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ABSTRACT In navigation, deep learning for inertial odometry (IO) has recently been investigated using
data from a low-cost IMU only. The measurement of noise, bias, and some errors from which IO suffers is
estimated with a deep neural network (DNN) to achieve more accurate pose estimation. While numerous
studies on the subject highlighted the performances of their approach, the behavior of data-driven IO with
DNN has not been clarified. Therefore, this paper presents a quantitative analysis of kinematics-mimicking
DNN-based IO from various aspects. First, the new network architecture is designed to mimic the kinematics
and ensure comprehensive analyses. Next, the hyper-parameters of neural networks that are highly correlated
to IO are identified. Besides, their role in the performances is investigated. In the evaluation, the analyses
were conducted with publicly-available IO datasets for vehicles and drones. The results are introduced to
highlight the remaining problems in IO and are considered a guideline to promote further research.

INDEX TERMS Inertial odometry, dead reckoning, deep neural network, kinematics, navigation, IMU.

I. INTRODUCTION
Odometry, which is the process to compute positional dis-
placements between two sequential moments, is a fundamen-
tal functionality for any applications associated with motion.
For instance, an autonomous robot needs to be localized in a
target environment to achieve a specific task while avoiding
obstacles [1]. Also, consumer locations in a shoppingmall are
tracked for location-aware services and analysis of consumer
behaviors [2]. For those applications, an odometry technique
is utilized to estimate the position by accumulating relative
movements continuously. In navigation, odometry is referred
to as dead reckoning (DR) [3]. Especially, pedestrian dead
reckoning (PDR) is the technique specialized for tracking
pedestrians by using the walking specificities [4], [5]. For a
robot and a vehicle, the amount of wheel rotations coming
from sensor reading is accumulated with a known radius
to compute the movement [1]. As a generalized approach
for any movable target in three-dimensional (3D) space, the
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odometry can be computed by only using cameras attached to
the target, as referred to as visual odometry (VO) [6]. Since
the localization based on an odometry technique suffers from
errors accumulation, another supplemental equipment such as
GNSS, Wi-Fi, and landmarks providing global locations are
used to suppress the error [7]–[9].

An inertial measurement unit (IMU), which measures
acceleration and angular velocity at high rates, is the device
utilized for odometry techniques, as referred to as inertial
odometry (IO) [10]. IMU-based micro electro mechanical
systems (MEMS) is cheap and is installed on various devices
such as a smartphone [11]. Compared with other devices,
external equipment such as a GNSS satellite and a Wi-Fi
base station are not required. In other words, IMU is useful
for a stand-alone odometry system without any preparation.
Besides, sensor reading and its processing are not affected
by its surrounding conditions, such as lighting changes and
dynamic environments, which generally degrade the stabil-
ity of VO. Traditionally, IO has been referred to as inertial
navigation system (INS) [12]. The theory is based on kine-
matics. Acceleration is integrated to compute velocity, and
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then the velocity is integrated to compute distance. Since this
odometry technique is sensitive to sensor noise and bias in
practice, one of the research issues has been error suppression
by designing reasonable constraints [13]. For instance, foot-
mounted IMU-based PDR typically uses the velocity con-
straint of walking because the speed of a foot becomes zero
when touching the ground [14]. This constraint is specifically
referred to as zero velocity update (ZUPT) [15]. For a vehicle,
the constraint is designed such that the vehicle does not
jump [16].

In computer vision and natural language processing,
data-driven machine learning techniques with neural net-
work (NN) have shown superior performances for many
tasks, compared with classical techniques such as support
vector machine (SVM) [17]. The performances are achieved
using the functions representing highly-nonlinear phenomena
with numerous parameters, which are optimizedwithmassive
training data, namely deep NN (DNN). Since it is not easy
to model such phenomena heuristically, the model is gen-
erated from the data with some optimization techniques in
DNN. In navigation, DNN-based IO has recently been inves-
tigated. For instance, step detection, step length estimation
and heading estimation are performed by using long short-
term memory (LSTM) and its variants in PDR [18]–[23].
For vehicle odometry, velocity and heading are estimated
with DNN [24], [25]. Generally, the primary purpose of
those papers was to outperform other classical methods in
terms of accuracy with some specific datasets. However, the
reported results in those papers generally show only some
aspects of DNN-based approaches. As discussed in other
tasks [26]–[29], it is essential to investigate the behaviors of
DNN-based IO in terms of both research issues and network
architectures.

This paper presents a quantitative analysis to clarify the
behavior of DNN-based IO. Contrary to other works, the
purpose of this paper is to investigate in detail the cor-
relation between DNN hyper-parameters and their role in
the performances rather than outperforming existing litera-
ture. To the extent of our knowledge, such investigation is
the first one in the literature of DNN-based IO. In order
to do that, we propose an end-to-end network architecture
that follows basic kinematic models. The network is spe-
cially designed with LSTM layers to estimate the orienta-
tion and velocity from sequential inputs of acceleration and
angular velocity. As a preliminary evaluation, we investi-
gate the impact of data distribution and several kinematic
approaches to determine the baseline network to be inves-
tigated. Next, a list of hyper-parameters to be considered
when designing DNN-based IO is proposed. A unique quali-
tative and quantitative evaluation is performed for each hyper-
parameter that is highly correlated to IO problems. The
performances were mainly evaluated with KITTI dataset as
vehicle odometry. Finally, new perspectives for the future are
opened.

In summary, our contributions are described as follows.

• A new DNN architecture that mimics the kinematics is
introduced (Section III);

• Preliminary and comprehensive analyses of the data
distribution and the variants of our kinematic approach
are proposed (Section IV, V);

• A list of DNN hyper-parameters to be investi-
gated is established (Section VI). Their influence
on the performances is investigated and discussed
(Section VII, VIII).

The results of our analyses were informative to clarify the
remaining problems to be solved in DNN-based IO approach.
Besides, they will support the design and the evaluation of
future architecture as a guideline.

II. RELATED WORK
The mechanical frameworks of IMU are divided into a stable
platform and a strap-down one [30]. The stable platform
was first developed based on gimbals. The motion of the
platform is determined by computing the difference between
the inner gimbal and the outer one. The strap-down platform,
which uses Sagnac effect or Coriolis force to compute angular
velocity, was then developed because its equipment config-
uration can be smaller than the stable platform one. Several
architectures of the strap-down platform have been proposed,
such as ring laser gyro (RLG), fiber optic gyro (FOG), and
MEMS [31], [32]. Since MEMS is the most compact and
cheapest of all, it has been installed on various devices, such
as smartphones, cameras, and vehicles, to compute device ori-
entation. However, the sensor signal from MEMS generally
contains noise and bias caused by many factors such as small
vibrations and temperatures. Therefore, it is required to inves-
tigate the processing techniques to suppress such undesirable
components [33]. Recently, additional researches on fluid-
based inertial sensors andHemispherical resonator gyroscope
achieved a minor bias instability and low-cost manufacturing,
respectively [34], [35].

The approach based on double-integrating linear acceler-
ation is the most straightforward to achieve IO [33], [36].
However, the most common and inexpensive MEMS suffers
from sensor noise and biases in sensor reading,making odom-
etry estimation drifts over time. The statistical formulation
of the error phenomenon had been investigated to solve this
issue [37]. Also, other sensors such as Magnetometer and
GPS are fused with extended Kalman filtering (EKF) as
observation or measurement [38]–[40]. In recent years, meth-
ods relying on cameras [41]–[43] show accurate tracking in
highly-textured environments owing to the detection stability
of visual features, as referred to as visual-inertial odometry.
However, camera-based approaches generally face energy-
consuming and processing-demanding problems. Also, they
cannot be utilized in a dark environment because nothing can
be observed. When IMU is the only sensor in the odometry
computation, some motion and trajectory constraints, such
as ZUPT, stationary state, and loop closure, are used in the
filtering based approaches [44]–[46].
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Classically, machine learning techniques were used for
IO and PDR. For instance, phone velocity attached to a
pedestrian was estimated using a support vector regression
after classifying the location of the phone attachment with
SVM [47]. With advances in theories and computational
resources, DNN-based methods have recently renewed IO.
Overall, they are classified into two approaches. The first
approach relies on existing filtering-based approaches where
a DNN is used to compute pseudo-measurements or motion
constraints. For instance, recurrent NN (RNN) was lever-
aged to classify the motion profile of wheeled robots [48],
[49]. It was later extended to dynamically estimate the
covariance of pseudo-measurement by using convolutional
NN (CNN) [16]. In another work, CNNwas used to constrain
the velocity in the Kalman filtering for PDR [50]. TLIO
used residual network (ResNet) to compute displacements
and their uncertainty and then integrated them into EKF [51].
The second approach relies onDNN to compute the odometry
in an end-to-end manner without filtering-based approaches.
IONet used RNN to predict the movements from sequen-
tial IMU data [52], [53]. The Degree of Freedom (DoF)
of motion was restricted to 2D because it focused only on
2D planar trajectories. Similarly, several DNN architectures
were investigated to predict the velocity and orientation of
a pedestrian, such as 1D ResNet [54], LSTM, and temporal
convolutional network (TCN) in [55]. The magnitude of rel-
ative translation and rotation in the 3D space was computed
in AbolDeepIO [25] where orientation prediction was later
extended with OriNet [56]. Six-DoF odometry was achieved
by using the combination of convolution and LSTM with
a weighting scheme to ensure the balance of multiple met-
rics [57]. Nevertheless, these approaches were not designed
from the existing knowledge of inertial navigation that is
introduced by kinematics. To the best of our knowledge, there
is no kinematic approach of DNN-based IO. This proposed
approach is used as a support to provide comprehensive anal-
yses of the data-driven DNN-based IO rather than demon-
strating performances, conversely to other works.

III. PRELIMINARY
A. KINEMATIC MODEL
To explain the issues to be tackled in this paper, the kinematic
model used in IO is first reviewed [33]. This subsection is
the introduction to understand the relationship between the
standard kinematic model and our DNN architecture.

The angular velocity and acceleration provided by IMU are
subjected to bias and noise based on some sensor properties.
Assuming that Coriolis acceleration and earth rotation effect
are negligible, the model of IMUmeasurement can be written
as follows: {

wIMU
t = wt + δ

w
t + nwt

aIMUt = at + δat + nat
(1)

where δwt , δ
a
t are time-varying bias, and nwt , n

a
t are noises for

the angular velocity wt and the acceleration at , assuming that

they follow a zero-mean Gaussian distribution. The biases are
then modeled as a random walk given by{

δwt = δ
w
t−1 + nδwt−1

δat = δ
a
t−1 + nδat−1

(2)

where nδwt , n
δa
t are zero-mean Gaussian noises.

Finally, the following kinematic model is adopted to com-
pute the odometry by using relative orientation 1qt and
relative velocity 1vt between two discrete instants dt:

1qt = exp(
dt
2
wt−1) (3a)

1vt = (R(qIMUt−1 )at−1 + g)dt (3b)

qIMUt = qIMUt−1 ⊗1qt (3c)

vIMUt = vIMUt−1 +1vt (3d)

pIMUt = pIMUt−1 + vIMUt−1 dt (3e)

where qIMUt is the quaternion representing the orientation
in the world frame. The world frame is generally defined
such that one axis is parallel to the gravity g and two other
axes are determined according to the initial orientation of the
IMU frame. vIMUt is the velocity, and pIMUt is the position at
time t in the world frame, respectively. ⊗ characterizes the
Hamilton product between two quaternions. R is the rotation
matrix computed from q. exp refers to the approximation
expressed below:

exp(η) =
(
1
η

)
(4)

with η ∈ R3 under the assumption that η is small.
In IO, the bias and noise represented in (1) and (2) are

harmful in the double integration process (3), leading to
the accumulative drift of the error over time [58]. For the
solutions, some DNN-based approaches have been proposed
to simultaneously estimate these factors and eliminate their
impacts.

B. ARCHITECTURE OF OUR BASELINE NETWORK
The purpose of this paper is to understand the behavior of
data-driven DNN-based IO. Especially, our end-to-end DNN
architecture is newly designed to mimic standard IO repre-
sented in (3) in terms of the data flow and the modules in the
architecture. This architecture is the closest to the kinematic
definition. Therefore, it should offer a better comprehension
of the IO problem.

Fig. 1 illustrates the architecture of our baseline network
for absolute kinematic regression. Our network is based on
RNN that is suitable for modeling the temporal and dynamic
behavior of IO sequences, as introduced in [55]. The inputs
of our network are N sequential past accelerations, angu-
lar velocities, previous velocities, previous orientations, and
timestamp intervals between sampled data. Instead of using
the previous data at a specific moment, we use N sequential
past data because they can help to improve the performances
of DNN. This part is slightly different from the mathematical
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FIGURE 1. Network architecture for absolute kinematic regression. This architecture outputs three-axis velocity v and unit
quaternion q at time t . From each input, the feature is separately extracted in the feature extraction block. Then, each
feature is concatenated and fed into two parallel networks respecting the kinematic model: the orientation branch and the
velocity branch. Features used for velocity regression are connected with a red arrow, whereas features used for
orientation regression are connected with black arrows. When the features are used for both regression problems, a
dark-red and dotted arrow is used. The number of units and dropout rate are shown below each layer.

kinematic model in (3). Then, the network architecture is
divided into two main blocks. One is referred to as the feature
extraction block that extracts some latent features from each
input data, individually. In this block, it is expected that
noise and bias represented in (1) are implicitly modeled, or
the impact of other undesirable phenomena is suppressed.
The features are further fed into the second block, defined
as the kinematic block. This block comprises two parallel
networks: the orientation branch and the velocity branch, that
compute absolute quaternion and velocity, respectively. Com-
paredwith other DNN architectures [55]–[57], ourmotivation
is to compute the odometry from IMU data sequence in a
similar approach with a kinematic model presented in (3),
where orientation and velocity are related to each other but
are computed separately. Since the data flow in the network
is designed according to the kinematic model, this can be
considered as a baseline network that mimics the absolute
kinematic model.

The details of the architecture are designed as follows.
In the feature extraction block, each input is separately
processed in a bidirectional LSTM layer with dropout to
extract the feature specific to each input data. Then, the
features are concatenated into two unique vectors that are
fed into the orientation and velocity branches in the kine-
matic block, respectively. This block follows the kinematic
model defined in (3) to compute the orientation and velocity
individually. In the orientation branch, the features coming
from three-axis angular velocity w = (wx ,wy,wz), times-
tamp interval dt , and previous four-dimensional quaternion
q = (qw, qx , qy, qz) are considered. In the velocity branch,
the features coming from dt and q are concatenated with
those of acceleration a = (ax , ay, az) and previous three-axis
velocity v = (vx , vy, vz). Each branch is made of two-stacked

bidirectional LSTM layers with dropout. The last LSTM of
each branch is designed in a many-to-one manner. Thus, the
feature vector from the last cell state is extracted and fed into
two fully connected layers in charge of regressing the output
at time t .
Since our architecture is motivated by [56], we mainly

follow the parameters of their architecture as follows. Each
dropout rate is set as 15 percent. In the feature extraction
block, the LSTM layer is made of 100 units. The two LSTM
layers from the orientation and velocity branches are made
of 250 and 100 units, respectively, whereas the first linear
layer contains 20 neurons and the second one contains four
or three neurons according to the regression problem. After
experimenting, this configuration provided satisfying results
for the purpose of this paper. Nonetheless, the proximity with
parameters introduced in [56] aims to have a comparative
architecture. From an optimization point of view, additional
works are required according to the data used, the training
process adopted and other elements.

C. MOTIVATION OF THE ARCHITECTURE
Next, the motivation of the architecture in Fig. 1 is explained.
In Karpathy’s work [59], three different connectivity patterns
in the network architecture have been introduced: early, late
and slow fusion. Translated to the regression problem for IO,
these definitions slightly differ.

In the early fusion stage, the input features are extracted
from a common layer. For 1D convolution and LSTM, fea-
tures are extracted from the inputs and are then summed up
into a single and unique vector. Therefore, the features com-
ing from IMU, quaternion, timestamp interval, and velocity
are merged into the same and unique value for the regres-
sion. This approach was adopted by [16], [50], [52], [55]
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where IMU data is simultaneously fed into a single and same
layer.

In the late fusion stage, each input is first separated into
parallel layers. Then, every feature is concatenated into a
common vector before getting through other layers. The
same approach was adopted in [56], [57] where inputs were
separated into LSTM and CNN layers, respectively, before
merging the features into one vector and fed into LSTM
layers.

The slow fusion uses a more comprehensive combination
of inputs by gradually fusing extracted features to learn
higher-level ones. Although better performances have been
obtained with this pattern in the micro-expression recognition
field, this process remains slow and memory-consuming.

The early, late, and slow fusions are the three main con-
ventions for features fusion when dealing with the structure
of DNN. From these definitions and our understanding of
kinematics in (3), our new architecture is proposed for IO.
The kinematics is considered during the process of features
fusion, as illustrated in Fig. 1. Similarly to the late fusion,
each input data is first processed into a singular LSTM to
extract low-level features. Then, each feature is concatenated
according to the comprehension of the kinematic model and
fed into their respective branch to output either orientation
or velocity. In other words, the fusion process of orientation
and velocity branches is differently designed according to
the kinematic model. Our new design for DNN-based IO
can offer new possibilities for future perspectives where each
parallel network can be replaced with a fine-tuned model that
has been pre-trained for a single output of relative kinematics.

D. DATASET
The experiments in this paper were performed by using
two public datasets: KITTI dataset [60] for vehicle odom-
etry and EuRoC [61] for drone odometry. The main dif-
ference between these datasets is the DoF of the motion.
Since a vehicle runs on the ground, overall motions can
be represented with three-DoF containing 2D displacement
and 1D orientation. The motion of a drone moving arbitrar-
ily in 3D space is represented with six-DoF. To start the
analysis with a simpler motion, we mainly used the KITTI
dataset.

The details of the sequences used in our analysis are as
follows. Similarly to [16], 38 sequences at 100Hz frequencies
in the KITTI dataset were selected as described in Table. 1.
The recording duration of each sequence varies from 27
seconds to 8.4 minutes. In total, the duration time of the
dataset is close to one hour. One important processing for
the dataset is as follows. In the dataset, it was observed
that some values were duplicated with the same timestamp,
causing a time jump in the sequence for a short amount of
time such as drive 36 in Table. 1. This kind of error in the
dataset is harmful to data-driven approaches because they
should not be used as ground truth. To solve this issue, dupli-
cated values were simply deleted and replaced by a linear
approximation for acceleration, angular velocity, velocity,

TABLE 1. Training and validation split for KITTI dataset. Due to the
timestamp issue, some sequences have been cut into several parts. The
bold numbers refer to the number of splits the sequence had. Each part
was either used for training or validation dataset. For example,
drive 27 (03/10) was separated into seven parts. Five of them were used
for training and the remaining ones for validation.

position, and Euler angles. Nevertheless, the sequence was
cut in half, and the erroneous data part was not chosen for
the training and validation process when the time jump was
more than 100 milliseconds. Sometimes, such error occurred
several times along a single and same track, leading to a
detachment in several distinct parts. Therefore, 72 sequences
were generated from the 38 original ones. Then, 46 ones were
used for the training process whereas the 26 remaining ones
were used for the validation process, as described in Table. 1.
This split was designed according to the data distribution
through a preliminary evaluation, as explained in Section IV.

To extend our first analysis, we also used the EuRoC
dataset. The dataset is made of 11 sequences at 200 Hz for a
total recording time of approximately 23 minutes. Similarly
to [56], [57], the dataset was split into training and validation
datasets. The training dataset was made of six sequences,
and the validation one contained five sequences, as described
in Table. 2. We followed the split way used in [56], [57].
As aforementioned, our analysis was mainly performed with
the KITTI dataset due to its simpler motion. Therefore, the
analysis with the EuRoC dataset was performed only for some
sections in this paper to provide some perspectives for six-
DoF DNN-based IO.

Through the analysis in this paper, we use the terminology
of a learning process to train and validate a DNN model.
In the learning process, we use the training dataset, whereas
the validation dataset is used to regulate the training process
to avoid overfitting. Generally, the test dataset is used to
compare the performances of a new DNN with others as a
third independent dataset. Since the purpose of our paper is
to analyze the potential use of a DNN-based approach itself
for the IO problems, the analysis was performed by using
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TABLE 2. Training and validation splits for EuRoC dataset. We followed
the split way in [56], [57].

both training and validation datasets after a DNN model was
trained. We refer to this as the testing process. The analysis
with the validation dataset is equivalent to the one with the
test dataset in general.

IV. PRELIMINARY EVALUATION ON IMPACT OF DATA
DISTRIBUTION
First, the impact of data distribution is investigated. Since it
affects all of the other experiments, this was independently
performed as a preliminary evaluation.

This evaluation was designed due to the hypothesis that a
velocity range cannot be predicted if the data in such range
was not presented in the learning process. The performances
of our network were analyzed to confirm the hypothesis
through two different learning approaches, detailed as fol-
lows. In the first approach, we trained and validated the
network in Fig. 1 by using all the data as referred in Table. 1.
We refer to this approach as normal learning. In the second
approach, the same network architecture was trained and
validated without using samples with the norm of a ground
truth velocity within the range of [4, 7[ in both training and
validation datasets. Thus, only samples with a velocity norm
within the range of [0, 4[∪[7,∞[ were selected for the second
approach. We refer to this approach as missing-range learn-
ing. In this evaluation, the behavior of our network for the IO
problem was investigated when an output range of values is
missing.

For the two approaches, the testing process with the all-
range data was performed to investigate the performances of
missing-range learning. In particular, two sequences from the
validation dataset such as Track 1 and Track 2 were used
to analyze the performances of each learning approach, as
illustrated in Fig. 2. In both approaches, the prediction was
globally similar to the ground truth within the range of [4, 7]
even though one of them did not use this specific range of
values in the learning process. However, the result of the
missing-range learning was sometimes low, as illustrated in
Fig. 2b.

To compare the overall performances between the
two approaches, we computed the Root Mean Square
Error (RMSE) between velocity norm and its ground truth,
for both ranges. The results of four different tracks are
referred in Table. 3. Along this paper, we will refer to
testing tracks as introduced in Table. 4. For Track 1,

TABLE 3. Comparison between normal and missing-range learning. The
RMSE between the velocity norm and its ground truth was computed for
two different learning approaches: normal learning and missing-range
one. In both approaches, the dataset was split as described in Table. 1.
The best results are indicated with bold type in green cells. Note that
Track 3 did not have a velocity norm within the missing-range.

TABLE 4. Testing tracks of the Kitti Dataset.

Track 2 and Track 4, the best accuracy was obtained with
the normal learning approach. Especially, the difference
in accuracy within the missing-range was higher, proving
the importance of data distribution in the learning process.
On the other hand, the observation differs for Track 3
where the error for the missing-range learning is lower than
the error for the normal one. Since Track 3 is included
in the training dataset, this phenomenon can be consid-
ered as overfitting for the non-missing range where the
network learned a model according to the distribution of
learning data, leading to the deterioration of generalization
capability.

Through this analysis, the importance of the data distri-
bution in the training and validation datasets was clarified.
The conclusion is reasonable but straightforward such that
the accuracy is deteriorating if a range of values is missing in
the distribution. However, this was not discussed in existing
DNN-based IO [16], [55]–[57] even though this affected the
performances. Therefore, the data distribution is considered
to eliminate the impact when splitting the data into training
and validation ones in the future experiments. In this paper,
the separation was performed according to the velocity norm,
while orientation distribution was ignored. Other separation
ways for six-DoF data would be investigated in future work.
We empirically divided the KITTI dataset into training and
validation datasets, respecting three principles: a similar dis-
tribution, a wide velocity norm representation in the training
dataset and an approximate ratio of 70/30 percent, as illus-
trated in Fig. 3.

For the EuRoC dataset, the distribution of the velocity
norm for training and validation is illustrated in Fig. 4. In this
case, the data split for training and validation datasets follows
other papers [56], [57].
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FIGURE 2. Comparison between normal and missing-range learning with
Track 1 and Track 2. Two approaches for the learning process were
performed: normal learning and missing-range one. In both approaches,
the training data were selected, as described in Table. 1.

V. PRELIMINARY EVALUATION ON FOUR KINEMATIC
APPROACHES
A. CLASSIFICATION OF APPROACHES
As a second preliminary evaluation, the problem settings
on the kinematic regression are discussed. Respecting the
kinematic model in (3), orientation and velocity regression
approaches can be classified into two categories. One is the
relative kinematics represented by (3a) and (3b), and the other

FIGURE 3. The distribution of the velocity norm in KITTI dataset. The
histograms of the velocity norm in the training and validation dataset are
illustrated in blue and orange, respectively.

FIGURE 4. The distribution of the velocity norm in EuRoC dataset. The
histograms of the velocity norm in the training and validation dataset are
illustrated in blue and orange, respectively. The data split for training and
validation follows other papers [56], [57].

one is the absolute kinematics represented by (3c) and (3d).
Depending on the output, the inputs fed into our neural
network can be selected, as illustrated in Fig. 1 and Fig. 5.
Conversely to absolute kinematics, the network for relative
kinematics relies only on timestamp interval and angular
velocity to predict orientation. The velocity branch of the
relative kinematics uses the features of acceleration, previous
quaternion, and timestamp interval, whereas the absolute one
also required previous velocity and quaternion.
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FIGURE 5. Network architecture for relative kinematic regression. This architecture outputs three-axis relative velocity 1v
and four-dimensional quaternion 1q at time t . Each feature is separately extracted for each input in the Feature Extraction
Block. Respecting the kinematic model in (3), features are concatenated and fed into two parallel networks: the
orientation branch and the velocity branch. Features used for velocity regression are connected with red arrows, whereas
features used for orientation regression are connected with black arrows. When the features are used for both regression
problems, dark-red and dotted arrows are used. The number of units and dropout rate are shown below each layer.

TABLE 5. Classification of approaches on kinematic regressions. This table shows the different inputs fed into orientation and velocity branches of our
neural network architecture according to the kinematic approaches: normal and constrained relative kinematics, and normal and over absolute
kinematics.

Furthermore, the network can be designed in both well-
conditioned and ill-conditioned manners. For instance, posi-
tional displacement is estimated from angular velocity and
acceleration only whereas the previous velocity and orienta-
tion are not considered in [57]. This ill-conditioned case is
referred to as over kinematics in this paper. On the other hand,
additional data, which is not necessary for the mathematical
kinematic model, can be used as constraints. This condition
is referred to as constrained kinematics.

In the well-conditioned case, where the exact definition of
the kinematic is considered, the regression of the absolute and
relative kinematics are achieved as defined in Figs. 1, 5. We
refer to these models as normal absolute kinematics (NAK)
and normal relative kinematics (NRK).

In this paper, we define two other approaches: constrained
relative kinematics (CRK) and over absolute kinematics
(OAK). CRK predicts relative velocity and quaternion by
extracting additional features coming from previous velocity
and previous quaternion, respectively. Besides, OAK predicts
absolute kinematics without using the previous state. In CRK,
we investigate the influence of additional features over the
regression accuracy, whereas we investigate the feasibility
of the prediction where essential features are missing in
OAK.

A summary of the kinematic approaches and their associ-
ated inputs are described in Table. 5. As a second prelimi-
nary evaluation, we investigate the difficulty of training each

kinematic approach in this section. Generally, it is excepted
that the difficulty of training OAK is higher than others
because it is not theoretically feasible to predict absolute
kinematic without previous state information. On the other
hand, CRK should be the most accurate because additional
inputs can provide useful features for the regression if the
information is relevant. The purpose of this section is to
consolidate these hypotheses and determine one kinematic
approach for our future experiments.

B. ANALYSIS SETTINGS
The details of the architecture for this analysis are as follows.
The parameters in the architecture were similarly defined
for all of the approaches to make the analysis fair. The
LSTM weights were randomly initialized, respecting a nor-
mal distribution. A window size of N = 11 was fed
into the neural network after every input was normalized
between [0, 1] except timestamp interval. For the output,
only absolute velocity was normalized to ensure a balanced
weight update process. During the learning process, we set
the starting learning rate to 1e-3. Then, it was reduced by
a factor of 0.1 every time a stationary state was faced for
25 sequential epochs in a row. The stationary state refers to
the decline or the stagnation of the validation loss. After 35
epochs of the stationary state, the training was stopped. The
dataset used for training and validation was the same for each
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FIGURE 6. Comparison of four kinematic approaches. For both KITTI and EuRoC datasets, the losses for
training and validation are respectively illustrated with a full line and a dotted line. NRK and NAK are
represented in black whereas red curves are used for CRK and OAK.

approach, such that it was similarly shuffled into a batch size
of 256.

The loss function used for back-propagation was similar to
the one used in [57]. For the absolute and relative velocity and
quaternion, the loss is expressed as follows.

L1 = ‖v̂− v‖22 (5a)

L2 = 2 · ‖imag(q̂⊗ q∗)− log(‖q̂‖)‖1 (5b)

LFinal =
2∑
i=1

exp(− log(σ 2
i ))Li + log(σ 2

i ) (5c)

The loss function for velocity was defined in (5a) as the
square of the L2 norm between the ground truth v and the pre-
dicted value v̂. The orientation error metric in (5b) was based
on the Hamilton product between the predicted quaternion q̂
and the ground truth conjugate quaternion q∗. It is worth
noting that both quaternions were normalized. An additional
logarithm term was added to the orientation metric to prevent

the neural network from outputting zero values. Both loss
functions shared a different scale and different nature that
could harm the learning process. Therefore, a multi-loss layer
was defined to ensure a proper balance between orientation
and velocity metrics. For each metric, the multi-loss function
introduced a trainable parameter log(σ 2

i ), where σ
2
1 and σ 2

2
are the variance of the metric for velocity and orientation
regressions, respectively. Each parameter was initially set to
zero and then was automatically adjusted during the learning
process. The final loss was defined as (5c).

C. RESULT
For each kinematic approach, one example of the learning
curve for both training and validation was analyzed in Fig. 6.
The learning process was performed by using the data distri-
bution in Table. 1 and Table. 2.

In Fig. 6a and Fig. 6b, we compared NRK with CRK for
both KITTI and EuRoC datasets. In both cases, the neural
network learned a model to output relative orientation and
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FIGURE 7. The distribution of both orientation and velocity in the EuRoC dataset.

relative velocity. The training and validation loss converge
towards a similar accuracy for both kinematic approaches.
Contrary to our expectation, the use of additional features
did not clearly end up with greater performances. In this
evaluation, only one network architecture was analyzed even
though a multitude of CRK representations may exist. From
this assessment, further analysis of CRK was performed in
the future experiments.

In Fig. 6c and Fig. 6d, NAK was compared with OAK
for both KITTI and EuRoC datasets. As expected, the neural
network could not predict absolute orientation and absolute
velocity using OAK due to the lack of information. The losses
for the training and validation were higher than those of
NAK and converged only after a few epochs. Nevertheless,
the absolute kinematic was predictable when the definition
of the kinematic model was followed in the design of our
architecture.

D. DISCUSSION ON MOTION SPACE
The purpose of this analysis was to compare the perfor-
mances of each approach in Table. 5 and establish if our

kinematics-mimicking DNN was accurately trainable or not.
Both absolute and relative kinematics were predictable if
sufficient information was provided. In the future sections of
this paper, we will focus our experiments either on relative
or absolute kinematics to investigate one of them deeply. In
this subsection, the motion space of both representations was
analyzed to make our decision.

In Fig. 7, the velocity and orientation in the EuRoC dataset
are represented in 3D, whereas the motion space of the KITTI
dataset is analyzed from a 2D point of view in Fig. 8. In our
analysis, the z-axis velocity of a car is not considered due to
its constancy. Euler angles were preferred to quaternion due
to better visualization of the motion space. For both datasets,
the density of the relative velocity and the relative orientation
was higher than that of absolute ones.

When driving a car, users usually keep a constant speed and
hold a similar orientation in many situations. At some points,
the car accelerates or decelerates, turns left or right, making
themotion space bigger. Based on the absolute pose of the car,
each velocity and each orientation pose represent a specific
case for IO. Furthermore, a neural network may have more
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FIGURE 8. The distribution of both orientation and velocity in KITTI dataset.

difficulties to predict a specific velocity if the neural network
was not trained with the value beforehand, as proved in Fig. 2
and Table. 3. The same assessment can be made for the
relative kinematics. Nevertheless, the relative orientation and
the relative velocity are defined between two specific frames,
making the broad-spectrum easier to represent during data
acquisition. Thus, the motion space for relative kinematics
is denser than the absolute one and is more easily trainable
by DNN with the given datasets. From this observation, our
future experiments will focus on relative kinematic regression
such as NRK and CRK.

VI. DEEP ANALYSIS ON KINEMATICS-MIMICKING
DNN-BASED IO
In the previous sections, we investigated both the data distri-
bution for training and validation and four possible architec-
tures of kinematics as preliminary evaluations. These were
necessary to determine the choices to be investigated in the
analysis of DNN-based IO. From this section, we review
significant points associated with DNN we consider essential
when dealing with IO.

Hyper-parameters are considered matters to examine in
DNN. Deep learning is a wide area in which a great deal
of adjustments is needed to boost the prediction accuracy.

However, only a few of them are directly associated with IO.
Previous works on IO used DNN in many different ways, as
described in Table. 6. In those papers, some hyper-parameters
such as window size were established as the most optimal
one heuristically. Nonetheless, recent studies were capable of
achieving great performances with different criteria. In that
way, the purpose of this paper is to openly discuss which
hyper-parameters are widely correlated to the performances
and suggest trails to be considered when designing DNN.
Through our analysis, we deal with possible inputs related
to INS that characterize the performance. Next, we discuss
the window size of the input and its frequency representation.
Then, we appointed a section to discuss the loss function and
the output representation we used. Furthermore, we come up
to discuss the usage of future data and data pre-processing.
To the best of our knowledge, such an investigation was not
performed in the literature.

In the list below, we summarized hyper-parameters to be
investigated while designing DNN. The sections where they
are discussed in this paper are also described.

� Hyper-parameters related to IO

� Inputs for DNN-based IO (Section VII-A)
� Window size of input (Section VII-B)
� Data frequency (Section VII-C)
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� Loss function (Section VII-D)
� Relative quaternion representation (Section VII-E)
� Use of future data (Section VII-F)
� Data pre-processing

∗ Data normalization (Section VII-G)
∗ Data balance (Section VII-H)

� Hyper-parameters related to DNN (Section VIII-A)

� Learning rate
� Activation function
� Optimizer
� Adaptive learning rate
� Batch size
� Number of layers and their hidden units
� Weight initialization
� Regularization
� Batch normalization
� Early stopping
� Data filtering

The motivation of these selected hyper-parameters is
explained in each paragraph as follows.

First, the choice of inputs for DNN-based IO is discussed.
Based on the kinematic definition in (3), different variables
intervene in the double integration process, such as IMUmea-
surements, latest quaternion, previous velocity, and times-
tamp interval. However, most of the existing DNN-based IO
only used angular velocity and acceleration as input, what-
ever the desired output was, and also ignored the impact of
previous knowledge on the prediction, except for [56]. When
the absolute movement in the world frame is estimated, the
preceding state is a crucial source of information. In (3b),
previous quaternion is directly used to predict relative veloc-
ity. Besides, orientation may be a factor responsible for noise
in measurements, whereas the timestamp interval is a piece
of valuable information for IO. Since the latter has a critical
role in estimating sensor movements, a simple variation in
the sampling delay could be relevant for the noise analysis.
Hence, it is hardly imaginable to pass by such useful features,
merely using IMU data. Furthermore, CRK was defined in
Section V-A to outperformNRK using additional information
as input. Nevertheless, CRK achieved similar accuracy to
NRK. From this observation, we decided to design experi-
ments on additional inputs related to IO in Section VII-A.

Next, the window size of the input is approached as a
hyper-parameter to reaffirm whether this hyper-parameter
can be established heuristically from a work to another or
not. This is because the choice of window size is not well-
investigated. This discussion is handled in Section VII-B.

Then, the correlation between the frequency and the per-
formances of our neural networks is investigated. Typically,
we use the frequency of IMU data given in the dataset without
modifying it. However, it is not clear that the frequency is suf-
ficient or insufficient for modeling IO problems. The required
frequency may depend on the complexity of the motion.
If the data at low frequency provides enough accuracy, a

reduction of processing can be achieved. This is discussed
in Section VII-C.

In IO and more general problems in deep learning, the
most standard loss function is the Mean Square Error (MSE),
as shown in Table. 6. Nevertheless, a multitude of variation
exists to compute the error between the predicted output
and its ground truth. In Section VII-D, we investigated other
possibilities to represent the loss function introduced in (5).
This analysis is then extended to the orientation loss function,
where we investigated two representations of the relative
quaternion in Section VII-E.

The use of future data with DNN-based IO is recurrent in
other works, as described in Table. 6. From the inputs and out-
puts choices, the use of convolution or bidirectional LSTM,
or else from the computation methodology, future features
can be extracted for the regression problem. In other words,
a delay prediction is generated that leads to the improvement
of the performances. Nevertheless, the distribution between
past data and future data was not introduced in previousworks
and could be an important hyper-parameter to be investigated.
This is discussed in Section VII-F.

Another important notion associated with deep learning
is data pre-processing. It regroups several key aspects such
as data normalization, outlier detection and removal, data
smoothing and data balancing. They are mainly responsible
for accuracy improvement. Even though this subject has been
studied in other fields, it is essential to keep it in mind
while dealing with IO. Therefore, we first discussed different
techniques to normalize inputs correlated to the IO problem in
SectionVII-G. Then, the notion of data balancing is discussed
in Section VII-H.

Other hyper-parameters are not investigated in this paper
because we empirically selected highly-correlated ones to
the IO problems only. However, their role is crucial for the
performances. For this reason, a discussion was devoted to
the general hyper-parameters of DNN in Section VIII-A.

VII. HYPER-PARAMETERS RELATED TO IO
A. INPUTS FOR DNN-BASED IO
1) ANALYSIS SETTINGS
Even though we follow the kinematic model defined in (3),
we found that we could achieve similar or better accuracy
when using additional inputs, as described in Section V-A.
Thus, the purpose of this section is to analyze the perfor-
mances of our neural network with different inputs related to
IO. From such an analysis, we tried to identify the variable
that could improve the prediction accuracy of the relative
velocity and orientation.

In this analysis, we extended the architecture defined in
Fig. 5 with many-to-many LSTM to output N sets of rel-
ative quaternions and relative velocities covering the range
[t − N + 1, t] instead of outputting one pair of the result at
time t , as similar to [56]. The new architecture is illustrated
in Fig. 9. Among these N predictions, we investigated the
output at time t where only past features were used for the
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TABLE 6. Summary of the parameters used in related work. Important parameters related to IO such as DNN layers, inputs and their associated window
size are referred. The loss functions used for the backpropagation process and the use of future features are also indicated.

FIGURE 9. Network architecture for N predictions of relative orientation and relative velocity. Compare to Fig. 5, this
architecture outputs N predictions of three-axis relative velocity 1v and unit quaternion 1q from time t − N + 1 to time t .

regression. The output at time t − (N − 1)/2, where both
past and future features were extracted from bidirectional
LSTM, was also analyzed. It is worth noting that different
inputs may require a new configuration of hyper-parameters.
However, they were fixed from an evaluation to another
for the sake of the analysis. For this analysis, N was set
to 11.

We designed 18 experiments from E-0 to E-17 by changing
the combination of inputs for CRK, as described in Table. 7.
E-0 is considered as the initial experiment that represents
NRK in Table. 5. The purpose of each experiment is given
as follows.
• E-1, E-2, E-3
In NRK, the features of angular velocity were not used
to predict the relative velocity, and those of acceleration
were not used to regress relative orientation. In E-1, E-2,
and E-3, we changed the combination of the features of
acceleration and angular velocity.

• E-4, E-5, E-6
In these experiments, the combination of the inputs con-
verges step by step towards the CRK defined in Table. 5.
First, the features of the previous velocity were added to
the velocity branch. Then, the previous quaternion was
also used for orientation prediction. Finally, one more
step was defined to the initial definition of CRK where
the previous velocity was fed into both orientation and
velocity branches.

• E-7
dt was removed to observe its influence.

• E-8
Quaternion representation in E-4 was replaced with a
nine-dimensional vector that represents a 3× 3 rotation
matrix.

• E-9
The multiplication of two variables is introduced as a
new input in this experiment. In (3), acceleration and
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angular velocity are multiplied with timestamp inter-
val. DNN can learn such correlation. Nevertheless, the
approximation of the model can break down if the train-
ing data does not represent the entirety of possibilities,
as we observed in Section IV. Furthermore, it is hard
to determine whether DNN highlights the correlation
between features or not. From these observations, we
supported the feature extraction by explicitly express-
ing the multiplication between variables. One way is
to achieve a multiplication between extracted features
inside the neural network to represent the same kine-
matic behavior implicitly. Nevertheless, the resulting
product may have a wide variance and bring about sig-
nificant information loss. Therefore, we investigated the
multiplication between IMUdata and timestamp interval
as input for our architecture. In this experiment, acceler-
ation, angular velocity and dt of E-5 were replaced with
aIMUt−1 dt and wIMU

t−1 dt .
• E-10
From the same premise established for E-9, accelera-
tion was multiplied to the rotation matrix as described
in (3b). Then, the resulting multiplication was fed into
the network to substitute the acceleration and the rota-
tion matrix of E-4.

• E-11, E-12, E-13
In the previous experiments, the inputs were carefully
selected and concatenated respecting (3). Next, we ana-
lyzed the behavior of our neural network when every
input was fed into both branches. In other words, we
extended E-4, E-8 and E-9 into E-11, E-12, E-13.

• E-14
In E-11 and E-13, the original and the multiplied inputs
were tested separately. As an extension of these two
experiments, both input representations were used to
predict relative quaternion and relative velocity in E-14.

• E-15, E-16
Based on E-11, E-15 and E-16 were experiments
designed to investigate respectively the influence of the
rotation matrix and the resulting multiplication between
the acceleration and the rotation matrix.

• E-17
As a final experiment, we used every possible input
introduced in previous experiments to regress relative
kinematics. The inputs were fed into both orientation
and velocity branches.

2) EVALUATION
To compare experiments, two criteria were computed at time
t and time t − (N − 1)/2. One is for the velocity prediction,
and the other one is for the orientation prediction, as described
in Table. 8. The metric of the relative velocity error is repre-
sented with the RMSE. For the metric of the orientation error,
we used (5b) without the logarithm term. Through the testing
process, the errors were computed from the 72 sequences in
Table. 1 and the average was considered.

Each learning process is generally subjected to randomness
effect from dropout, weight initialization, optimizer, and so
on. Moreover, the errors between the 18 experiments slightly
differ, making the comparison difficult to achieve from
only one learning process. Besides, the behavior observed
for a specific criterion such as the velocity error at time
t − (N − 1)/2 may be different for another criterion such as
the velocity error at time t . Nevertheless, the purpose of this
section is to clarify important aspects rather than to state the
best combination of inputs. Therefore, a global analysis is
performed in this section. The main points of this analysis
are discussed as follows.
• Does CRK outperform NRK?
First, adding the features of angular velocity to the veloc-
ity branch deteriorated relative velocity prediction and
barely improved the orientation prediction in E-1. On the
other hand, adding the features of acceleration to the ori-
entation branch in E-2 slightly improved the velocity at
time t−(N−1)/2 and the orientation prediction at time t ,
but slightly deteriorated orientation at time t−(N−1)/2.
In E-3, both features were used for each regression task.
A minor improvement for the orientation prediction was
achieved contrary to velocity prediction, where the gap
between training and validation error was higher.

Compared to NRK, CRKs defined in E-4, E-5, E-6
obtained better performances for the relative velocity
prediction, contrary to the orientation, which got worse.
Furthermore, adding the previous quaternion to the ori-
entation branch in E-5 slightly improved orientation
prediction at time t compared to E-4. However, a signifi-
cant improvement was expected from using the previous
quaternion as the input of the orientation branch, as
discussed in [56].

Similar to the result observed in Section V-C, the
designed CRKs from E-1 to E-6 did not outperform
NRK as we would have expected. Therefore, using addi-
tional information does not necessarily end up with bet-
ter performances. Furthermore, observations established
from a specific networkmay not be applicable to another
architecture. Nonetheless, additional inputs were used
from E-7 to E-17, and some of themwere able to excel in
both regressions of the relative kinematics, reaffirming
the idea of using additional information for IO problems.

• Is it relevant to use multiplied inputs?
In E-9, E-10, E-13, acceleration, angular velocity, times-
tamp interval, and previous quaternion were replaced
by an alternative input representing the multiplication
between two variables that intervenes during the double
integration process. In comparison with E-5, E-4, and
E-11 where the original representation of the input was
used, better performances were observed for E-10, con-
trary to E-9 and E-13 where performances are mixed.
In (1), the noise and bias generated during the data
acquisition are associated with the acceleration and the
angular velocity only, not their multiplicative represen-
tation. However, replacing the original inputs with our
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TABLE 7. Inputs for DNN-based IO. In each experiment, different inputs were used to output relative orientation and relative velocity respecting the
network in Fig. 9. The details of the experiments are indicated with colored and labelled cells. Blue cells annotated with ’v’ indicate that the input was
used for the velocity branch. Red cells annotated with ’o’ indicate that the input was used for the orientation branch. Finally, the input was used for both
branches when the cell is green with ’v/o’. Each input data is correlated with the kinematic model in (3).

new input representationmay prevent the neural network
to estimate the noise and the bias of each IMU sensor.
Therefore, both input representations were fed into the
network in E-14, E-16, E-17. Each experiment outper-
formed the case where only one input representation was
used for the regression of the velocity. On the other hand,
the performances of the orientation prediction were dif-
ferent. Compared to E-11, E-14 achieved a better ori-
entation prediction at time t − (N − 1)/2, conversely
to the accuracy of the prediction at time t that is a bit
lower. Besides, the orientation prediction of E-16 was
worse than E-11, whereas E-17 outperformed it. Both
regression tasks outperformed the cases where only one
input representationwas used. From this observation, we
reaffirmed the relevance of using multiplied inputs as
additional information for IO problems with our archi-
tecture.

• Is it relevant to use timestamp interval?
From E-5 and E-7, the removal of dt from the inputs
deteriorated the accuracy for both relative quaternion
and velocity. However, this observation might not be
enough to conclude about the relevance of timestamp
interval for IO problems. Apart from the randomness
effect of the learning process, our architecture may not
have been able to extract sufficient features in E-7.
Therefore, the observed result may differ according to
the architecture.

• Is it relevant to represent the orientation with a rota-
tion matrix ?
E-8, E-12 used rotation matrix to represent the previous
orientation as input. Both experiments achieved greater
performances than E-4, E-11 for both relative kinemat-
ics. Furthermore, the gap between training loss and vali-
dation was less important, suggesting the rotation matrix

offered a better weight regularization than quaternion
inputs for our architecture. Such an explanation could
justify the fact that orientation regression was better
for E-8 whereas the rotation matrix was not directly
influencing the orientation branch.

• Is it relevant to use all inputs?
From E-11, E-12, we realized using the extracted fea-
tures for both branches resulted in the accuracy improve-
ment. Additional inputs were used in E-14, E-15, and
E-16, leading to better accuracy and stability of the
learning process. E-17 concluded our analysis using
every possible input for both branches and outperformed
every other experiment for the prediction of relative
velocity. On the other hand, the prediction of the rela-
tive quaternion was not the most optimal one we could
achieve but its performances were praiseworthy. The
higher the number of inputs was, the higher the number
of parameters inside the DNN was. However, it does not
necessarily result in better prediction. On the contrary,
DNN can be more subjected to overfitting. Nonetheless,
from all these inputs, our architecturemanaged to extract
key features to output relative quaternion and relative
velocity.

From this analysis, one overall conclusion can be drawn.
We may need to conclude that there is no optimal answer to
the question of which input suits the best for IO problems.
According to the neural network architecture and the combi-
nation of input data, the optimal accuracy or the worst one can
be obtained. As aforementioned, the purpose of this section is
to offer an overview of inputs and combination possibilities
with quantitative analysis. Even though everything has not
been tested, several trails such as input multiplication and
orientation representation may offer new perspectives for
future work.
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TABLE 8. Performances of the experiments in Table. 7. The prediction errors of the relative kinematics at time t − (N − 1)/2 and time t over 72 sequences
from KITTI dataset are described in this table. The data distribution for the learning process is referred in Table. 1. Among the 18 experiments achieved,
the worse predictions are highlighted with a red cell whereas the best ones are shown in green. The second best predictions are written in bold type.

Note that additional data from air pressure and temper-
ature sensors were not considered in this work. They may
be responsible for causing noise in acceleration and angular
velocity and may contain useful features to be considered
while dealing with IO.

B. WINDOW SIZE OF INPUT
1) ANALYSIS SETTINGS
In the previous works, the window size of input tends to be
equal to 200, as described in Table. 6. Even though this hyper-
parameter might achieve good performances, the purpose of
this section is to show that such a hyper-parameter needs to
be investigated whenever building up DNN.

It is easy to think that the feature extraction will be more
relevant when the dimension of the input data is higher. How-
ever, the curse of dimensionality phenomenon is a significant
obstacle, causing poor performances in general regression
problems. The computation time proportionally increases as
the window size gets larger and does not always result in
better prediction.

In this experiment, we analyzed the performances of our
neural network defined in Fig. 9 by using a window of N
inputs to output N sets of relative quaternions and velocities
between [t−N+1, t]. From this architecture choice, the win-
dow size hyper-parameter can be investigated for two differ-
ent distributions of features, as mentioned in Section VII-A.
Six different window sizes were considered, such as 11, 25,
50, 75, 100, 200. The learning process was performed with
KITTI dataset following the data distribution, as described in
Table. 1. Through the testing process, five tracks from the
KITTI dataset were selected to compute the RMSE of the
relative velocity and the same orientation metric defined in
Section VII-A. The error metrics are shown in Table. 9. The

tracks used during the testing process of this experiment are
referred in Table. 4.

2) EVALUATION
From the five tracks tested, the best result was obtained three
times for the relative velocity at time t − (N − 1)/2 for the
window size of 200. Most of the time, our network showed
its best accuracy when a middle-size window of inputs was
used. Among the six possibilities of the window size, the
size of 50, 75, 100 showed better performances for both
relative kinematics predictions. Nonetheless, the window size
of 11 showed interesting results for orientation prediction, as
reported in [56]. However, this result was only observable at
time t , and the accuracy for the velocity prediction was the
worst among all the cases tested.

Through this experiment, the difficulties in generalizing
the hyper-parameter for the window size was clarified. The
difference in accuracy observed between t − (N − 1)/2
and t suggests that the input dimension may be related to
the distribution of future and past data. Such correlation is
investigated in Section VII-F. As a new perspective for future
work, another trail can be considered to make this section
complete. Some motions such as turning right, left, or going
straight forward should require more or less information to be
identifiable. Therefore, having an adaptive window size can
be worth considering as a new perspective for future work to
improve the performances.

C. DATA FREQUENCY
1) ANALYSIS SETTINGS
The measurement frequency of IMU varies according to
devices. Generally, the given frequency is used for process-
ing. However, a higher frequency signal may not be required
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TABLE 9. Performances of NRK for different window sizes. The prediction errors at time t − (N − 1)/2 and time t for different window sizes are described
for the testing tracks, as introduced in Table. 4. Best predictions are indicated with green cells, whereas the worse accuracies are indicated with a red cell.
The second best predictions are written in bold type.

FIGURE 10. Neural network architecture for frequency analysis. For better visualization of
the experiment realized in Section VII-C, the inputs and the outputs of the 20 Hz and
50 Hz-DNN are detailed.

to achieve outstanding performances. We assume the exis-
tence of a minimal frequency where sufficient accuracy can
be achieved. Such frequency may depend on the complex-
ity of the motion. Therefore, we investigate the relationship
between the frequency and the accuracy for vehicle motion.

The details of the analysis are as follows. The neural
network illustrated in Fig. 9 was trained to output N sets of
relative velocities and quaternions. The learning process was
performed with the KITTI dataset following the data distri-
bution referred in Table. 1. For time-computation reasons,
the size of the window was set to 11 in this experiment. In
total, four different learning processes were achieved by using
the data at 100, 50, 20, and 10 Hz. A window of length N
at 100 Hz within the range [t − N , t − 1] was fed into the
network to output N sets of relative kinematics within the
range [t − N + 1, t]. In other cases, for a frequency F , a
window of lengthN covering the range [t− 100

F ∗N , t−1] was
fed into the network to output N sets of relative kinematics

within the range [t − 100
F ∗ N + 1, t] at a frequency F . For a

better understanding, the neural network for both 20 Hz and
50 Hz are illustrated in Fig. 10. In this section, we will refer
to the networks as F Hz-DNN.

To compare performances, we computed the prediction
errors for both relative velocity and orientation at 10 Hz
using (3). Therefore, to obtain relative kinematics at 10 Hz,
ten predictions were required from features at 100 Hz,
whereas five, two, and one were necessary for features at
frequencies 50 Hz, 20 Hz, and 10 Hz. From this premise, five
tracks from the KITTI dataset were selected to compute the
RMSE between the relative velocity and its ground truth. The
orientation metric defined in (5b) without the logarithm term
was also considered in this experiment. Both error metrics are
shown in Table. 10. Through the testing process, we consid-
ered only the prediction at time t− (N −1)/2, where features
coming from both past and future data were extracted. The
tracks used for the testing process of this experiment are
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TABLE 10. Frequency analysis with KITTI dataset. From Fig. 9, four
networks with different frequencies such as 10 Hz, 20 Hz, 50 Hz, 100 Hz
were trained. The prediction errors of the relative kinematics at 10 Hz are
shown in the following table. The best results are indicated with green
cells and bold type whereas the worse ones are indicated with red cells.
For this analysis, tracks refer to the same drive sequences introduced in
Table. 4.

TABLE 11. Frequency analysis with EuRoC dataset. From Fig. 9, three
networks with different frequencies such as 50 Hz, 100 Hz, 200 Hz were
trained. The prediction errors of the relative kinematics at 10 Hz are
shown in the following table. The best results are indicated with green
cells and bold type whereas the worse ones are indicated with red cells.
For this analysis, tracks refer to the same drive sequences introduced in
Table. 4.

referred in Table. 4. It is worth noting that each learning
process was achieved three times, and the average error was
considered in our analysis.

2) EVALUATION
From the five testing tracks of the KITTI dataset, the worse
results were obtained for the 10 Hz and 20 Hz-DNN. As
expected for these two cases, the information lost resulted
in a deterioration of the relative velocity and quaternion
prediction, compared to the original signal at 100 Hz. On
the other hand, the prediction accuracy for the 50 Hz-DNN

FIGURE 11. Norm of the predicted relative velocity for different
frequencies - Track 1. The prediction of a small part of Track 1 is
illustrated to visualize the differences between the four cases.

could compete with the 100 Hz one. Nevertheless, using
data at 50 Hz must have been responsible for a loss of
information. Therefore, such information should have been
compensated differently. Three hypotheses are established.
First, the information held by the signal at 50 Hz may be
sufficient to predict the motion of a car with high accuracy.
On the contrary, the IO model was too difficult to predict
from data at 10 Hz and 20 Hz, as shown in Fig. 11. Another
hypothesis concerns the number of predictions required to
output a 10 Hz relative kinematics. For the 100 Hz-DNN,
ten predictions were necessary, whereas only five values of
relative kinematic were used for the data at 50 Hz. Therefore,
fewer prediction errors may have occurred in the second case.
Furthermore, the distribution of the data in motion space
differs for each frequency. Such difference can be correlated
to the prediction accuracy, as shown in Section V-D. Finally,
for both cases, the time range considered for the input was
different. When outputting relative kinematics at 50 Hz, past
and future features were considered from a broader range
of time. All these hypotheses can justify the resemblance of
both 50Hz and 100Hz-DNNperformances. Nevertheless, the
predictions from the original signal were the most accurate.
We could expect the accuracy difference between the 100-Hz
and the 200 Hz-DNN lower for the IO of a car.

Next, the experiment was extended to EuRoC dataset for
200 Hz, 100 Hz, and 50 Hz in Table. 11. The observation
achieved with KITTI dataset differed. For a drone, lower-
sampling the original data decreased the performances. The
50 Hz and the 100 Hz-DNN one had difficulties in model-
ing relative kinematics, as shown in Fig. 12. As expected,
the motion space of the drone is wider and more com-
plex to model than the motion space of a car. Therefore, a
high-frequency signal that holds more information may be

36606 VOLUME 9, 2021



Q. A. Dugne–Hennequin et al.: Understanding the Behavior of Data-Driven IO With Kinematics-Mimicking DNN

FIGURE 12. Norm of predicted velocity for different frequencies -
V2_01_easy. The prediction of a small part of V2_01_easy is illustrated to
visualize the differences between the three cases.

required for the inertial odometry of a drone. Even though
the 100 Hz-DNN showed better results than the 50 Hz one,
we can notice their performances were close to each other,
whereas both of them are outperformed by the 200 Hz-DNN.

Through this experiment, we could not precisely identify
the minimal frequency required to achieve IO. The purpose
of this section was to introduce the notion of data frequency
for DNN-based IO while respecting the same neural network
architecture for each case defined. In future work, we would
like to expand this notion to the output frequency only.

D. LOSS FUNCTION
1) ANALYSIS SETTINGS
The purpose of this section is to analyze different variations
of the loss function introduced in (5). For this analysis, the
neural network illustrated in Fig. 9 was trained to output
N sets of relative velocities and quaternions. The window
size was set to 11 due to computational-time reasons. From
this architecture choice, the variants of the loss function can
be investigated for two different distributions of features, as
mentioned in Section VII-A.

The three-axis relative velocity outputted by the network
has a shape of [B,N , 3] where B is the batch size and N the
window size. The relative quaternion has a shape of [B,N , 4].
Through the learning process, the prediction error is com-
puted for each component of the relative velocity within the
batch. Then, the mean is considered as the loss function by
default. Nevertheless, one would tend to sum up the errors.
For example, it would make sense to sum up the error of
each relative velocity axis rather than considering the mean,
due to some scaling problems. From this premise, we defined
four representations of the loss function, which we refer to

as MSS, MSM, MMM, and MSM. The first, second, and
third characters indicate the mean (M) error of the batch,
the mean (M) or the sum (S) of the error along with the
window of size N , the mean (M) or the sum (S) of the error
along with the axis of the relative output, respectively. For
better visualization, the loss function of the relative velocity
was described in (6). The same pattern was applied to the
quaternion loss function defined in (5b) to ensure logic in this
analysis.



LMSS1 =
1
B

B∑
i=1

N∑
j=1

3∑
k=1

errork (6a)

LMSM1 =
1
B

B∑
i=1

N∑
j=1

1
3
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k=1

errork (6b)

LMMM1 =
1
B

B∑
i=1

1
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1
3
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errork (6c)

LMMS1 =
1
B

B∑
i=1

1
N

N∑
j=1

3∑
k=1

errork (6d)

Next, we considered three error representations for the
relative velocity loss to expand our analysis. We investigated
the squared error (SE), the absolute error (AE), and the Huber
error (HE). In the original loss function (5a), the error was
squared to assign a larger weight when a larger error occurs.
On the contrary, AE is computed on the same linear scale for
each prediction. In other words, AE is used when the data
is corrupted with outliers, whereas SE is sensitive to these
outliers. Nevertheless, the derivative of AE is not continuous.
Thus, the convergence toward the optimal IO model is harder
to reach during the learning process. On the other hand, the
gradient of SE decreases as the error gets closer to zero, which
favors the convergence of the loss function. Huber loss was
defined to handle these drawbacks. Its representation is given
in (7c). HE relies on a tunable hyper-parameter δ. When the
AE of the relative kinematics is inferior to δ, the error acts
as the SE and conversely acts as the AE when the error is
superior to δ. Therefore, the user can set their own definition
of an outlier with δ. By default, we set δ to one.

SEk = ‖1v̂k −1vk‖2 (7a)

AEk = ‖1v̂k −1vk‖1 (7b)

HEk =

{
0.5 ∗ SEk if AEk < δ

AEk − 0.5 otherwise
(7c)

It is worth noting that some pre-processing were performed
over KITTI dataset to restrict the influence of outliers. As
explained in Section IV, data has been linearized and sep-
arated into several parts when timestamp issues occurred.
Furthermore, the ground truth of the car orientation is origi-
nally set between [−π ,π ]. Thus, the orientation can suddenly
change from π to −π and vice versa. When such change
occurs, the relative orientation can be considered as an outlier
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TABLE 12. Comparison of performances for different variations of the loss function. The network in Fig. 9 has been trained with four loss function
representations we referred to as MSS, MSM, MMM and MMS. For each representation, three widespread errors, SE, AE, and HE were considered during
the learning process. Through the testing process, the prediction errors of the relative kinematics at time t − (N − 1)/2 and time t are shown in the
following table. The best results among the three errors are indicated in green whereas the best results among the four representations are bordered with
blue brackets. The best combinations are written in green font and bordered with blue brackets. For this analysis, tracks refer to the same drive
sequences introduced in Table. 4.

by the DNN. Therefore, the initial range of orientation was
extended.

For each case defined for this analysis, the learning pro-
cess was achieved three times, and the average error at time
t − (N − 1)/2 and time t was considered. Through the
testing process, the relative quaternion error without the log-
arithm defined in (5b) was used as the orientation metric
in Table. 12a. The RMSE of the relative velocity was also
considered in Table. 12b.

2) EVALUATION
Among the four representations tested, MSM and MMS
showed better performances, whereas MMM provided the
worse accuracy for both relative kinematics. Regarding
the error representation, AE outperformed HE and SE for
the relative velocity prediction only. However, its usage

deteriorated the prediction of the relative quaternion, com-
pared with the two others. On the other hand, the results
obtained fromHE and SE were equivalent for both regression
tasks. Nonetheless, HE slightly showed higher accuracy.With
a better optimization of the δ hyper-parameter, the perfor-
mances of HE may be improved. It is worth noting that MSE
is the most common loss function in deep learning by default.
In other words, the combination of the MMM representation
and the SE is mostly used. However, we demonstrated that
we could outperform this configuration.

From this analysis, one overall conclusion can be drawn.
We may need to conclude that there is no optimal answer
to the question of which loss function suits the best for IO
problems. According to the DNN architecture and the loss
representation, higher or lower accuracy can be obtained. As
aforementioned, the purpose of this section is to offer an
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overview of our loss function and combination possibilities
with quantitative analysis. Even though everything has not
been tested, we reaffirm the difficulty of generalizing the
loss function. Furthermore, we demonstrated the loss func-
tion could be considered as a DNN hyper-parameter where
few adjustments could achieve better performances. In future
work, the setting of the Huber loss function will be investi-
gated to improve the performances of our network.

E. REPRESENTATION OF THE RELATIVE QUATERNION
1) ANALYSIS SETTINGS
Two quaternion representations are analyzed in this section.
In [56], the relative quaternion is represented as the difference
between two successive quaternions whereas the Hamilton
product was adopted in [57]. We refer to these two represen-
tations as to the difference quaternion (DQ) and the Hamilton
quaternion (HQ), respectively. The purpose of this section is
to investigate the characteristics of each representation for the
IO problems.

The details of the analysis are as follows. The CRK defined
in Section V-A was trained with KITTI dataset to output N
sets of relative velocities and quaternions with N = 11. From
this architecture choice, the representation of the relative
quaternion can be investigated for two different distributions
of features, as mentioned in Section VII-A. Originally, HQ
was outputted by our neural network and the loss function
defined in (5) was used during the learning process. We
refer to this case as HQ-L. However, the orientation metric
defined in (5b) was not adequate for the DQ representation.
Therefore, the orientation metric was replaced with the SE.
We refer to this case as DQ-SE. From the same premise, we
define HQ-SE as the case where HQ is outputted and the SE
was used as a metric.When the SEwas used, each component
of the outputted relative quaternion was normalized within
the range [−1, 1] to prevent scaling issues.
For each case defined for this analysis, the learning process

was achieved three times with the MMS and MSM configu-
rations and the average error at time t − (N − 1)/2 and time
t was considered. We analyzed the accuracy of the prediction
at 10 Hz for five tracks, where ten predictions were summed
up for DQ representation, and ten predictions were multiplied
using (3a) for HQ representation.We expected the differences
between the three defined loss functions to be more percep-
tible with this error representation. The evaluation was based
on two orientation metrics: the RMSE, and the quaternion
error without the logarithm term defined in (5b). The results
are described in Table. 13a. On the other hand, we granted
less importance to the accuracy of the velocity prediction.
Therefore, we analyzed the RMSE at 100 Hz in Table. 13b.
The tracks used for the testing process of this experiment are
referred in Table. 4.

2) EVALUATION
For this analysis, we originally used theNRKdefined in Fig. 9
to output relative quaternion. However, the NRKwas not able

to predict DQ representation from features of angular velocity
and timestamp interval only. The neural network could only
model the fourth component of the relative quaternion where
gyroscope features played a major role in the prediction.
Nonetheless, the estimation was far from the ground truth.
On the other hand, the NRK could predict HQ representation,
affirming our architecture learnt to model the kinematics.
However, the output had to be normalized in the case of
HQ-SE. To have a fair comparison between the two represen-
tations, we used the CRK to predict relative kinematics with
additional inputs. This time, the neural network architecture
could model the DQ representation. As in [56], the use of the
previous quaternion considerably improved the accuracy of
DQ prediction.

Through the testing process, the HQ representation
provided a better orientation estimation than the DQ one.
Theoretically, HQ is determined from angular velocity and
timestamp, as described in (3a). However, such a direct cor-
relation is nonexistent for DQ representation. Therefore, its
estimation was not possible with the NRK where only fea-
tures coming from gyroscope and timestamp were used. Nev-
ertheless, its prediction was possible with the help of previous
quaternion features, which must have played a major role.
Conversely, the features of the previous quaternion played a
minor role in the HQ prediction.

The SE error used for HQ-SE and DQ-SE cases is not
correlated to the IO problems. During the learning process,
the error of each component is minimized independently.
When a loss function with a higher comprehension of the
quaternion representation is used such as in HQ-L case, better
performances are achieved. The same accuracy improvement
was observed in [57]. Nevertheless, a minor drawback was
observed. The first component of the relative quaternion is
not used directly in the orientation metric defined in (5b).
Its prediction is used to normalize the relative quaternion
outputted by the network and the loss function is mainly
computed from the three other components of the relative
quaternion. Therefore, the accuracy of the prediction of the
first component is negatively impacted. Nonetheless, the first
component of the quaternion is set to one in (4). Thus,
the DNN can be designed to output only the three other
components of HQ representation. In the HQ-SE case, the
prediction of the first component was better but could have
been responsible for the deterioration of the prediction.

From this analysis, we may conclude that HQ-L suits the
best to our neural network architecture. Furthermore, this
section extends the conclusion drawn in Section VII-D. The
loss function should be considered as a hyper-parameter that
is highly correlated to the navigation problem.

F. USE OF FUTURE DATA
1) ANALYSIS SETTINGS
According to (3), the previous state is required in the double
integration process. However, inherent problems associated
with acceleration and gyroscope impact negatively the overall
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TABLE 13. Evaluation of the relative quaternion representation with KITTI dataset. The CRK defined in Table. 5 has been trained to output relative
kinematics with two different representations, DQ and HQ. HQ-SE and DQ-SE refer to the cases where the loss function defined in (5b) was replaced with
the SE to output HQ and DQ, respectively. In the case of HQ-L, the network was trained to output HQ and the loss function defined in (5) was used during
the backpropagation. The prediction errors of the relative kinematics at time t − (N − 1)/2 and t are displayed in the following table. The best results
between these three cases are indicated in green. For this analysis, tracks refer to the same drive sequences defined in Table. 4.

performances of such a process. From this assessment, pre-
vious works resorted to deep learning with multiple layers to
extract higher-level latent features coming from past data to
estimate and compensate the noise and bias defined in (2).
Similarly to the text recognition field, the use of features
coming from future data provides a higher understanding
and achieves better modeling of the problem. However, this
accuracy improvement costs a prediction delay. The time
length to be considered from past and future data has not
been introduced in the field of IO. Therefore, the influence
of the distribution between past and future features over the
performances is analyzed in this section.

The details of the analysis are as follows. Since the distribu-
tion of features is analyzed, the neural network in Fig. 9 was
selected and trained by using a window size N to predict N
sets of relative velocities and quaternions. Through the testing
process, a data sequence with a length L was selected. At
the first iteration, the input window of size N , covering the
range [0,N ], was fed into the network to estimate N relative

kinematics at time [1,N+1]. At the second iteration, the win-
dow was shifted by one sample to cover the range [1,N + 1]
and was fed into the network to output N relative kinematics
at time [2,N + 2]. At the end of the process, each relative
kinematics within the range ]N ,L−N ] was estimatedN times
with different index position within the output window. The
neural network architecture is made of bidirectional LSTM.
Therefore, the index position within the window indicates the
distribution between past and future features that were used
for the relative kinematic prediction. For the first indexes
of the window, future features were mainly used to predict
relative kinematics whereas last indexes rely on past features.

From this premise, we computed the average RMSE
between relative velocity and its ground truth according to
the index position within the output window for five tracks
of KITTI dataset. The tracks used during the testing process
of this experiment are referred in Table. 4. For this analysis,
different window sizes were tested and their performances
were illustrated in Fig. 13.
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FIGURE 13. Distribution analysis of future and past features. The network illustrated in Fig. 9 was
trained with different window sizes of inputs. The accuracy of the prediction was analyzed based on
the index position within the window that reflects the distribution between past and future features
used for the estimation of relative kinematics.

2) EVALUATION
For both regression tasks, the same behavior was observed
whatever thewindow size tested. Therefore, the performances
of our network may be correlated to the distribution between
past and future features rather than the number of future

features used. When future or past features are ubiquitous
compared to the overall distribution, the accuracy drastically
decreases. The deterioration especially happened when past
features were a majority. The accuracy of the prediction
tended to be stable when the position was located around the
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middle of the window. In other words, the performances were
close to the optimal one when the distribution between past
and future features was equivalent. Nonetheless, the optimal
distribution could not be generalized for this analysis. Based
on the randomness effect of the learning process, the track
tested, the metric analyzed, observation slightly differs. For
example, Track 2 from the validation dataset reached its
optimal accuracy when the distribution between future and
past features was unbalanced.

From this analysis, we conclude that a balanced distribu-
tion between past and futures features provides good per-
formances for our architecture. The same behavior has been
observed with several architectures of CRK introduced in this
paper. Nevertheless, the most optimal distribution seems to
be highly correlated to the motion of the vehicle, the learning
process and the architecture of the DNN. Therefore, such a
hyper-parameter could not be generalized from this analysis.
In future work, the correlation between the motion and the
distribution of the features over the performances could be an
interesting trail to be investigated.

G. INPUT NORMALIZATION
1) ANALYSIS SETTINGS
The scale of inputs and outputs used to train a DNN is an
important aspect to be considered. A large range of input
can result in large weight values, making the learning pro-
cess unstable and slow. Moreover, input variables can have
different scale and unit, making the update weight process
different for each component which might hurt the learning
process. Normalization and standardization techniques are
applied to ensure an optimal learning process to solve this
issue. However, the best way to scale input data is not absolute
because the problem is complex. For example, standardizing
features by removing the mean and scaling to unit variance,
as shown in (8a), might behave negatively if the input x does
not respect a Gaussian distribution.


Std(x) =

√√√√ 1
N − 1

N∑
i=0

(xi − x)2 (8a)

N (x)[0,1] =
x− xmin

xmax − xmin
(8b)

N (x)[−1,1] = 2 ∗ N (x)[0,1] − 1 (8c)

Another good rule of thumb is to normalize every data
between [−1, 1] or [0, 1] to have a similar scale among inputs
and avoid mathematical artefacts associated with floating
numbers. However, scaling might be unnecessary when the
data range belongs to such intervals or has a limited distribu-
tion. Given these uncertainties, it is important to investigate
the beneficial differences in the performances of these tech-
niques for different inputs correlated to the IO problems.

The CRK defined in Table. 5 was used to output the
relative kinematic at time t . From this architecture choice,
the different techniques of normalization can be investigated
for five inputs representative of the IO. For this analysis,

TABLE 14. Analysis of input normalization. The neural network illustrated
in Fig. 5 was trained to output relative kinematics. Based on (8), each
input was normalized as follows. A white cell indicates the input was not
normalized. Red, blue and green cells with the label ’Std ’, ’N[0,1]’, ’N[−1,1]’
refer to as standardization, normalization between [0,1] and
normalization between [-1,1], respectively.

16 experiments from E-0 to E-15 were designed, as referred
in Table. 14. E-0 refers to the case where inputs were not
normalized. For computational-time reasons, the size of the
input window was set to 11.

From this premise, the 72 sequences referred in Table. 1
were selected to compute the RMSE between the relative
velocity and its ground truth. The orientation metric defined
in (5b) without the logarithm term was also considered. Both
metrics are described in Table. 15. It is worth noting that each
learning process was achieved four times and the average
error was considered.

2) EVALUATION
For E-0, three of the four learning process achieved satisfying
results. The fourth one faced instability and could not learn
properly the kinematic model. For this reason, the average
error displayed in Table. 15 was negatively impacted and
became the worst one of all experiments performed. There-
fore, input data should be normalized.

Normalizing inputs does not necessarily end up with good
performances. Since quaternion components, timestamp or
previous absolute velocity did not follow Gaussian distribu-
tion, we expected them not to be eligible for standardization.
However, the results tended to the conclusion that we should
not standardize any inputs even for IMU sensors, leading to
a quick convergence of the learning process and a deteriora-
tion of the accuracy. Nevertheless, standardization techniques
have been used in [16] and showed interesting results. Thus,
the homogeneity between the inputs may be a criterion to
consider while dealing with DNN.

The best accuracy was obtained with input normalization
between [0, 1], which led to an improvement of the per-
formances for both kinematic predictions. The normaliza-
tion between [−1, 1] provided satisfying results but was still
outperformed. It is worth noting that standardizing quater-
nion drastically decreased the performances. For the two
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TABLE 15. Results of experiments in Table. 14. The average RMSEs of the
relative velocity and quaternion error at time t over 72 sequences are
described in this table. The data distribution is referred in Table. 1.
Among the 16 experiments achieved, the worse predictions are
highlighted with a red cell whereas the best ones are shown in green. The
second best results are written in bold character.

other normalization techniques, the performances slightly
increased when the previous quaternion was not normalized.

From this analysis, we could not generalize the most opti-
mal normalization technique for IO problems. However, we
could affirm the normalization between [0, 1] suits well to
our architecture. Therefore, we confirmed the importance of
input normalization. As a reminder, feature normalization
is not exclusive to inputs and can be overextended to other
layers of the neural network. A recent method relies on batch
normalization layers to standardize the output of a previous
activation layer and ensure independence between convolu-
tion layers [62].

For regression problems, scaling the output is usually not
necessary. In the case of multiple regression, the learning
process will be driven by the output with the largest scale
if proper weights were not introduced in the cost function
and ground truth have a different dynamic range. The relative
quaternion had to be normalized when the SE error was used
as a loss function in Section VII-E. Besides, a large output
range can result in a large gradient error making the weight
update unstable.

H. DATA BALANCE
1) OVERSAMPLING AND UNDERSAMPLING
Data balancing notion is usually associated with classifica-
tion problems but is just as important for regression tasks.
The DNN must be able to predict the low and high change in
velocity with the same accuracy. During the learning process,
if high relative velocity is represented as a minority, the DNN
will mainly build up its prediction using abundant samples
and will consider the rare samples as outliers, leading to poor
accuracy, as illustrated in Fig. 14. The same applies to the
prediction of the relative quaternion. However, the available
dataset for IMU measurements are limited and prevent to
maintain a good data distribution.

FIGURE 14. Analysis of the correlation between the histogram of the
relative velocity and the performances. The network illustrated in Fig. 5
was trained to output relative kinematics at time t − (N − 1)/2. For each
range of the relative velocity norm, the RMSE of the relative velocity was
shown in red. The distribution of the KITTI training dataset is illustrated in
blue.

Therefore, oversampling and undersampling techniques
can be used to balance the data. A straightforward oversam-
pling method can be defined as copying, generating random
data from the minority class, whereas undersampling will
reduce abundant observations. Nevertheless, they can lead to
overfitting or underfitting, respectively.

As a preliminary analysis, we decided to oversample and
undersample the training dataset of KITTI, as illustrated in
Fig. 15. Based on the distribution of the relative velocity
norm, samples were either copied or removed. For each
copied data, we added a small Gaussian noise with a standard
deviation of 10−4 to the IMU inputs. For this analysis, we
trained the NRK defined in Fig. 5 to output relative kinemat-
ics at time t − (N − 1)/2. From this architecture choice, the
balancing problem becomes easier to deal with when only
one relative kinematic value is outputted. The window size
was set to 11 due to computational-time reasons. The RMSE
of the relative velocity for the training and validation dataset
was illustrated in Fig. 16. It is worth noting that each learning
process was achieved three times, and the average error was
considered.

We expected a better prediction for the under-represented
relative velocity in exchange for lower accuracy for the
abundant samples. The proposed approach had the effect we
expected, but only for the training dataset. For the validation
dataset, we observed a deterioration of the prediction for rare
samples, whereas performances were similar for abundant
samples. Therefore, overfittingmay have occurred despite the
use of dropout and early stopping technique. For this analysis,
two ranges of relative velocity norm have been down-sample
by half. Nonetheless, the performances were similar to the
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FIGURE 15. Redistribution of the KITTI dataset. From the original data
distribution of relative velocity norm, oversampling and undersampling
have been applied to the training dataset. The redistributed histogram is
illustrated in orange whereas the normal one in blue.

normal learning process. Therefore, undersampling can be
worth considering with caution when data is abundant in the
dataset.

Oversampling and undersampling techniques are not com-
monly used when dealing with data balancing. One can lead
to overfitting, whereas the other one can lead to a loss of
information. The purpose of this section was to propose a
preliminary quantitative analysis of the problem of data bal-
ancing for DNN-based IO. In addition to the limit previously
introduced, we highlight the difficulty of data balance. In
this section, the dataset has been redistributed based on the
relative velocity norm, whereas orientation has been ignored
in the process. Therefore, balancing one relative kinematic
may hurt the balance of the other one. This can be drawn
as a limit to our architecture. Furthermore, balancing data
entails the use of additional hyper-parameters that need to be
defined, making the DNN optimization process longer and
more difficult.

2) RELEVANCE FUNCTION
Another strategy for handling imbalanced data is to design a
cost function that penalizes regression based on a relevance
function (RF). The influence of rare samples is boosted dur-
ing loss function computation, whereas abundant data will
have a minor penalty cost. However, such a function is highly
correlated to the problemwe are dealing with and can be diffi-
cult to design, especially when the data distribution is difficult
to visualize, as similar to the quaternion representation.

For this second analysis for data balancing, we decided to
apply aweight to three velocities-axis during the loss function
computation to improve the prediction of high relative speed.
First, we divided each axis of the relative velocity into C

FIGURE 16. Analysis of the oversampling and undersampling techniques.
The network illustrated in Fig. 5 was trained to output relative kinematics
at time t − (N − 1)/2 for two different datasets: the normal and
redistributed KITTI dataset. Through the testing process, the RMSE of the
relative velocity was illustrated in red and green, respectively.

categories. Then, we defined a relevance function as follows:

W (1vk,c) = min(µ1, log(µ2 ×
Ns
Nsk,c

)) (9)

where each axis k of a relative velocity 1v has an attributed
weight W according to their category distribution c and two
adjustable parametersµ1,µ2.Ns refers to the number of sam-
ples in the dataset.Nsk,c refers to the number of samples in the
category distribution c of the k-axis relative velocity. The log
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function was used to smooth the weight and prevent the RF
from hurting the training process of abundant samples. For
the relative velocity of a car, we ignored the z-axis and set its
weight to µ1. By default, µ1 and µ2 was set to 0.75 and 0.85.
Similarly to relative velocity, we wanted to balance the

quaternion distribution. However, the loss function used and
the model space of a quaternion prevent defining a weight
for each quaternion component. Therefore, we analyzed the
quaternion distribution with a distance function that is repre-
sented by the orientation metric without the logarithm term
defined in (5b). The details of the process are as follows. A
relative quaternion in KITTI dataset was selected and used as
a reference quaternion. Then, the distance function is com-
puted with other relative quaternions of the dataset. The dis-
tance values are separated into 2 ∗ C categories, and weights
are attributed according to the distribution of the distance.
Finally, the previously defined RF with the same parameters
is used to balance the distribution of the quaternion.

For both distribution balancing, we made the choice to
apply the RF on the training dataset only. However, the valida-
tion dataset is used as a criterion to cease the learning process
and prevent overfitting. Therefore, an unbalanced validation
dataset may hurt the learning process. For this reason, our
choice is questionable and may be interesting to analyze in
future work.

The details of the analysis are as follows. For the same
reason introduced in Section VII-H1, we trained the NRK
defined in Fig. 5 to output relative kinematics at time
t − (N − 1)/2. For this analysis, we considered four cases.
The first case is the normal training where the RF was not
used. The second, we refer to as Velocity RF, is the case
where the RF was applied only for the relative velocity.
The third and fourth refer to the cases where the RF was
applied only for the quaternion and the case where the RFwas
applied for both relative kinematics.We refer to these cases as
Orientation and Both RF. For each case, the RMSE of x and
y-axis of the relative velocity and the relative quaternion error
were analyzed. The results are reported in Fig. 17. It is worth
noting that each learning process was achieved three times,
and the average error was considered to avoid the randomness
effect from the learning process.

For each case, a better accuracy was obtained for relative
velocity and relative quaternion of the training dataset that
was under-represented. The use of the RF for the orienta-
tion only resulted in a minor deterioration of the relative
velocity prediction. Conversely, when the RF was used for
the velocity only, a minor deterioration was observed for the
relative quaternion prediction. On the other hand, when both
RF were used, the overall performances were improved for
the training dataset. Furthermore, the prediction of abundant
samples did not deteriorate. For the validation dataset, the
prediction of the relative velocity was slightly deteriorated
in the majority, as observed with the oversampling tech-
nique. Therefore, overfitting may have occurred once again.
Nonetheless, minor improvements have been observed for a
few range of relative kinematics.

Conversely to oversampling and undersampling, the dis-
tribution of the dataset was not changed. Furthermore, this
approach suits better to simultaneous regression of the rel-
ative kinematics where the balance of each output can be
configurable. Nonetheless, the optimization of the hyper-
parameters becomesmore difficult to achieve. The purpose of
this section was not to suggest an optimal method but rather
a starting point to introduce the importance of data balanc-
ing while dealing with DNN-based IO. Different techniques,
hyper-parameters, approaches should be evaluated to improve
the performances of theDNN-based IO. Nevertheless, there is
a high chance to face overfitting for a specific range of values
when the amount of samples is insufficient. Therefore, the
best solution is to ensure a balance in the data distribution for
relative kinematics while acquiring data.

VIII. DISCUSSION
A. HYPER-PARAMETERS RELATED TO DNN
This section briefly summarizes hyper-parameters to be con-
sidered when dealing with neural networks. For a given
architecture and its associated loss function that evaluates the
model performances, hyper-parameters have to be optimized
to match the best accuracy possible.

Among these parameters, the most important one is the
learning rate. It characterizes the step size of the weight
update and is usually defined in the range between [0,1]. A
learning rate too large will result in a large weight update and
produce poor performances, while a small value will make
the training process longer and may not converge towards the
optimal solution.

Learning rate goes hand in hand with the optimization
algorithm Adam, which is predominant among all other opti-
mizers. Nevertheless, it is still possible for other algorithms to
perform better and maybe interesting to investigate in future
work.

Once other parameters of the neural network have been
decided, the adaptive learning rate can be coupled with an
optimizer. As the training progresses, from a computed score,
we can decide to reduce the learning rate to converge towards
the most optimal solution that could have been missed with a
larger learning rate.

The batch size used during the training process will deter-
mine the frequency of updates. The smaller the batch size is,
the less accurate the gradient estimation will be. On the other
hand, a larger batch size will require a larger GPU memory
but will provide a more accurate result. Notwithstanding, a
large batch size can result in accuracy loss.

After fixing these hyper-parameters, hidden units can be
fine-tuned, and additional layers can be added to make the
neural network deeper. However, deeper neural networks do
not necessarily result in better performances. Nevertheless,
they play an important role in prediction accuracy. Simulta-
neously, the activation function can impact the convergence
ability of the network and should be carefully selected. Sev-
eral techniques to initialize the network weight exist for
the optimization of the training procedure Weight can be
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FIGURE 17. Analysis of the relevance function. The network defined in Fig. 5 was trained to output
relative kinematics at time t − (N − 1)/2 using the relevance function defined in (9). The RMSE of the
relative velocity and the quaternion error of four cases were analysed. We refer to these four cases as
Normal, Velocity RF, Orientation RF and Both RF. Their errors are represented in red, orange, purple and
green, respectively. The histogram is shown in the background to support the visualization of metrics
errors indicated on the y-axis.

initialized to the same constant values, but in practice, ran-
doms values are given to ensure unsymmetrical hidden units.
Other techniques such as Xavier, He normal, orthogonal
initialization exist and can be used to prevent exploding or

vanishing gradient [63]. One of the most severe issues with
recurrent neural networks is the vanishing and exploding
gradient. While there are many methods to combat this,
such as gradient clipping for exploding gradients and more
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complicated architectures, including the LSTM and GRU for
vanishing gradients, orthogonal initialization is an interesting
yet straightforward approach.

After all these optimization processes, the neural network
may overfit. Regularization techniques such as L2, L1, or
norm constraints for weight exist to solve this issue and can
be complemented with dropout layers. This last one will
ignore with a probability p a neuron during the training phase
encouraging parameters of the model to act differently. Sev-
eral techniques exist to create an adaptive dropout [64], [65].
Nonetheless, there is no generalization for dropout. Based
on the neural network architecture, an investigation should
be done. It is worth noting that dropout is ineffective with
convolution layers where there are only a few parameters that
need less regularization. In most recent works, they have been
replaced with batch normalization layers whereas dropout
layers are used with fully connected layers [62]. However,
even with dropout, overfitting remains possible. Then, early
stopping can be used as a complement, and stop the training
process when the best accuracy was obtained with the valida-
tion dataset to prevent overfitting. Nonetheless, this method
was questioned but remained appreciated by the community.

Noise and bias present within input data might complicate
their underlying relationship and hurt the learning process.
Hence, pre-processing methods are used to ensure an optimal
feature extraction and eliminate noise from raw data but may
discard worthwhile information. Based on the knowledge of
the data we are dealing with, several filtering processes exist.
The most widely spread and most straightforward technique,
named average filtering, filters the data by calculating the
average value of given window sizes. An alternative consists
of adding a customized weight for every component within
the windows to influence their impact on the filtering process.
Many other techniques exist, such as Savitzky-Golay and
Hamming window filtering, could be interesting to investi-
gate in the future for IO problem [66].

B. OUTLIER
In this section, we highlight the outlier phenomenon. An
outlier is a data that is significantly distant from other dataset
points. Depending on what we are trying to achieve, the
information carried by outliers may be caused during data
acquisition andmay not be relevant for the prediction. Indeed,
modeling accuracy decreases as the percentage of outlier
inside a training dataset increases. For example, ReLU acti-
vation function is mainly impacted by these values when
the architecture of the neural network is not too deep. The
deeper the NN is, the more the ReLU activation function will
regularize and converge faster.

Ideally, outliers should be excluded from the dataset. How-
ever, detecting that anomalous instances is not always possi-
ble. The current state-of-the-art DNN will use large training
datasets to drown out their impact on the modeling accu-
racy. Other methods, such as robust error, loss functions,
or regularization, have also been introduced to avoid noise
and outliers influence. For some situations, we might want

our model to be aware of such deviant behavior. This is the
case for variation in delta time, which reflects time sampling
issues and has an essential role in the pose estimation. As
mentioned in Section III-D, many sequences from KITII
dataset contained consecutive duplicated data and were not
considered as relevant for IO. Therefore, we decided to either
correct these outliers with linear approximation or remove
them from our training and validation dataset. Even though
this pre-processing method may not be perfect, a majority
of outliers were removed, and the few remaining ones are
automatically regularized by the neural network itself during
the learning process. As aforementioned, the outlier does not
necessarily mean that the data is incorrect. As mentioned in
Section VII-D, the Euler angle of the KITTI dataset could
vary from -π to π for two consecutive frames and vice versa,
resulting in high relative quaternions that could be considered
as outliers.

C. PERSPECTIVE OF NETWORK DESIGN
In this section, we discuss a future perspective for our neural
network architecture. Inside the kinematic block in Fig. 1,
the features coming from LSTM are fed into fully connected
layers to output relative kinematics. In this paper, we used
either many-to-one LSTM or many-to-many to output one
or N sets of relative kinematics where N is the size of the
input window. In [16], [56], the N features coming from
convolution were used to predict N sets of outputs. In [57],
the dimension of the feature vector was first reduced and
then concatenated to output one set of relative kinematic. In
Section VII-F, the influence of the distribution of future and
past features over the performances was introduced. When
one is ubiquitous, the accuracy of the prediction significantly
decreases. Therefore, we may adapt the transition between
the last LSTM and the linear layers to select specific features
and improve the performances to output shorter-dimension
relative kinematics.

We imagined future perspectives for our neural network
architecture, which we explain as follows. First, we consid-
ered a manual selection of the features among the N feature
vectors outputted by the LSTM. However, a loss of informa-
tion could occur during the learning process. Therefore, each
feature vector from each cell state of the LSTM should be
considered. Then, the network should determine which fea-
tures suit the best for the prediction automatically. A solution
could be to concatenate the N feature vectors into one unique
vector. However, the length of the concatenated vector may
be important. A higher-dimensional vector will significantly
increase the parameters between two layers, the computation
time, and the risk of overfitting. Therefore, the dimension of
this feature vector should be reduced. Pooling layers could be
used, but their use is less common with LSTM layers. As an
alternative solution, additional fully connected layers could
be used. Relevant features from each LSTM cell state would
be mixed into one vector. Then, the N resulting vectors could
be concatenated and fed into other fully connected layers
before regressing the relative kinematics. This method would
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decrease the number of parameters between two consecutive
layers. However, a more in-depth parameter configuration is
required.

In SectionVII-A, additional inputs such as previous quater-
nions and previous velocities were introduced. Both were
provided by a third device we consider as ground truth.
Therefore, their use is limited in the case of inertial odom-
etry (IO) with a low-cost IMU only. Such concern was first
introduced in [56]. During the learning process, the ground
truth values of the quaternion were used as an input whereas
predicted values were used during the testing process. An
additional computation method based on the design of the
neural network was supervising the prediction error. In this
paper, we did not investigate such aspect of the testing pro-
cess. Therefore, it would be interesting to consider this trail
in future work.

In this section, we introduced some perspectives to
be investigated. Such architecture questions correlated to
IO-problem should be discussed and investigated for future
work.

IX. CONCLUSION
This paper presented a deep analysis of DNN-based IO from
various aspects as a general guideline that could help the
community in their future work. The proposed analysis is
based on a bidirectional LSTM and multi-task learning loss
function that suits the kinematics in an end-to-end manner.
The DNN hyper-parameters correlated to IO were introduced
and globally analyzed in distinct sections. First, new inputs
correlated to the IO were introduced. From this analysis, the
input multiplication and the use of the rotation matrix to
represent orientation were highlighted as promising trails to
consider in future works. Then, a reminder about the difficul-
ties of generalizing hyper-parameters has been established.
Minor changes for the window size of the input and loss
functions led to an improvement of the overall performances.
In this paper, the question of relative quaternion represen-
tation has been discussed. The representation of the Hamil-
ton product with its associated loss function suits the best
to the IO problem. The question of the feature distribution
has also been introduced. We demonstrated that a balanced
distribution between past and future features tends to optimal
performances. Finally, additional notions such as data fre-
quency and data balance were introduced in the DNN-based
IO field. Although a conclusion could not be drawn for our
analyses, the results remain interesting for the future of the IO
research. For each hyper-parameter, new perspectives have
been opened for the IO. In future work, wewould like to focus
on a specific hyper-parameter and offer a deeper analysis to
achieve greater performances.
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