a histogram interpolation method, Affine Wasser-
stein Combination (AWC) [20]. From the two specific types
of these interpolation methods, we choose Two-point Affine
Wasserstein Combination which considers the closest and
the most aligned two fingerprint positions to compute a his-
togram on the position xt .

p(yst |xt ,2) = h̃(yst ; xt , α, β) (4)

where h̃() denotes an estimate for the histogram of RSSI
measurements for a specific sensor, s, at position xt . The
parameters α and β are algorithm specific parameters. The
algorithm is summarized in Section II-B3 as a part of SMC
filters.

B. SMC FILTER FOR BLE LOCALIZATION
We first describe a generic SMC filter for fusing BLE data
captured by several sensors. In this generic version, the dif-
fusion factor is set as static and decaying, so the diffusion
layer is replaced with a single static value or a deterministic
decaying function for the current section.We evolve the setup
into the adaptive SMC filter by using the diffusion transition
density in Section II-C.

In the SMC formalization, N will denote the particle
population size at each step of the SMC algorithm. The
population size will always be constant in an experiment,
but may be varied between experiments. We will denote
each particle with (x(i)t , ω

(i)
t ) where x(i)t is a 2D cartesian

vector that stands for the position of the particle i ∈ [1..N ]
at discrete time step t ∈ [0..T ] and ω

(i)
t is its current

weight. Time indices will be put in subscripts and parti-
cle indices will be in parentheses in superscripts. Vectors
will be shown with bold and lowercase characters, matrices
are bold and uppercase. The predictions are marked with a
tilde, .̃

1) INITIALIZATION
Initially, we have no information on the whereabouts of the
transmitter. The particles of the initial population aremodeled
as continuously uniformly distributed.

x(i)0 ∼ U(A) (5)

where A is the rectangular area of the test environment that
supports the uniform distribution.

2) IMPORTANCE SAMPLING
For an appropriate proposal distribution, we set a diffusion
based density to sample new particles from, as stated in
Section II-A1:

x̃(i)t ∼ N (x(i)t−1, ktI2) (6)

where a new particle of the prediction population is sampled
from a normal distribution in which themean is the ith particle
from the previous time step, and ktI2 is a diagonal matrix
driven by a diffusion factor to assure that the scatter scales
in both dimensions are equal.

The accuracy of the system depends highly on the diffusion
factor, kt , as it determines the scatter of new particles. If the
scatter is too high, the system tends to explore a large area
of interest and this may result in high localization errors tem-
porarily while exploring. If the scatter is too low, we restrict
the system in a small neighborhood so that it cannot shoot
the particles far enough, which prevents exploration of
more accurate regions. We use two different diffusion factor
strategies:

a: STATIC DIFFUSION
If the transmitter is assumed to move at a known constant
velocity and if the RSSI measurements can discriminate the
position accurately, an appropriate diffusion factor can be
determined beforehand, by which the proposal density dis-
tributes the particles as far as required and the estimations
are expected to be accurate:

kt = kt−1 = k∗ (7)

We set the diffusion factor to a predetermined value, k∗,
which ensures that the new particle predictions are scattered
with respect to a distribution with a static covariance, or a
static diffusion factor. A feasible value of this parameter is
searched by running a filter with a discrete set of parame-
ters. It is a problem that this factor may only be determined
empirically, as we do not also know the velocity of the tracked
object.

b: DECAYING DIFFUSION
The problemwith the static diffusion factor may be overcome
by reducing the diffusion factor gradually. As the observa-
tions are fed into the system, the estimations are expected to
bemore accurate. Beginningwith a high diffusion factor, kmax
for high exploration and decaying it gradually down to finer
scales is another strategy. We set an initial diffusion factor,
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FIGURE 2. Occupancy map: black cells denote the impassable regions (columns, furnitures or
walls).

k0 = kmax and multiply it with a decay factor, η, at each step.
The diffusion factor is reduced by some decay factor until it
reaches a limit value, kmin.

k0 = kmax

kt =

{
ηkt−1, if kt > kmin
kt−1, otherwise

(8)

The static diffusion strategy is a special case of the decay-
ing diffusion strategy with η = 1 and k0 = kmax .

3) PARTICLE EVALUATION
The particles are evaluated against a probabilistic radio map
to determine their importance weights. A weight is quantified
by the likelihood of being in that position with the measured
RSSI value, however, we do not have such a map. Instead,
we have access to some histograms on some reference points,
i.e. the fingerprints. In this section, we first find an estimate
for the probabilistic radio map that will emulate the emission
density of the state space model, so that we can evaluate the
particle predictions. Then, we update it with the architectural
information as an occupancy map.

a: EVALUATION WITH PROBABILISTIC RADIO MAP
ESTIMATE
To obtain the weight of a particle, we first need to esti-
mate the RSSI distribution on the particle’s specific position.
We employ the Two-point AWC algorithm from Daniş and
Cemgil [20]. The algorithm is used to estimate the corre-
sponding RSSI histograms of a sensor on any position on
the map using fingerprints. Note that this section is added
to summarize the algorithm and to ensure the integrity of
the whole methodology. The validity of the procedure and
its relation to real measurements are detailed in the original
article [20].

The histogram interpolation is a two-step process: Firstly,
for a given position on the map, x, we find the most appropri-
ate pair of fingerprint positions from the set of all fingerprints,
(fa, fb) ∈ F2. Secondly, we run AWC with the parameters,
x as the target position and (fa, fb) as the source positions.
Briefly, the algorithm finds a transport plan of the probability
measures on discrete positions by minimizing the cost of
transferring measures from one histogram onto the other. The
interpolation histogram on the specific position is then esti-
mated by realizing this transport plan partially with respect to
its distance to the fingerprint pair. An example interpolation
is given in FIGURE 2.
We have a histogram on each of these positions for each

sensor, hfa and hfb , and we are to estimate the histograms
of RSSI measurements on x, h̃(yst ; x̃t , α, β). The algorithm
specific parameters, α is a similarity measure that is tuned
with respect to the distance of the target position to each of
the source positions, and β controls if the interpolation is a
linear interpolation or a displacement interpolation.

With an estimate of the probabilistic radio map defined
on any point on the map, we evaluate the particles using the
measured RSSI value to obtain their importance weights.

ω
(i)
t = p(yst |x̃

(i)
t )

= h̃(yst ; x̃t , α, β) (9)

b: EVALUATION WITH OCCUPANCY MAP
Any area that the system is installed in may have impass-
able (occluded) regions, such as building columns, walls,
cabinets or tables. The transmitter is not expected to pass
through these occluded regions. These impassable regions
of the area are labeled beforehand, so that the particles that
get generated on these regions are evaluated accordingly.
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The occupancy grid is denoted by r(x):

r(x) =

{
0, if x is in the occupied area,
1, otherwise

(10)

For particle evaluation with occlusion, we have two
choices: (i) these particles are either resampled until they fall
in the passable region, or (ii) the weights of such particles
are directly set to zero. The former method (i), would be
the desired action in order to keep the efficient sample size
intact, but this action may lead to several resampling attempts
especially if the particles are at the border, resulting in a
drastic slow down of the current step. We use the latter
method (ii) to keep the evaluation duration stable by setting
the particle weights to zero if they are out of the passable
area, which means that the particles are sterilized not to
produce offsprings in the resampling and nor are they taken
into consideration for weighted mean estimation:

ω
(i)
t = h̃(yst ; x̃

(i)
t , α, β)r(x̃

(i)
t ) (11)

where the importance weight of the ith particle, ω(i)
t , is also

multiplied with the corresponding occupancy information
r(x̃(i)t ), which sets the weight to zero if the sampled position,
x̃(i)t , is in an occupied zone, or leaves untouched otherwise.
A sample occupancy map is given in FIGURE 3.

The importance weights are normalized before the resam-
pling stage:

ω̃
(i)
t =

ω
(i)
t∑N

i=0 ω
(i)
t

(12)

4) RESAMPLING
A resampling strategy is used to overcome the degeneracy
problem of the algorithm, that is to avoid a situation where
all importance weights but one are zero. We use the system-
atic resampling strategy [38], whose time complexity is of
order O(N ), more efficient than the multinomial or stratified
resampling techniques [39]. We also add an evaluation of the
three traditional resampling techniques for this setup in the
Section IV.

x(i)t ∼ Syst(X̃t , w̃t ), i ∈ [1..N ] (13)

The SMC filter for BLE Localization is summarized in
Algorithm 1.

C. ADAPTIVE SMC FILTER WITH PARAMETER SAMPLING
FOR BLE LOCALIZATION
In this section, we describe the adaptive SMC filter that
jointly estimates the position and the unknown variable dif-
fusion factors. Compatible with the proposed hidden Markov
model (FIGURE 1), we assume to have two layers of latent
variables, one for the position and the other for the diffusion
factors.

We modify the generic SMC filter defined in Section II-B
by first adding the diffusion particles. We will denote the
diffusion (factor) particles with the superscripted version

Algorithm 1 SMC Filter for BLE Localization
1: Initialization

Sample a set of particles:
for i ∈ [1..N ], x(i)0 ∼ U(A)

Initialize diffusion factor:
k0 = kmax

2: Importance Sampling
Update the time index
t ← t + 1

Sample a new set of particles from the current set:
for i ∈ [1..N ], x̃(i)t ∼ N (x(i)t−1, ktI2)

Evaluate the proposed set with the radio frequency and
occupancy maps to obtain the importance weights:

for i ∈ [1..N ], ω(i)
t = h̃yst (x̃

(i)
t , α, β)r(x̃

(i)
t )

Normalize the importance weights:

for i ∈ [1..N ], ω̃(i)
t =

ω
(i)
t∑N

i=0 ω
(i)
t

Update the diffusion factor:
kt = ηkt−1

3: Resampling
Resample N particles according to the importance
weights

for i ∈ [1..N ], x(i)t ∼ Syst(X̃t , w̃t )
4: Recursion

Go back to 2, if not at the end of the trajectory

FIGURE 3. Occupancy map: black cells denote the impassable regions
(columns, furnitures or walls).

of the diffusion factor, k (i)t . The position particles are also
modified to have two indices in superscript, x(i,j)t , with i
for the diffusion particle it depends and j for the index in
the set of position particles that depend on the same dif-
fusion particle. We also introduce the similar versions for
the position particle weights, ω(i,j)

t , and diffusion particle
weights, υ(i)t .
The generic SMC filter is also modified in terms of

the number of particles. We assume that multiple position
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particles can be instantiated by a diffusion particle. We will
denote the size of the diffusion particles with D and the size
of the position particles generated by each diffusion particle
withP.We can alsomake the algorithm only one chain depen-
dent by setting the population size of the other chain to 1.

1) INITIALIZATION
We do the initial sampling of the diffusion particles, k (i)0 ,
that are distributed along a uniform distribution. The position
particles are initially sampled like in the original SMC filter
for localization, but for a different sample size of P per
diffusion particle.

k (i)0 ∼ U([kmin, kmax]), i ∈ [1..D]

x(i,j)0 ∼ U(A), i ∈ [1..D], j ∈ [1..P] (14)

2) IMPORTANCE SAMPLING
Diffusion particles are sampled along a gamma distribution,
alignedwith the transition density given in (3) with i ∈ [1..D].
Position particles are sampled as in Section II-B2, but for two
indices: i ∈ [1..D] for the diffusion particle and j ∈ [1..P]
defining the index in the population sampled by the associated
diffusion particle:

k̃ (i)t ∼ G(a(i)t , b
(i)
t ), i ∈ [1..D]

with a(i)t =
(k (i)t−1)

2

ν
+ 1

and b(i)t =
ν

k (i)t−1

x̃(i,j)t ∼ N (x(i,j)t , k (i)t I2)), i ∈ [1..D], j ∈ [1..P] (15)

Small values of the sensitivity make the diffusion estima-
tions rigid, keeping the weighted average of the diffusion fac-
tor almost static, whereas with the higher values we observe
rapidly varying values for the same statistic, making the diffu-
sion factor estimations behave aligned with the measurement
errors. As a consequence, higher values may seem to be
preferred, but wewill show that unnecessarily high sensitivity
values can also cause undesired fluctuations for the diffusion
factor estimations.

3) PARTICLE EVALUATION
The position particles, ω(i,j)

t , are evaluated against the fre-
quency map and the occupancy map to obtain the particle
weights as before (see Section II-B3). The diffusion parti-
cles, υ(i)t , are evaluated by accumulating the corresponding
position particle weights.

ω
(i,j)
t = h̃(yst ; x̃

(i,j)
t , α, β)r(x̃(i,j)t )

υ
(i)
t =

∑
j

ω
(i,j)
t (16)

Algorithm 2 Parameter Sampling Based Adaptive SMC Fil-
ter for BLE Localization
1: Initialization

Initialize a set of particles:
for i ∈ [1..D], k (i)0 ∼ U([kmin, kmax])
for j ∈ [1..P], x(i,j)0 ∼ U(A)

2: Importance Sampling
Update the time index
t ← t + 1

Sample a new set of particles from the current sets:
for i ∈ [1..D], k̃ (i)t ∼ G(a(i)t , b

(i)
t ),

for j ∈ [1..P], x̃(i,j)t ∼ N (x(i,j)t−1, k
(i)
t I2)

Evaluate the proposed set with the radio frequency and
occupancy maps to obtain the importance weights:
for i ∈ [1..D],
for j ∈ [1..P], ω(i,j)

t = h̃yst (x̃
(i,j)
t , α, β)r(x̃(i,j)t )

υ
(i)
t =

∑
j ω

(i,j)
t

Normalize the importance weights:

ω̃
(i,j)
t =

ω
(i,j)
t∑

i,j ω
(i,j)
t

υ̃
(i)
t =

υ
(i)
t∑
i υ

(j)
t

3: Resampling
Resample D × P particles according to the importance
weights

for i ∈ [1..D], k (i)t ∼ Syst(k̃t , υ̃ t )
for j ∈ [1..P], x(i,j)t ∼ Syst(X̃(i)

t , w̃t )
4: Recursion

Go back to 2, if not at the end of the trajectory

Both set of particles are then normalized:

ω̃
(i,j)
t =

ω
(i,j)
t∑

i,j ω
(i,j)
t

υ̃
(i)
t =

υ
(i)
t∑
i υ

(j)
t

(17)

4) RESAMPLING
With the normalized weights for the set of particles,
the resampling stage is the same with the resampling in
Section II-B4. The SMC filter with parameter sampling is
given in Algorithm 2. The bold vectors or matrices, k̃t , υ̃ t ,
X(i)
t and w̃t , stand for the sets of the corresponding particle

variables.

III. TEST SETUP
A. TEST ENVIRONMENT AND COMPONENTS
We install our equipment in an open office area of size
17× 20 m2 to test our work. The plan of the area is given in
FIGURE 4. In our scenario, we assume that an emitter (BLE
beacon) is navigating in the area and we expect to accurately
track its position in the area coordinate system.

The office environment is decorated with 12 sensors (Blue-
tooth adapters) that capture the BLE packets emitted by the

VOLUME 9, 2021 37029



F. S. Daniş et al.: Adaptive SMC Filter for Indoor Positioning and Tracking With Bluetooth Low Energy Beacons

FIGURE 4. Plan of the test area, with sensors and computers marked as
red circles and black squares respectively.

BLE beacon. The sensors are administered by four com-
puters. We use off-the-shelf Raspberry Pi 3+ single board
computers as sensing and publishing units (FIGURE 5c).
These computers are connected to a local area network
through Ethernet. All of the computers are running Rasp-
bian Stretch operating system with Robot Operating Sys-
tem (ROS) Melodic middleware [40].

As BLE packet transmitters, we use POI Beacons, based on
Nordic Semiconductor, running on 32bit ARM Cortec with
256KB flash and 16KB RAM, provided by POI Labs1(see
FIGURE 5a). The beacons are capable of 2.4Ghz Bluetooth
4.0 BLE protocol and have a signal range of 70 meters.
They are programmed to publish 2 BLE identity packets
per second. Powered by 2AA batteries, they can be functional
up to 4 years with the current configuration.

Compatible with the BLE protocol, Logilink Blue-
tooth 4.0 adapters are used to capture BLE packets (see
FIGURE 5b). To expand the coverage, we attach two of these
adapters to each processor with USB extension cables (see
FIGURE 5e). We also employ the onboard Bluetooth mod-
ules of the computers connected through UART bus, attaining
a total of 12 Bluetooth sensors.

For data collection, we designed an affordable navigable
platform, (see FIGURE 5d), which is composed of a wheeled
cabinet, a tripod and a custom case for the cameras. Two
cameras and a BLE beacon are bundled into the custom case
(see FIGURE 5) that is raised by a tripod to gain a clear view
of the surrounding area. The tripod is attached on a mobile
cabinet to collect data while navigating. The cameras are used
to estimate the ground truth pose data very accurately. The
ground truth is collected using a special decoration of AR tags
in the environment.

1poilabs.com

FIGURE 5. Test components.

B. DATA COLLECTION
We gather stationary RSSI measurements that will build into
fingerprints. The platform is placed on a position and the data
collection system is triggered. The system dumps the RSSI
data along with the sensor and beacon addresses published by
the sensors for 30 minutes and this procedure is repeated for
81 different positions on themap. Finally we have normalized
histograms of RSSI measurements for each sensor on several
points (see FIGURE 2).

We create an occupancy map for impassable regions. The
walls, tables, columns, closets and couches are considered to
be impassable areas on the map. We determine a grid matrix
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FIGURE 6. Synthetic test trajectories.

with a width size of 0.2 meters, set the regions covered by
such objects occupied areas, and label these areas manually
(see FIGURE 3). The labels for the occupied grid positions
are set to zero, and the rest are set to one.

To avoid the on-the-fly computation of histogram inter-
polations on arbitrary map positions, we generate the prob-
abilistic radio map and the occupancy map as grid maps
with a resolution of 0.2 meters, before running the actual
experiments. This prior preparation makes the estimation of
occupancy map or RSSI histograms merely a memory based
constant time lookup operation in runtime if position indexing
is properly provided.

Finally, using the navigable platform, we capture
RSSI measurements, the corresponding beacon and sensor
addresses, timestamp of the capture and the ground truth
position of the platform while navigating it on predeter-
mined trajectories. The platform is navigated by hand. The
vision-based ground truth data collection system is activated,
so each RSSI measurement is labeled with its ground truth.
We determine three trajectories with accompanying RSSI
values: T1, a trajectory at a fast pace (∼ 0.9m/s); T2, one
at a moderate pace (∼ 0.4m/s); and T3, another with a
slow pace (∼ 0.1m/s). Since the algorithms do not take
the shape of the trajectories into consideration but the con-
tinuity, we use linear trajectories to keep the paces steady
and controlled. These trajectories are shown in FIGURE 6.
On these trajectories we synthesize two experimental sets
of RSSI data: (i) one set of very accurately synthesized
RSSI measurements using the grid structure of the fre-
quency maps (T1, T2 and T3), (ii) and another one of highly
noisily synthesized RSSI data using the closest fingerprint
information (T ′1 , T

′

2 and T ′3 ).
We perform the final batch experiments on the real RSSI

data captured while navigating in the environment. The nav-
igable platform is driven at varying paces and the trajectory
is not linear. We use two different trajectories with associated
real RSSI data: T4, a zigzagging trajectory; and T5, a rectan-
gular trajectory (see FIGURE 7).

IV. EXPERIMENTS AND RESULTS
The experiments are performed on an Intel Xeon E5-2697A
running at 2.60GHz. For the experiments, we run the SMC
filters of different models with different configurations.
A sample visualization of a running SMC filter is given in
FIGURE 8.

FIGURE 7. Real test trajectories.

FIGURE 8. Visualizations of SMC filter experiment samples with different
diffusion factors. Green dots are the ground truth positions, red dots are
the estimated positions.

To statistically assess the results, each configuration is run
for 50 times in parallel and repeated for different trajectories.
We vary the following parameters in the following sets for
different models:

• Static diffusion model

– static diffusion factor: k ∈ [0.001, 2.0]
– particle population size: N ∈ {1K , 2K , 5K , 10K }

• Decaying diffusion model

– decaying diffusion factor: η ∈ {0.9, 0.95, 0, 99}
– diffusion factor higher limit: kmax = 5.0
– diffusion factor lower limit: kmin ∈ [0.01, 2.0]
– particle population size: N = 1K

• Adaptive diffusion model

– initial diffusion particles: k0 ∈ [0.00001, 5.0]
– sensitivity: ν ∈ [10−8, 10−2]
– particle population sizes: (D,P) ∈ {(500, 1),

(333, 2), (250, 3), (200, 4), (100, 9), (50, 19),
(40, 14), (20, 49), (10, 99), (5, 199), (4, 249),
(2, 499), (1, 999)}

We evaluate each experiment by the accuracy of the esti-
mated trajectory. We measure this accuracy by the mean
and median of the Euclidean distances between the weighted
position means, or estimations, and their corresponding
ground truth positions. In FIGURE 9, we show a sample of
trajectory errors throughout an experiment, the distribution
and cumulative distribution of these errors. The very first
estimations of a trajectory yield high errors naturally, and as
more data are fed, the estimations tend to give lower errors.
We rather rely on the medians of errors than the means,
because the errors obtained after an experiment form right
skewed distributions. This skewness is mostly due to the
temporary far divergences of the particle clouds from the true
positions.
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FIGURE 9. Sample error distributions. From left to right: Trajectory errors
throughout an experiment, histogram of the corresponding errors, and
cumulative distribution of the errors. The green and red lines indicate the
median and mean of the distribution respectively.

We perform three types of main experiments: The first set
of experiments aims to find the best strategy along with the
most appropriate parameters for the SMC algorithm on syn-
thetically and very accurately sampled trajectories. The first
set is also for setting a proof of concept for the proposedmeth-
ods and determining the parameters that are to be used in the
experiments that follow. For the second set of experiments,
we generate noisy RSSI data using the closest fingerprint
information. This second set is used for finding the gener-
alized parameters for the different models of SMC filters.
The third set of experiments evaluate the performance of the
SMC filter on the trajectories with real RSSI measurements
collected by navigating the test setup in the environment.
Narrowing down the parameter set in the first and second,
we compare and focus on the model parameters that can be
used in real world conditions where the data is degenerated
due to various factors.

A. PARTICLE POPULATION SIZE SELECTION
According to the nature of the SMC algorithms, with larger
particle population sizes the algorithms approximate bet-
ter, but higher particle sizes do not suit the real world
conditions because of high processing power requirements.
Before elaborating the error comparisons, we first select
a reasonable particle population size by comparing the
effect on the experiment run times with the frequency of
the captured. In FIGURE 10, we show the step processing
durations throughout the experiments and corresponding tra-
jectory error distributions. For the experimental trajectories
T3 and T ′3 , we set safe static diffusion factors of 0.2 and
0.3 respectively. Safe parameters tend to explore sufficiently
and does not get stalled. We see that varying the popula-
tion size from 1K to 10K does not significantly reduce the
error for the specific experiments. Hence, we choose a safe
particle population size of 1K particles, which allows the
system to process about 25 data points per second. With
the current setup, if the processing were to be performed
in real time, such a configuration would rarely miss any
captured data.

Since there exist two layers that sample particles in the
adaptive strategy, a comparable particle population size can
be computed with Nada = D+DP, because after D diffusion
particles are sampled, for each sampled diffusion particle
P position particles are sampled. The following sections use
compatible population sizes of diffusion particles and posi-
tion particles.

FIGURE 10. Duration distributions (left) and corresponding error
distributions (right) with respect to different particle population sizes.

B. RESAMPLING STRATEGY SELECTION
Resampling strategy is also very crucial in SMC.We compare
three traditional resampling strategies: Multinomial, system-
atic and stratified. Whereas multinomial resampling strat-
egy is known to approximate better as it simulates the real
particle weight distribution, it has a higher computational
complexity compared to its counterparts.We repeat the exper-
iments for different resampling strategies with the same static
diffusion factors, 0.2 and 0.3, for the trajectories, T3 and
T ′3 . In FIGURE 11, we compare three traditional resampling
techniques with respect to their running times and error
distributions.

FIGURE 11. Duration distributions (left) and corresponding error
distributions (right) with respect to different resampling strategies sizes.

The results show that varying the resampling strategy
does not significantly improve the error statistics, but run-
ning times differ considerably. Employing a multinomial
resampling strategy boosts the running times, however, corre-
sponding error distributions have lower variances. Nonethe-
less, other strategies are preferable for their lower running
times. There is no significant difference between stratified
and systematic resampling strategies. Because the systematic
resampling is also known to be the best with respect to the
computational complexity and random numbers used [39],
we prefer it in the following experiments.

C. EXPERIMENT I: ACCURATELY SYNTHESIZED RSSI DATA
For an exhaustive parameter search, we regenerate synthetic
RSSI data on the collected trajectory positions. We aim both
to show a proof of concept of an efficient adaptive parameter
sampling method for the SMC filter in BLE based indoor
localization, and find the best filter parameters for the given
trajectories.

Among the three different diffusion factor strategies,
the static diffusion factor performs better than others as
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FIGURE 12. Accurately synthesized data: Error (m) means and medians for diffusion factor strategies. The black, green and gray curves represent the
median, mean and percentiles (25% and 75%) respectively.

expectedly if an optimal diffusion factor is given beforehand.
We report the error means and medians with respect to both
different static diffusion factors, keeping the population size
at 1K. As shown in FIGURE 12a, we achieve the lowest
medians around 0.1, 0.07 and 0.04, compatible with the paces
of the trajectories. Moreover, the trajectory estimates are very
accurate (best errors around 0.22 meters) and thus the method
is very appropriate as the RSSI data are synthesized using the
radio frequency map grids of size 0.2 meters.

These results show that in order to achieve accurate esti-
mations, we should set the correct values for the static dif-
fusion factors before the actual filter is run, but these correct
values cannot be known beforehand as velocities or observa-
tion noises are unknown, or moreover the velocity can vary
throughout an experiment. For the paces comparable with
the walk pace of a person, setting a value between 0.1 and
0.5 would be the best for the static diffusion factor, but for
the values just under the best factor, we risk of falling into a
stalled state where the estimations cannot keep up with the
actual trajectory, because of the lack of exploration tendency.
This strategy shows that a high static diffusion factor should
be chosen to cope with the varying and unknown velocities,
however, we see that for higher values the SMC filter loses
the focus and tends to explore with largely scattered particle
clouds.

Selecting a decaying diffusion factor that behaves
exploratorily in the beginning and more exploitatively
through the end, shows that we reach a more generalized
system for some of the experiments, but we still require to
select a covariance factor lower limit where the decaying
should not surpass. With higher decay rates we attain more
generalized error distributions, but with lower decay rates
lower errors are obtained. Setting appropriate lower limits
makes the system no different than selecting static diffusion
factors (see FIGURE 12b).

The proposed approach, the adaptive diffusion factor, how-
ever, yields more generalized results by avoiding falling into

FIGURE 13. Adaptive behavior of a sampled diffusion factor. The
weighted average of the diffusion factor accompanies the error
fluctuations of the position estimates.

a stalled state. Sampling the diffusion factor helps the system
maintain a generalized behavior, that is, when the error gets
higher exploration is favored, and exploitative behavior oth-
erwise. FIGURE 13 shows a gist of this behavior on a sample
run. The temporary peaks of the weighted mean diffusion
factor can be seen when the positioning errors are boosted.
The diffusion factor adapts itself to the changing conditions
(i.e. loss of particle focus).

The diffusion factor is not set too low or too high,
both of which would result with high positioning errors.
In FIGURE 12c, the error mean and medians are plotted
against different sensitivity values. We see that even varying
the sensitivity dramatically does not boost the errors like in
the static or decaying cases. The medians of the errors tend to
stay around a constant value, which is to say that we have a
more generalized algorithm that can tune its diffusion factor,
k , according to the requirements. Selecting a sensitivity value
about 2×10−3 is appropriate for our algorithm to achieve low,
but more importantly consistent error distributions.

For each set of experiments we also show the lowest errors
achieved and the corresponding parameters. For the synthetic
data, these statistics are given in TABLE 1. According to the

VOLUME 9, 2021 37033



F. S. Daniş et al.: Adaptive SMC Filter for Indoor Positioning and Tracking With Bluetooth Low Energy Beacons

TABLE 1. Best error statistics (m) for accurately and noisily synthesized
RSSI measurements on different trajectories.

FIGURE 14. Error distributions for different sensitivity values and
different particle size configurations.

tested parameters, the static diffusion strategy performs the
best. This is an expected behavior, since we note that these
experiments have constant velocity. Besides, an adaptive dif-
fusion strategy shows comparable performances with the two
other strategies.

D. VARYING THE DIFFUSION PARTICLE POPULATION SIZE
We set the total sampled particle size to 1K, but in
order to decide how many samplings each layer should
perform, we examine the error distributions with varying
diffusion and position particle sizes. FIGURE 14 summa-
rizes the error distributions with respect to the sensitivity.
We see that by distributing the particle sizes to the layers,
we reach lower error rates for specific sensitivity values
(D = 200,P = 49), but narrower thus highly stable
plots are obtained with increased diffusion particle size
(D = 500,P = 1).

To determine an appropriate particle size tuple, we look
finally at the timings of each option. FIGURE 15 compares
the step durations and errors of static and decaying diffusion

FIGURE 15. Duration (left) and error rate (right) comparison of the
different adaptive strategy configurations with the static and decaying
models, the first and second distributions respectively from the left.

model at 1K with the sampling models of various config-
urations. The adaptive model with a diffusion particle size
of 500 has the lowest run times with error rates comparable
to the opposing configurations. This is due to the fact that
sampling a position particle is more time consuming than
sampling a diffusion particle. The parameters (D,P) ∈
{(500, 1), (333, 2), (250, 3)} for the adaptive strategy are
favorable, because they have lower run times and highly
stable error rates.

E. EXPERIMENT II: NOISILY SYNTHESIZED RSSI DATA
The measurement model of the first set of experiments is
designed to be very accurate, and does not project to real
life conditions. For the second set of experiments, we disrupt
the generation model to synthesize highly noisy RSSI data
for the trajectories. We mark the identifiers of the trajectories
with the primed versions of the same trajectories in the first
set. (T ′1 , T

′

2 and T ′3 ). The aim of this set is to show whether
the findings after the first set is still valid for a more generic
setup.

These data are synthesized using the fingerprints. The
RSSI data point on a trajectory position is resampled upon
the closest corresponding fingerprint histogram, whichmakes
the generated RSSI data highly noisy with respect to the pre-
vious data set. Considering the gaps between the fingerprint
positions, estimation errors up to 1 m is acceptable.

FIGURE 16 displays a similar behavior for the strategies,
but with higher error rates. For the static and decaying diffu-
sion, we obtain U-shaped graphics, left of which points the
space of stall, and the right shows the space of exploratory
behavior. The space of the adaptive strategy errors is far from
a U-shape. Though, if the search space is enlarged, we surely
experience some deteriorated error distributions, but with a
large enough search space we obtain stable error distributions
for the adaptive diffusion strategy. This is interpreted as the
diffusion rate is automatically tuned for better estimations
wherever it was initialized.

The adaptive strategy performs also better when the best
parameters are compared. We observe in TABLE 1 that
for all of the experiments the adaptive strategy reaches
the lowest error medians and means. We conclude that,
if the measurements are noisy, an adaptive strategy based
on parameter estimation by sampling leads to the better
estimations.
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FIGURE 16. Noisily synthesized RSSI data: Error (m) means and medians for diffusion factor strategies. The black, green and gray curves represent the
median, mean and percentiles (25% and 75%) respectively.

F. EXPERIMENT III: REAL RSSI DATA
For the real data, we use two different trajectories whose
RSSI measurements are captured with the navigable platform
detailed in Section III. The RSSI data are collected simul-
taneously with the ground truth positions. The position esti-
mations by the SMC filters are evaluated with these ground
truth positions. The nature of the RF signal and the lack
of a dead reckoning information prevent the system from
making accurate estimations. Different than the first two set
of experiments, here the emission density is very noisy and
the navigation velocity is variable.

Even with the handicapped conditions, FIGURE 17 shows
that the adaptive diffusion strategy keeps its steadiness for a
large range of sensitivity values. We remark also that, for the
real data set, we choose particle parameter sizes as (D,P) =
(50, 19), that is, at each iteration we sample 50 particles for
diffusion factor and 19 position particles for each diffusion
factor. Even though the best parameters are found empirically,
we can generalize that choosing a larger size for the diffusion
particle population produces more accurate estimations (see
Section IV-D).
We compare finally the best parameter configurations for

each strategy. The adaptive diffusion strategy outperforms
the other strategies with respect to stability and error per-
formance. FIGURE 17 shows that the static and decaying
strategies are prone to fall into a stalled state if the diffusion
parameters are selected to be too low, but the adaptive dif-
fusion strategy does not get stalled for a comparatively large
space of sensitivity values. Moreover, TABLE 2 shows that
the adaptive diffusion strategy has the best median and mean
error rates.

We report the best sets of parameters that are found empir-
ically. It can be seen from the results that the best set of
parameters may vary even for different trajectories in the
same area. One may think that the adaptive strategy perform
better for the chosen specific parameters, but the performance
of the algorithm is similar for a large range of its sensitivity

TABLE 2. Best error statistics (m) for the experiments that use real RSSI
measurements.

values. We can generalize that selecting an arbitrary sensi-
tivity value from the ranges will perform acceptably without
ever knowing these empirically best values.

G. DISCUSSION
We compare our best error statistics that use real RSSI mea-
surements with the state of art results that use mobile trans-
mitters and stationary sensors in indoor experimental areas
with similar sizes:

The work of Cantón Paterna et al. [19], is installed in an
area of 270 m2. They achieve an error rate of 4.6 m during
90% of the time using 4 computers and one beacon. They
measure the performance of their work using interpolated
points with respect to time stamps on predefined paths.

We do another comparisonwith a livestock tracking system
[5]. The tests are conducted in a zone that houses 31 dairy
Holstein cows with a size of 390 m2. BLE transmitters are
attached to the collars of the cows and RSSI data are captured
using battery powered receivers. Moreover, they verify their
results using a closed-circuit television (CCTV) system with
three cameras. They measure an error median and mean
of 3.3 m and 4.3 m respectively.

In terms of positioning performance, our error rate in
the worst case scenario (3.148 m) is lower than the very
similar setups. We observe that some of the experiments
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FIGURE 17. Real RSSI data: Error (m) means and medians for diffusion factor strategies. The black, green and gray curves represent the median, mean
and percentiles (25% and 75%) respectively.

yield higher error rates naturally, but we infer that these
samples are not numerous, considering the low variances of
the adaptive strategies (see FIGURE 17c). Moreover, we use
a set of RSSI data annotated with its ground truth position
using an AR based truth detection system, which makes
the evaluation of our work more accurate compared to its
counterparts.

The only downside of our work is the prior scene analysis
stage based on fingerprinting. The performance depends on
the number of reference points and durations, which makes
this stage tedious. However, we also bring a solution to
mitigate this workload with the Wasserstein histogram inter-
polation using lower number of reference points. Moreover,
the AR based ground truth collection facility helps to auto-
matically annotate the reference points without measuring
them manually. The CCTV system used in the cow barn [5]
does a similar online ground truth positioning of the cows,
which is an indispensable requirement for measuring the
performance correctly.

All of the works use low cost and affordable transmit-
ters and sensors. Cantón Paterna et al. [19] use multiple
low cost computers to expand the coverage, because higher
number of sensors relates to better positioning performance,
but usage of stationary computers for sensing brings extra
cost. Trogh et al. [5] propose low cost and battery powered
receivers. Likewise, we bring forth a scalable solution to
expand the sensing coverage using low cost USB Bluetooth
adapters and extension cables. The cables can be extended
more as long as they can supply enough power, and a
lower number of computers can host a swarm of Bluetooth
adapters.

In summary, when compared to the works with similar
setups, the results show that the proposed work achieves
better positioning performance with accurate evaluation.
Moreover, we do not only compare our localization algo-
rithm with its accuracy. We also show that it is scal-
able for space, hardware and complexity situations, as new
sensors and low cost computers can be added easily
and the complexity may be tuned with different particle
population sizes.

V. CONCLUSION
Bluetooth low-energy transmitters are energy efficient RF
packet emitters. Bluetooth sensors sharing the same environ-
ment with the transmitters extract RSSI parameters from the
captured packets, which can be used as position indicators,
but very bad indicators because of both the multipath prob-
lem of the RF signal nature and the instability of the signal
indicators through time. This work deals with the transmitter
tracking problem that depends only on the RSSI data emitted
by a mobile BLE beacon. Having no information on how the
object moves, we model the motion of the tracked object as a
diffusion in the environment and approach the problem with
an adaptive sequential Monte Carlo filter.

The novelty of this work comes from an additional latent
layer of the state spacemodel that is used for online parameter
sampling. Hence, Monte Carlo sampling is performed in two
subsequent layers: firstly, diffusion particles are sampled and
used as error covariance parameters, and in the second actual
filtering layer position particles are sampled. We show that
in a classical SMC filter, we should choose an error covari-
ance considering a stable motion of the tracked object and
the efficiency of the emission density model. This is highly
inappropriate since the velocity of the object may vary and
the emission density model can be very inaccurate.

The diffusion particles are sampled with their own error
covariance, a sensitivity value. We show that this sensitivity
value can be chosen from a large space compared to the
point estimate of the static diffusion factor. With an almost
arbitrary sensitivity value, the diffusion factors get adapted
to the problem and more accurate position particles can be
achieved. We also show that this method is efficient for
both performance and accuracy with respect to the classical
SMC filter. The contribution has potential to be applied to
the localization environments where propagation conditions
change significantly over time. Localization algorithms with
fixed parameters fail in such environments, however the pro-
posed solution is based on fingerprinting, which may bring
a bottleneck due to the emprical parameters. We believe that
this bottleneck can also be overcome with the application of
the Wasserstein histogram interpolation.
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In the proposed IPS, captured data by the distributed sen-
sors are transferred to a single computer where the SMC
filter algorithm is run. As a future work, the system can
be made decentralized by running the SMC filter on each
sensor unit. This work will require to determine the particle
sizes the sensor units can process in real time, and for better
approximation the posterior information should be efficiently
shared between the processing nodes in terms of particles.
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