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ABSTRACT In this research, a new technique is developed for reducing the order of high-order continuous
interval systems. The model denominator is derived using Anderson corollary and Routh table. Numerator is
derived bymatching the formulatedMarkov parameters (MPs) and timemoments (TMs). Distinctive features
of the proposed approach are: (i) New and simpler expressions for MPs and TMs; (ii) Retaining not only
TMs but also MPs while deriving the model; (iii) Minimizing computational complexity while preserving
the essential characteristics of system; (iv) Ensuring to produce a stable model for stable system; (v) No
need to invert the system transfer function denominator while obtaining the TMs and MPs; and (vi) No need
to solve a set of complex interval equations while deriving the model. Two single-input-single-output test
cases are considered to illustrate the proposed technique. Comparative analysis is also presented based on
the results obtained. The simplicity and effectiveness of the proposed technique are established from the
simulation outcomes achieved.

INDEX TERMS Interval systems, Kharitonov polynomials, Markov parameter, time moments, modelling,
Routh approximation.

I. INTRODUCTION
For real world applications, the description of physical sys-
tems, in terms of mathematical models, produces high-order
transfer functions generally. These transfer functions are
relatively complex for in-depth analysis, computer simula-
tions, and controller design [1], [2]. Therefore, the analysis
and controller design of such systems become a challenging
task. The simplification of such high-order transfer functions
into low-order models can be considered as a possible solu-
tion. The simplification should be processed so that that the
low-order models should retain the dominant characteristics
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of high-order systems. The simplification offers remarkable
features , e.g., reduction in computational effort during sim-
ulating the behavior of system, feasible controller design,
better understanding of the dynamic behavior of the system,
etc., [3].

In literature, a large number of order reduction tech-
niques are available for non-interval systems both in continu-
ous and discrete time domains [4]. These methods include
aggregation matrix [5], power decomposition method [6],
pole retention technique [7], time moment matching tech-
nique [8], Routh stability criterion [9], Pade approxima-
tion [10], Hurwitz polynomial based approximation [11],
stability preservation method [12], etc. In spite of the avail-
ability of several reduction techniques, only a few among
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these are extended for order reduction of interval systems.
The main reason behind this are involvement of complex
interval arithmetic and difficulty in stability analysis of
model. Kharitonov [13] proposed, a breakthrough result to
verify the robust stability of interval system. This result,
known as Kharitonov theorem, attracted many researchers in
the field of modelling and system analysis of continuous and
discrete interval systems.

Many practical systems in engineering industries possess
uncertainties in parameters during entire range of operat-
ing conditions. These uncertainties in the system parameters
occur due to sensor noises, nonlinear effects, actuator con-
straints, internal and external disturbances, aging effect, man-
ual errors, etc. The consideration of uncertainties in model
of the system itself turns out to a transfer function having
interval parameters. The transfer function having interval
parameters is known as interval systems. Some practical
systems, mathematically modelled as interval systems, are
cold rolling mill, DC shunt motor, oblique wing aircraft,
and Riverol-Pilipovik water treatment. The interval transfer
functions of cold rolling mill, DC shunt motor, oblique wing
aircraft, and Riverol-Pilipovik water treatment are given,
respectively, in (1), (2), (3) and (4).

The interval transfer function ofG11(s),G12(s),G21(s), and
G22(s) are given as below

In the transfer functions given in (1)-(4), the coefficients
of numerator and denominator polynomials are varying in
definite intervals.

The pioneering work for order reduction of continuous
interval system is proposed by Bandyopadhyay et al. [14]
based on Routh-Pade technique. Here, denominator of the
model is obtained by direct truncation of Routh table and
numerator is derived using matching of coefficients of power
series expansion of the system to model. But, in [15], it is
shown that this method generates unstable interval models

for stable high-order interval systems in few cases. To over-
come this limitation, the formula given in [14], is modified
while constructing the elements of Routh table. The result-
ing reduced-order interval models are assumed to be stable.
Further, Yang [16] proved that the method developed in [15]
also does not ensure stability of reduced model in all cases.
Finally, Dolgin [17] inserted two additional conditions while
constructing the elements of Routh table to overcome the
problem of unstable denominator polynomial.

Recently, other methods have also been developed for
order reduction of interval systems. A reduction technique
based on Routh approximation (RA) using Kharitonov poly-
nomial is presented in [18]. In [19], a direct RA method
for reduction of interval systems is observed to generate
a stable reduced model. The article [20] proposed reduc-
tion employing optimization techniques like particle swarm
optimization. Also, mixed technique is suggested in [21],
where the numerator of the model is obtained using classical
reduction methods like Cauer second form, Pade approxi-
mation, differentiation and moment matching method, and
the denominator is calculated by differentiation method. A
variable substitution method is developed in [22], where
overshoot of the non-linear system is considered as an major
criteria for controller design. An linear matrix criteria was
developed for singular fractional order system with order
0 < α < 1 from non singular decomposition method
and stability theory [23]. Zhang and Yang [24] developed a
new control strategy that guarantees the prescribed tracking
performance for a class of uncertain nonlinear single system
with unknown control direction. Kumar et al. [25] devel-
oped a technique to derive denominator and numerator of an
interval model from Routh approximation using Kharitonov
polynomials. In article [26], a class of control problems for
multi-input-multi-output (MIMO) unknown Euler-Lagrange
systems with output constrained are investigated, and also

G(s) =
[0.5, 2.6]+ [3, 16] s+ [4.2, 21] s2

[0.05, 0.15]+ [1, 2.5] s+ [3, 8] s2 [1, 1] s3
(1)

G(s) =
[50000, 50000]

[2025, 2475]s+ [1200, 2800]s2 + [9.6, 33.6]s3
(2)

G(s) =
[900, 1660]+ [54, 74]s

[−1, 1]+ [301, 339]s+ [504, 808]s2 + [28, 46]s3 + 10s4
(3)

G(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
(4)

G11(s) =
0.0045(0.104s)+ 1

(0.012s2)
G12(s) = 0

G21(s) =
[900, 1660]+ [54, 74]s

[−1, 1]+ [301, 339]s+ [504, 808]s2 + [28, 46]s3 + 10s4

G22(s) =
10(−3s+ 1)
s2 + 5s+ 1

43602 VOLUME 9, 2021



J. K. Bokam et al.: Anderson Corollary Based on New Approximation Method for Continuous Interval Systems

fault- tolerant control technique is effective to compensate
for the actuator faults which ensure reliability of the dynamic
system like inverted pendulum. Hote et al. [27] proposed a
non-interval reduced model for a high-order interval system.
The denominator of the model is derived from Anderson
corollary and Routh approximation whereas the numerator is
calculated by matching steady-state value of system to that
of model. The reduced model obtained from this technique
does not contain interval values of steady-state of high-order
system. Recently, Singh et al. [28] formulated expressions for
calculation of MPs and TMs. Further, Routh-Pade approx-
imation for simplification of high-order interval systems
employing the derived MPs and TMs is proposed in [28].

In this investigation, two simple generalized expressions
for calculating the Markov parameters (MPs) and time
moments (TMs) of continuous interval systems are proposed.
Unlike the other methods, this method does not require to
invert the denominator of transfer functions of the system
and model nor an additional step of solving a set of interval
equations for calculating MPs and TMs. Firstly, denominator
of model is derived using Anderson corollary and direct trun-
cation of Routh table. Secondly, the coefficients of numerator
polynomial of the model are achieved by equating some MPs
and TMs of the system with those of the model. Considering
the matching of TMs, the steady-state response is improved,
while the matching of MPs improves transient response
matching. The key highlights of the proposed method are:
• Simpler expressions for MPs and TMs are developed.
• Both MPs and TMs are retained while deriving the

model.
• Themethod is simple and involves relatively lesser com-

putations.
• The proposed model preserves the essential characteris-

tics of system.
• It generates stable model for stable system.
• There is no requirement of inversion of denominator of

transfer function of the system to calculate TMs.
• There is no need to solve a set of complex interval

equations for deriving the MPs and TMs.
The overview of article is as follows: problem formu-
lation is discussed in Section 2; the generalized expres-
sions of MPs and TMs of interval system are derived in
Section 3; Section 4 discusses procedure to derive model;
Section 5 includes the demonstration of proposed technique
with the help of two test systems; and, finally Section 6 pro-
vides conclusions.

II. PROPOSED TECHNIQUE
The high-order continuous interval system (HOCIS) can be
expressed by equation (5)

Gn(s) =
Pn(s)
Qn(s)

=
P0 + P1s+ P2s2 + · · · + Pn−1sn−1

Q0 + Q1s+ Q2s2 + · · · + Qnsn
(5)

where

Pi = [P−i ,P
+

i ] (6)

for i = 0, 1, 2, . . . , n− 1 and

Qi = [Q−i ,Q
+

i ] (7)

for i = 0, 1, 2, . . . , n.
Pn(s) and Qn(s) are, respectively, the numerator and

denominator interval polynomials of HOCIS. The parameters
P−i and Q−i are the lower limits, and P+i and Q+i are the
upper limits of interval coefficients. Expansions of HOCIS,
(5), about s = 0 and s = ∞, respectively, are expressed as

Gn(s) = α0 + α1s+ · · · + αksk + · · · (8)

Gn(s) = β1s−1 + β2s−2 + · · · + βks−k + · · · (9)

where, αi = [α−i , α
+

i ] for i = 0, 1, 2, . . . and βi = [β−i , β
+

i ]
for i = 1, 2, 3, . . . are TMs and MPs of interval system
respectively.

The adequate kth-order reduced order continuous interval
model (ROCIM) of the system given in (5) is represented
by (10)

Gk (s) =
pk (s)
qk (s)

=
u0 + u1s+ · · · + uk−1sk−1

v0 + v1s+ · · · + vksk
(10)

where k < n, being

ui = [u−i , u
+

i ] (11)

for i = 0, 1, 2, . . . , k − 1 and

vi = [v−i , v
+

i ] (12)

for i = 0, 1, 2, . . . , k.
pk (s) and qk (s) are, respectively, interval polynomials of

ROCIM. The model (10), is expressed in terms of TMs and
MPs by equations (13) and (14)

Gk (s) =
∧
α0 +

∧
α1 s+ · · ·+

∧
αk sk

+ · · · (expansion about s = 0) (13)

Gk (s) =
∧

β1 s
−1
+
∧

β2 s
−2
+ · · ·+

∧

βk s
−k

+ · · · (expansion about s = ∞) (14)

where
∧
αi= [

∧
α
−

i ,
∧
α
+

i ] (15)

for i = 0, 1, 2, . . . and

∧

β i= [
∧

β
−

i ,
∧

β
+

i ] (16)

for i = 1, 2, 3, . . .

III. PROPOSED GENERALIZED EXPRESSIONS OF TMs
AND MPs
In order to simplify the problem of calculating TMs and MPs
of the interval system, the HOCIS, given in (5), is rewritten
as equation (17)

Gn(s) =
Pn(s)

Qn(s)
=

[P−0 ,P
+

0 ]+ [P−1 ,P
+

1 ]s+ [P−2 ,P
+

2 ]s
2

+ · · · + [P−n−1,P
+

n−1]s
n−1

Q0 + Q1s+ Q2s2 + · · · + Qnsn

(17)
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It is to be noted that the coefficients of the denominator poly-
nomial Qn(s) are fixed values instead of interval coefficients
of Qn(s). These fixed values are mid-points of the intervals,
which are calculated using equation (18)

Qi = (Q−i + Q
+

i )/2 (18)

where i = 0, 1, 2, . . . , n.
Therefore, about s = 0 and s = ∞, power series expan-

sions of (17), respectively, are given as

Gn(s) =
Pn(s)

Qn(s)

= α0 +
[P−1 ,P

+

1 ]− α0Q1

Q0
s

+
[P−2 ,P

+

2 ]− α0Q2 − α1Q1

Q0
s2 + · · · (19)

Gn(s) =
Pn(s)

Qn(s)

= β1s−1 +
[P−n−2,P

+

n−2]− β1Qn−1
Qn

s−2

+
[P−n−3,P

+

n−3]− β1Qn−2 − β2Qn−1
Qn

s−2 + · · ·

(20)

where, α0 =
[P−0 ,P

+

0 ]

Q0
and β1 =

[P−n−1,P
+

n−1]

Qn
Using (8) and (19), the generalized expression for TMs of

continuous interval system (5) can bewritten by equation (21)

αm =

Pm −
m−1∑
i=0
αiQm−i

Q0
, m = 0, 1, 2, 3, . . . (21)

By comparing (9) and (20), the generalized expression for
MPs of continuous interval system, given in (5), are expressed
by equation (22)

βm =

Pn−m −
m−1∑
i=1
βiQn−m+i

Qn
, m = 1, 2, 3, . . . (22)

In a similar manner, TMs and MPs (Appendix A) of
ROCIM (10) turn out to be given by equations (23) and (24)

∧
αm =

um −
m−1∑
i=0

∧
αi vm−i

v0
, m = 0, 1, 2, 3, . . . (23)

∧

βm =

Pk−m −
m−1∑
i=1

∧

β i vk−m+i

vk
, m = 1, 2, 3, . . . (24)

IV. PRINCIPAL RESULTS
To illustrate the effectiveness and applicability of pro-
posed TMs and MPs, Anderson corollary based improved
Routh-Pade approximation is proposed in this section.

A. PROPOSED LEMMA FOR APPROXIMATION OF
THIRD-ORDER INTERVAL SYSTEM
The desired first-order and second-order continuous interval
models of a third-order continuous interval system is given
by equation (25)

G3(s)

=
P3(s)
Q3(s)

=
[P−0 ,P

+

0 ]+ [P−1 ,P
+

1 ]s+ [P−2 ,P
+

2 ]s
2

[Q−0 ,Q
+

0 ]+ [Q−1 ,Q
+

1 ]s+ [Q−2 ,Q
+

2 ]s
2 + [Q−3 ,Q

+

3 ]s
3

(25)

where equation can (25) be represented by equation (26)

G1(s) =
p1(s)
q1(s)

=
u0

v1s+ v0
(26)

G2(s) =
p2(s)
q2(s)

=
u1s+ u0

v2s2 + v1s+ v0
(27)

The procedure to obtain the desired and reduced models are
discussed below.

1) PROCEDURE TO CALCULATE THE DENOMINATOR
The coefficients of denominator polynomial are obtained
employing Anderson corollary [27]. The procedure is
described as follows:
Step 1: Apply Anderson corollary [27] on HOCIS. After

application, (25) can be expressed by equation (28)

G(s) =
P−0 + P

+

1 s+ P
+

2 s
2

Q+0 + Q
−

1 s+ Q
−

2 s
2 + Q+3 s

3
(28)

Step 2: Construct Routh table for denominator polynomial
of (28) as presented in Table 1.

TABLE 1. Routh table.

Step 3: Obtain denominator polynomial from (n+ 1− k) and
(n+ 2− k) rows of the Routh table (Table 1).

The denominator polynomials q1(s) and q2(s) of the
first-order and second-order models,G1(s) andG2(s), respec-
tively, become equations (29) and (30)

q1(s) = v1s+ v0
= Xs+ Q+0

=
Q−2 Q

−

1 − Q
+

3 Q
+

0

Q−2
s+ Q+0 (29)

q2(s) = v2s2 + v1s+ v0
= Q−2 s

2
+ Xs+ Q+0

= Q−2 s
2
+
Q−2 Q

−

1 − Q
+

3 Q
+

0

Q−2
s+ Q+0 (30)
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2) PROCEDURE TO CALCULATE THE NUMERATOR
The coefficients of unknown numerator polynomial are
achieved by equating some initial TMs and MPs of HOCIS
and ROCIM as

αi =
∧
αi for i = 0, 1, 2, 3, . . . , (µ− 1) (31)

and

βi =
∧

β i for i = 1, 2, 3, . . . , λ (32)

where, µ + λ = k and µ ≥ 1. At least one time moment
of HOCIS and ROCIM is matched by considering µ ≥ 1,
which guarantees a better matching of steady-state response
between original system and model, and also matching of
Markov parameters improve the transient-state response.

The new and simple expressions for calculating time

moments (αi,
∧
αi) and Markov parameters (βi,

∧

β i) of HOCIS
and ROCIM are proposed in Section III.

B. PROPOSED LEMMA FOR APPROXIMATION OF
SECOND-ORDER INTERVAL SYSTEM
Let the desired first-order continuous interval model of a
second-order continuous interval system to be given by
equation (33)

G2(s) =
P2(s)
Q2(s)

=
[P−0 ,P

+

0 ]+ [P−1 ,P
+

1 ]s

[Q−0 ,Q
+

0 ]+ [Q−1 ,Q
+

1 ]s+ [Q−2 ,Q
+

2 ]s
2

(33)

be represented by equation (34)

G1(s) =
p1(s)
q1(s)

=
u0

v1s+ v0
(34)

The procedure to obtain the desired first-order model is dis-
cussed below.

1) PROCEDURE TO CALCULATE THE DENOMINATOR
The coefficients of denominator polynomial are obtained
using Anderson corollary [27]. The procedure is illustrated
below.
Step 1: Apply Anderson corollary [27] on HOCIS. Hence,

(33) becomes as equation (35)

G(s) =
P−0 + P

+

1 s

Q+0 + Q
−

1 s+ Q
−

2 s
2

(35)

Step 2: Construct the Routh table for (35). The Routh table
for (35) is provided in Table 2.

TABLE 2. Routh table.

Step 3: Obtain the denominator polynomial from Routh table
(Table 2).

The denominator q1(s) of the first-order model can be
achieved fromRouth table (Table 2) as given by equation (36)

q1(s) = v1s+ v0 = Q−1 s+ Q
−

0 (36)

2) PROCEDURE TO CALCULATE THE NUMERATOR
The coefficient of numerator, u0(s), is derived by equating
initial TM of HOCIS and ROCIM such that

α0 =
∧
α0 (37)

By using equations (21) and (23) from Section III, equa-
tion (37) becomes as

P0
Q0
=
u0
v0

(38)

the matching of initial time moment will improves the
steady-state responses between HOCIS and ROCIM. The
formulas for calculating the timemoments (α0,

∧
α0) of HOCIS

and ROCIM are given Section III.

V. TEST CASES
Two test systems are taken into consideration to demonstrate
procedure and performance of the proposed technique.

A. TEST CASE 1
Consider a single-input-single-output (SISO) third-order
interval system given by equation (39)

G3(s) =
[2, 3]s2 + [17.5, 18.5]s+ [15, 16]

[2, 3]s3 + [17, 18]s2 + [35, 36]s+ [20.5, 21.5]
(39)

The desired first-order and second-order interval models
of (39) are given by equations (40) and (41)

G1(s) =
p1(s)
q1(s)

=
u0

v1s+ v0
(40)

and

G2(s) =
p2(s)
q2(s)

=
u1s+ u0

v2s2 + v1s+ v0
(41)

1) CALCULATION OF DENOMINATOR POLYNOMIAL
The coefficients of denominator polynomial are calculated as
follows
Step 1: Utilizing (28), the high-order interval system (39)

modifies to equation (42)

G(s) =
15+ 18.5s+ 3s2

21.5+ 35s+ 17s2 + 3s3
(42)

Step 2: The Routh table for (42) is provided in Table 3.
Step 3: The denominator of the first-order interval model,

(40), obtained using (29), is given by equation (43)

q1(s) = 31.2s+ 21.5 (43)

The denominator of the second-order interval model, (41),
calculated using (30), is written as equation (44)

q2(s) = 17s2 + 31.2s+ 21.5 (44)
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TABLE 3. Routh table.

2) CALCULATION OF NUMERATOR POLYNOMIAL
The initial TMs and MPs of the HOCIS, (39), calculated
from (21) and (22), are given by equations (45-47)

α0 = [0.714, 0.762] (45)

α1 = [−0.455,−0.326] (46)

β1 = [0.8, 1.2] (47)

The numerator polynomial of first-order model, (40), can be
obtained by equating first TM of HOCIS and ROCIM by
equation (48)

∧
α0= α0 (48)

Using (23) and (45), the numerator polynomial obtained is
given by equation (49)

[u−0 , u
+

0 ] = [14.99, 16.002] (49)

Therefore, the desired first-order interval model, G1(s),
obtained using (43) and (49), becomes equation (50)

G1(s) =
[14.99, 16.002]
31.2s+ 21.5

(50)

Similarly, the numerator polynomial of desired second-order
model, (41), can be calculated by matching initial TMs and

MPs, such that
∧
α0= α0 and

∧

β1= β1. Using (23), (45), (24)
and (47), the numerator coefficients of (41) turn out to be
given by equation (51-52)

[u−0 , u
+

0 ] = [14.99, 16.002] (51)

[u−1 , u
+

1 ] = [13.6, 20.4] (52)

Therefore, the desired second-order interval model, G2(s),
obtained using (51), (52) and (44) takes the form given by
equation (53)

G2(s) =
[12.5, 16.8]s+ [15.35, 16.38]

17s2 + 31.2s+ 21.5
(53)

To prove the efficacy of proposed technique, the obtained
proposed model of (39) is compared with the other approx-
imants obtained using existing methods. The second-order
approximants of (39) obtained using methods from Kumar
et al. [25], Hote et al. [27], Singh et al. [28], Bandyopadhyay
et al. [29], Sastry et al. [30], and Kumar et al. [31] are given
in equations (54)-(59), respectively.

GMK (s)=
[1.172, 1.36]s+[1.0269, 1.11]

[1, 1]s2+[2.35, 2.62]s+[1.41, 1.52]
(54)

GH (s)=
15

17s2+31.2s+21.5
(55)

GSD(s)=
[8.27, 24.05]s+[14.35, 16.77]

[17, 18]s2+[29.47, 35.7]s+[20.5, 21.5]
(56)

TABLE 4. Time moments and Markov parameter of system and models.

GB(s)=
[1.01, 1.26]s+[0.841, 1.12]

[1.0, 1.0]s2+[2.02, 2.45]s+[1.15, 1.51]
(57)

GSa(s)=
[0.94, 1.35]s+[0.891, 1.167]

[1, 1]s2+[2.02, 2.45]s+[1.15, 1.51]
(58)

GK (s)=
[11.12, 20.38]s+[14.17, 16.94]

[17.01,18.04]s2+[31.38,33.61]s+[20.31, 21.71]
(59)

Therefore, the initial TMs and MPs for system, pro-
posed model, and models obtained due to various exist-
ing techniques are calculated and provided in Table 4.
From the data tabulated in Table 4, the TMs of sys-
tem are [0.714,0.762], and [−0.455,−0.326], whereas
those of the proposed model are [0.714,0.762] and
[−0.525,−0.255]. Therefore, it is clear that TMs of system
and proposed model are matching very closely. However,
the TMs of models obtained using other existing methods
Kumar et al. [25], Hote et al. [27], Singh et al. [28], Bandy-
opadhyay et al. [29], Sastry et al. [30], and Kumar et al. [31]
are, respectively, ([0.703,0.761], [−0.491,−0.259]), (0.697,
−1.012), ([0.683,0.799], [−0.851,0.085]), ([0.635,0.843],
[−0.658,−0.121]), ([0.672,0.881], [−0.774,−0.113]), and
([0.675,0.807], [−0.715,−0.074]). From these values, it is
evident that TMs due to the techniques proposed by
Kumar et al. [25], Hote et al. [27], Singh et al. [28], Bandy-
opadhyay et al. [29], Sastry et al. [30], and Kumar et al. [31]
are having larger deviation from those of the system. Also,
it can be noted here that the TMs of the model proposed by
Hote et al. [27] is having non-interval values. Therefore, from
this analysis, it is clearly proven that the proposed method is
able to produce interval TMs, which are closer to those of
the system when compared to the TMs obtained for other
techniques.

The Markov parameter of HOCIS and ROCIMs obtained
by different techniques from literature are provided
in Table 4. It is clearly observed that Markov parameter of
proposedmodel is [0.74,1.001], which is closer to theMarkov
parameter of system, i.e., [0.8,1.2]. However, the Markov
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FIGURE 1. Step responses of models and original system.

FIGURE 2. Impulse responses of models and original system.

parameter of models due to the techniques proposed by
Kumar et al. [25], Hote et al. [27], Singh et al. [28],
Bandyopadhyay et al. [29], Sastry et al. [30], and
Kumar et al. [31] are, respectively, given as [1.172,1.368],
[0.8823], [0.473,1.374], [1.009,1.255], [0.941,1.349], and
[0.639,1.169]. This data clearly shows that the MP of other
techniques due to Kumar et al. [25], Hote et al. [27],
Singh et al. [28], Bandyopadhyay et al. [29], Sastry et al. [30],
and Kumar et al. [31] are having more deviation. More-
over, in case of model proposed by Hote et al. [27], it is
clear that it is producing non-interval MP. Hence, it is
clearly seen that the proposed method is generating interval
MP, which are closer to that of the system as compared
to other techniques considered. Figure 1 shows the step
responses of system (39), model (53) obtained by proposed
method, and models (54)-(59) derived by methods existing
in literature due to Kumar et al. [25], Hote et al. [27],

FIGURE 3. Bode responses of models and original system.

Singh et al. [28], Bandyopadhyay et al. [29], Sastry et al. [30]
and Kumar et al. [31]. From Figure 1, it is clearly observable
that the step response of proposed model (53) is matching
closely to that of the original system (39) than step responses
of the other models (54)-(59). The same holds true for both
impulse and frequency responses as given in Figures 2 and 3.
From the above discussion, it can be concluded that the
proposed approximant is more efficient in performance than
the other approximants in terms of transient and steady state
response matching.

B. TEST SYSTEM 2
A second-order interval system is given by equation (60)

G(s) =
[2.0, 3.0] s+ [15.0, 16.0]

[2.0, 3.0] s2 + [12.0, 13.0] s+ [10.0, 11.0]
(60)
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FIGURE 4. Step responses of models and original system.

FIGURE 5. Impulse responses of models and original system.

and its desired first-order transfer function be of the form
according to equation (61)

G1(s) =
u0

v1s+ v0
(61)

The first-order interval model for (60) using (37) and (38)
turns out to be given equation (62)

G1(s) =
[13.64, 16]
12s+ 10

(62)

While the first-order models obtained due to the techniques
proposed by Hote et al. [27], Sastry et al. [30], Bandyopad-
hyay et al. [14] and Singh and Chandra [32] are given by

FIGURE 6. Bode responses of models and original system.

TABLE 5. Time moments of system and models.

equation (63-66)

G1(s) =
15

12s+ 11
(63)

GSa(s) =
[1.05, 1.467]

[1, 1] s+ [0.77, 0.917]
(64)

GB(s) =
[12.58, 19.072]

[12, 13] s+ [9.23, 11.92]
(65)

GSC (s) =
[12.58, 19.072]

[12, 13] s+ [9.23, 11.92]
(66)

The first TM of system (60) and models (62)-(66) are
calculated and tabulated in Table 5. Table 5 shows that the
first TM of the original system (60) and model (62) obtained
by the proposed method are exactly the same. However,
the first TM of other models (63)-(66) obtained using existing
methods are deviating from the TM of original system (60).

Figures 4-6 represent comparison of the step, impulse and
frequency responses of the original system (60) with the
proposed model (62) and other models (63)-(66). It is clear
that response of proposed model (62) is very close to original
system (60) than other models (63)-(66). The steady-state
response of proposed model is same as of original system.
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This shows that proposed method is efficient in producing
better approximant for interval systems.

VI. CONCLUSION
This research work shows a computationally efficient and
simpler algorithm for reducing high-order interval systems.
In addition to proposing the new efficient algorithm for
reducing continuous interval systems, simpler generalized
expressions for calculating MPs and TMs are also proposed
in such a manner so that there is no requirement of inversion
of transfer function. Also, a solution of a set of interval
equations can successfully be evaded while obtaining these
parameters. The denominator of proposed model is derived
using Anderson corollary and Routh approximation while
numerator is obtained by equating initial TMs and MPs
of system and model. The steady-state and transient-state
responses of proposed model match closely to those of sys-
tem. Two SISO test systems are considered to demonstrate
the proposed technique. The simulation results prove that the
proposed technique offers an excellent alternative approach
for reducing the order of continuous interval systems. The
future research directions of this technique lies in design of
control using reduced order modeling.

APPENDIX A
Rewriting ROCIM (10) as equation (67)

Gk (s) =
pk (s)
qk (s)

=

[u−0 , u
+

0 ]+ [u−1 , u
+

1 ]s+ [u−2 , u
+

2 ]s
2

+ · · · + [u−k−1, u
+

k−1]s
k−1

v0 + v1s+ v2s2 + · · · + vksk
(67)

The power series expansions of (67) about s = 0 is given by
equation (68)

Gk (s) =
∧
α0 +

[u−1 , u
+

1 ]−
∧
α0 v1

v0
s

+
[u−2 , u

+

2 ]−
∧
α0 v2−

∧
α1 v1

v0
s2 + · · · (68)

By matching (68) and (13), the TMs of interval model (10)
can be written by equation (69)

∧
αm=

um −
m−1∑
i=0

∧
αi vm−i

v0
, m = 1, 2, 3, . . . (69)

The same procedure is used to obtain MPs of interval model
by expanding (10) around s = ∞ and comparing it with (14).
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