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ABSTRACT When modeling and optimizing electromagnetic components, it is the most time consuming
for obtaining the training samples with labels from full-wave electromagnetic simulation software. The
traditional machine learning (ML) model is usually effective in the training process, unfortunately, its
generalization ability is limited for practical application. Inspired by the artificial neural network (ANN)
and the Gaussian process (GP) kernel learning model, a deep kernel learning (DKL) model with multiple-
nonlinear-mapping layers is proposed based on particle swarm optimization (PSO) algorithm. In this work,
correlation characteristics of training samples are transformed by multiple layers, and then they act as inputs
of the GP model. Simultaneously, we use PSO to optimize the weights, biases of each mapping layer, and
GP hyperparameters, aiming to determine and optimize the DKL model structure. As a result, the proposed
DKL is suitable for processing small samples, as well as has the generalization ability of a deep network,
which avoids the phenomenon of gradient disappearance to some extent caused by error back propagation
(BP) in the deep network and improves the modeling accuracy while effectively ensuring the modeling
efficiency. In this study, the performance of the DKL model is evaluated by using the resonant frequencies
of two microstrip antennas (MSAs), and the predicted results of the DKL model are compared with those
via different modeling methods. The results show that prediction accuracy of the DKL is 18.906% higher
than that of the GP, 38.926% higher than the ANN, and 46.660% higher than the neural network ensemble
(NNE).

INDEX TERMS Gaussian process (GP), particle swarm optimization (PSO), resonance frequency.

I. INTRODUCTION
In recent years, optimization design of electromagnetic com-
ponents is generally by means of numerical simulation or
full wave electromagnetic simulation software, e.g., high
frequency structure simulator (HFSS), computer simulation
technology (CST), combined with global optimization algo-
rithm [1], [2], which have achieved some good research
results. Generally, high-fidelity results can be obtained by
simulating microwave components using full wave electro-
magnetic simulation software, while the process along with
high computational cost and time-consuming, since requir-
ing the invocation of electromagnetic simulation software
to evaluate individuals of global optimization method many
times. Therefore, using a surrogate model instead of electro-
magnetic simulation software to evaluate the fitness of elec-
tromagnetic components can save optimization time, which
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is a popular topic of electromagnetic optimization design
at present. Many modeling methods have been proposed by
researchers, such as artificial neural network (ANN) [3]–[5],
support vector machine (SVM) [6], [7], extreme learning
machine (ELM) [8]–[10], Gaussian process (GP) [11]–[13].

ANN is an intelligent science and information process-
ing system based on imitating the structure and function of
the human brain. It consists of a number of very simple
neurons connected to each other in a certain way, relying
on the dynamic response of the system itself to external
input information processing information [14], but its inter-
nal network structure is difficult to be determined, and the
deep network has the phenomenon of gradient disappear-
ance. SVM is a machine learning (ML) method based on
statistical learning theory. Its obvious feature is to improve
the generalization ability as much as possible, depending on
the Vapnik structural risk minimization principle, i.e., small
error obtained from the limited training set samples can still
ensure that it has small error for the independent test set [15].
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However, its kernel function parameter is difficult to be
determined and exposed. ELM is a novel feedforward ANN
with one single-layer. Based on Moore-Penrose generalized
inverse matrix theory, the output weight of the network can
be solved analytically through one-step calculation. More
and more researchers has been attracted by this simple and
effective learning algorithm [9]. Unfortunately, ELM is not
suitable for dealing with complex problems due to its simple
network structure.

GP is a rapid-developing ML method in recent years.
As a typical model of kernel learning (KL), it has a strict
statistical theoretical basis, and is suitable for dealing with
complex problems such as small samples, high dimensions
and nonlinearity [16]–[18]. GP is gradually developed on
the basis of continuous research on Bayesian neural net-
work (NN), which has the advantages of flexible non-
parametric inference, hyperparametric adaptive acquisition
and probabilistic significance of output [19]. Actually, GP is
a multi-layer perceptron with infinite units in its layer, which
considers sophisticated covariance functions or embeds GP in
more complex probabilistic structures. Therefore, it is able to
learn more from the data to own the powerful representation
ability. So far, however, most GP-based approaches don’t lead
to a principle way of obtaining truly deep architectures [20].
Deep neural network (DNN) is strong in processing big
data, however, when dealing with scarce electromagnetic
data samples, the trained DNN often exists ‘‘over-fitting’’
phenomenon, and also the process of training model takes a
long time [21].

Among all of evolution algorithms, particle swarm opti-
mization (PSO) algorithm is very effective. Due to its faster
convergence speed and lesser algorithm parameters, more
attention is being paid by lots of experts and researchers
in recent years. The iterative process leads to a stochastic
manipulation of velocities and flying directions according to
the best experiences of the swarm to search for the global
optimum in solution space [22].

In this paper, on the basis of the DNN structure and the
GP model, different from the method proposed in the litera-
ture [23], a deep KL (DKL) with multiple-nonlinear-mapping
layers is put forward, which is suitable for processing small
samples, owning the generalization ability of the deep net-
work and avoiding the phenomenon of gradient disappear-
ance in the error back propagation (BP) of deep network.
In the process of the proposed DKL model, relevant charac-
teristics of samples are transformed via multiple-nonlinear-
mapping layers, and then as inputs to the GP model for
prediction. Meanwhile, in order to determine the DKL model
structure, PSO algorithm is used to optimize the weights,
biases of each layer and GP hyperparameters. The resonant
frequencies of two microstrip antennas (MSAs) are used to
evaluate the performance of the proposed DKL.

The rest of paper is organized as follows. In Section II,
we describe the fundamental principle, model structure
and algorithm flowchart of the PSO-based DKL model.
Then, resonance frequency modeling results of rectangular

MSA (RMSA) and annular ring compact MSA (ARCMSA)
employing different modeling methods are compared, which
illustrate that the proposed DKL model is more effective and
has certain advantages in Section III. Finally, Section IV
concludes this study. Appendix is the relevant information
supplement to the proposed approach.

II. DEEP KERNEL LEARNING (DKL) MODEL
In this section, we will introduce the proposed DKL
model with multiple-nonlinear-mapping layers. This section
includes two parts. The first part introduces training and
prediction process of traditional GP. Based on traditional
GP, the second part proposes the DKL model structure,
and introduces specific modeling process exploiting PSO
algorithm.

A. GAUSSIAN PROCESS
The properties of GP are determined by the mean value
function and the covariance function [18], which can be
expressed as,{

m(x) = E(f (x))
k(x, x′) = E

{
[f (x)− m(x)]

[
f (x′)− m(x′)

]} (1)

where vectors x, x′ ∈ Rd , m (x) and k
(
x, x′

)
are mean

function and covariance function. The GP can be further
expressed as,

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
(2)

For the regression model, y = f (x)+ ε. The observed target
value y is affected by an extra Gaussian noise term ε, which is
random variable subject to normal distribution, and its mean
is 0 and variance is σ 2

n , denoted as,

ε ∼ N (0, σ 2
n ) (3)

Further, the prior distribution of y is written as,

y ∼ N
(
0,K+ σ 2

n I
)

(4)

where K = K (X ,X) is a positive definite covariance matrix
of n × n order symmetry, and matrix elements are used to
measure the correlation between xi and xj. n training sample
outputs y and n∗ test sample outputs f ∗ form a joint Gaussian
prior distribution, defined as,[

y
f ∗

]
∼ N

(
0,
(
K (X ,X )+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

))
(5)

where K = K (X ,X∗) is covariance matrix of order n × n∗

between n∗ test input samples and n training input samples,
K = K (X∗,X∗) is covariance matrix of order n∗ × n∗ for
test input samples itself.

The automatic relevance determination (ARD) squared
exponential kernel is often a default choice for GP regression.
In this case, sample functions are not ideally smooth for
practical optimization problems, so we use the ARD Matern
5/2 kernel [24]:

K
(
x, x′

)
= θ0

(
1+

√
5r2 (x, x′)+

5
3
r2
(
x, x′

))
× exp

{
−

√
5r2 (x, x′)

}
(6)
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where r2
(
x, x′

)
=

D∑
j=1

(
xj − x′j

)2
/θ2j , D is dimension of the

input variables of GP.
The properties of GP mean function and covariance func-

tion are determined by a set of hyperparameters, which
can be determined by the maximum likelihood function.
By establishing the logarithmic marginal likelihood func-
tion of the conditional probability of training samples, the
partial derivative of the hyperparameters is obtained, and
then conjugate gradient optimization method is used to find
the optimal solution of the hyperparameters. The negative
logarithm likelihood function can be expressed as,

l = logp(y|θ,X ) = −
1
2
yTK−1y−

1
2
log |K | −

n
2
log 2π

(7)

when the optimal hyperparameters are obtained, the trained
GP can be used for relevant prediction.

Based on new input x∗, the input value X of the training
sample set, and the observation target value y, distribution of
maximum possible predictive posterior y∗ can be given by

p(y∗|x∗,X, y) = N (m,6) (8)

where m and 6 is predicted mean and covariance respec-
tively, which can be defined by

m = K
(
X∗,X

)
K (X ,X)−1 y (9)

6 = K
(
X∗,X∗

)
− K

(
X∗,X

)
K (X ,X)−1 K

(
X ,X∗

)
(10)

The predicted mean and covariance describe the Gaussian
distribution that the predicted output is likely to follow, where
the predicted mean can be regarded as the predicted output
value of the nonlinear fitting tool, and the predicted variance
can be regarded as the evaluation of uncertainty of the pre-
dicted mean. The prediction variance reflects the accuracy of
the model at this point. The smaller the variance is, the higher
confidence in predicted results of the model will be.

B. THE PROPOSED MODEL
PSO is a random search algorithm that finds the best solution
by simulating the foraging behavior of birds, which is very
effective for finding the global optimal solution [21]. This
paper proposes a DKL model based on PSO algorithm, own-
ing multiple-nonlinear-mapping layers, which transform data
sample correlation characteristics. PSO is used to optimize
the DKL model structure, as well as the weights and biases
of each layer and GP hyperparameters.

Suppose N training sample labels are obtained by
using full wave electromagnetic simulation software. For
the modeling of microwave components with single vari-
able output, ith training sample set can be expressed
as
{
Gi = (xi, yi) |xi ∈ Rd , yi ∈ R, i = 1, . . . ,N

}
, where the

input is {xi}dk=1 = {xi1, xi2, · · · , xid } , k = 1, 2, · · · , d , d
is number of variables in a set of input, and yi is output of
corresponding inputs {xi}dk=1.

FIGURE 1. Schematic diagram of the proposed DKL model.

Suppose the number of multiple-nonlinear-mapping layers
is L, then the covariance function of GP is given by

k(x, x′ | θ )→k(f (L)(...(f (1)(x))), f (L)(...(f (1)(x′))) |W,B, θ )

(11)

where W is weight matrix and B is bias matrix of the map-
ping layers, W = (W(1), . . . ,W(L)), B = (B(1), . . . ,B(L)).
Layer 1, layer 2, . . ., and layer (L-1) adopt Sigmoid activa-
tion function for each unit, and the layer L adopts Linear
activation function for each unit. They can be expressed as,

f (1)
(
x(1)i

)
=

1

1+ e−W
(1)x(1)i +B

(1)
(12)

where, x(1)i = xi.

f (2)
(
x(2)i

)
=

1

1+ e−W
(2)x(2)i +B

(2)
(13)

where, x(2)i = f (1)(x(1)i ).

f (L−1)
(
x(L−1)i

)
=

1

1+ e−W
(L−1)x(L−1)i +B(L−1)

(14)

where, x(L−1)i = f (L−2)(...f (2)(f (1)(x(1)i ))), (L>3).

f (L)
(
x(L)i

)
=W(L)x(L)i − B(L) (15)

where, x(L−1)i = f (L−2)(...f (2)(f (1)(x(1)i ))), (L>2).
Suppose there are M neurons in the layer i (i >2) and Q

neurons in the layer (i − 1), then the weight matrix W(i) of
the layer i isM rows and Q columns, and the bias matrix B(i)

is M rows and 1 column, denoted as,

W(i)
=


w(i)
11 ... w(i)

1Q
... ...

...

w(i)
M1 ... w(i)

MQ

 , B(i)
=

B
(i)
1
...

B(i)M

 (16)

Figure 1 is the schematic diagram of the proposed DKL
model with multiple layers.

The specific operation process of the proposed DKL is
followed.

Step 1: Set the number of multiple-nonlinear-mapping
layers and the number of neurons of each mapping layer
initially.
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FIGURE 2. Flowchart of the proposed DKL model.

Step 2: Initialize the parametersW(1), . . . ,W(L),B(1), . . . ,

B(L) of each layer and hyperparameters θ of GP, and set them
as the initial position of PSO simultaneously.

Step 3: Apply the full-wave electromagnetic simulation
software to obtain N labeled samples, and they act as the
training data.

Step 4: Train the DKL model.
Step 5: Calculate the training error E of the DKL model.
Step 6: Judge whether the training error E is less than

threshold error E0. If yes, go to Step 7; If not, determine
whether the number of iterations of the PSO algorithm is
reached. if yes, we save the current model structure and
parameter values, and increase the number of mapping layers
or mapping layer neurons. Then, initialize the newly added
mapping parameters Wnew, Bnew, θnew, and go to Step 4; If
not, we update parametersW(1), . . . ,W(L), B(1), . . . , B(L) of
each layer and hyperparameters θ of the GP model. Here,
the W, B, θ are position parameters of PSO, and their
relationships are outlined in the Appendix. Then, go to Step 5.

Step 7: Save the parameters W(1), . . . , W(L), B(1), . . . ,

B(L) of each layer and the hyperparameters θ of GP at this
time, and also save the DKL model structure.

Step 8: Take the test data into the trained DKL model to
predict their outputs, and calculate their test error.

Figure 2 is the flowchart of the proposed DKL model.

III. CASES STUDY
In this study, two MSA resonant frequency modeling exam-
ples are selected to validate the performance of the proposed
DKL model. Because the inputs dimension in the selected
MSA examples is relatively low (four dimensions), the layers
number is set to three reasonably. In such a condition, the GP
covariance function equation (11) can be updated by

k(x, x′ | θ )→k(f (3)(f (2)(f (1)(x))), f (3)(f (2)(f (1)(x′)))

|W,B, θ ) where, W

= (W(1),W(2),W(3)),B = (B(1),B(2),B(3)).

(17)

A. RESONANT FREQUENCY OF THE RMSA
The first case is a RMSA from [25], [26], and its schematic
diagram from top view is shown in Figure 3a, and from the
side view in Figure 3b. The RMSA is composed of radi-
ant element, dielectric layer and ground, with the width W ,
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FIGURE 3. Schematic diagram of the RMSA.

TABLE 1. Resonant frequency of the RMSA.

the length L, the dielectric layer thickness h, and relative
dielectric constant εr .

As shown in Table 1, 33 sets of samples are measured by
Kara [25], [26], in where 26 sets are selected as the training
samples of the proposed DKL, and other 7 sets with the suffix
? are as test samples.

The error threshold E0 in this case is set as 1e-03 in
advance. We set neurons of layer 1 as 6, the neurons of
layer 2 as 6, and the neurons of layer 3 as 4, which means

FIGURE 4. Iteration result of the RMSA with network structure 6-6-4.

the network structure is 6-6-4 initially. At this time, there
are totally 105 parameters that need to be optimized by the
proposed DKL. In detail, the layer 1 has (24+6) param-
eters, the layer 2 has (36+6) parameters, the layer 3 has
(24+4) parameters, and the GP model has 5 parameters.
In the PSO algorithm, the total number of particles is 720,
the maximum number of iterations is 1000, the accelera-
tion constant is c1 = c2 = 2, and the inertia weight is
ω = 0.9. The range of the particle position is from -2 to
2, and the range of particle velocity is from -0.118 to 0.118.
Figure 4 shows the iterations process of the RMSA. After
1000 iterations, the training error E is 0.002903, which is
larger than the error threshold of 1e-03. The DKL model will
be optimized further. For the case of the RMSA, it is set in
the algorithm in advance that if the predicted accuracy of the
model is not enough, the total number of layers will remain
unchanged, and only the number of neurons in hidden layer
1 will increase. Since the error predicted by network structure
6-6-4 is larger than the threshold of 1e-03, the algorithm will
continue to optimize the internal network structure. Then,
the number of neurons in hidden layer 1 is updated from
6 to 7. At this time, the network structure is 7-6-4. In this
case, the proposedDKLwill optimize 116 parameters, among
which, layer 1 has (28+7) parameters, the layer 2 has (42+6)
parameters, the layer 3 has (24+4) parameters, and the GP
model has 5 parameters. As shown in Figure 5, when the
PSO algorithm iterates to 128th time, the training error E is
0.00098912 and less than the error threshold of 1e-03, satisfy-
ing the termination conditions. Therefore, the procedure stop.
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TABLE 2. Test results of the RMSA.

FIGURE 5. Iteration result of the RMSA with network structure 7-6-4.

Unlabeled test samples can be predicted by the trained DKL
model, and the test results are shown in Table 2, in which
column 1 is the measured resonant frequency.

In order to validate the prediction precision of the proposed
DKL, different modeling methods with the same 26 train-
ing samples are used to predict the labels of 7 sets of test
samples. Average percentage error (APE) given by equa-
tion (18) is used to evaluate the performance of different
models. Column 8 in Table 2 is the predicted results obtained
by the proposed DKL model with ARD Matern 5/2 kernel
function, named DKL52 here. Columns 2 through 5 show
the predicted results by different single NN model with
training algorithm of DBD (delta-bar-delta) [27], BP (back-
propagation) [27], EDBD (extended delta-bar-delta) [27],
and PTS (Parallel Tabu Search) [28]. Columns 6 through
7 show the results obtained by NNE (NN ensemble) based on
BiPSO (binary particle swarm optimization) [29] algorithm,
and GP52 model (GP with ARDMatern 5/2 kernel function),
respectively.

APE =
1
n

n∑
i=1

|ypredi − ytesti |∣∣ytesti ∣∣ × 100 (18)

FIGURE 6. APE of the RMSA.

where ypred are the predicted labels, ytest are the true labels,
and n is the number of test samples. The predictedAPE results
by different modeling methods are presented in Figure 6.

As can be seen from Table 2 and Figure 6, for the RMSA,
the APE of the proposed DKL52 is 0.519, which is within the
allowable range for antenna design. At the same time, it is
least among the other 6 modeling methods. By the calcula-
tion, prediction accuracy of the DKL52 is higher 18.906%
than that of the GP52, 68.791% than that of the best single
NN model that is based on PTS algorithms, and 46.660%
than that of the NNE based on BiPSO algorithms. We can
conclude that the proposed DKL52 has strong reliability and
high prediction accuracy, and can successfully model the
resonant frequency of the RMSA.

B. RESONANT FREQUENCY OF ARCMSA
The second case is an ARCMSA from [30], [31], and its
schematic diagram from top view is shown in Figure 7a, and
from the side view in Figure 7b. TheARCMSAhas an annular
ring patch formed with the outer radius a0 and inside radius
a1. The relative dielectric constant of substrate is εr . 70 sets
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FIGURE 7. Schematic diagram of the ARCMSA.

FIGURE 8. Iteration result of the ARCMSA with network structure 7-6-4.

of variables (a0, a1, h, εr ) are selected as training samples of
the proposed DKL.

The error threshold E0 is also set as 1e-03 in this case
in advance. We set neurons of the layer 1 as 7, neurons of
layer 2 as 6, and neurons of layer 3 as 4 initially, which
means the network structure is 7-6-4. There are totally

TABLE 3. Test samples of the ARCMSA.

116 parameters optimized. In detail, the layer 1 has (28+7)
parameters, the layer 2 has (42+6) parameters, layer 3 has
(24+4) parameters, and the GP model has 5 parameters.
In the PSO algorithm, particles number is 720, iterations
number is 1000, the acceleration constant is c1 = c2 = 2,
and the inertia weight is ω = 0.9. The range of particle
position is from -2 to 2, and the range of particle velocity
is from -0.118 to 0.118. As shown in Figure 8, when the
PSO algorithm research 136 iterations, the training error E

TABLE 4. Test results of the ARCMSA.
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FIGURE 9. APE of the ARCMSA.

is 0.00099754 and less than the error threshold of 1e-03,
satisfying the termination conditions. Then, the trained DKL
model is used to predict the test samples listed in Table 3, and
predicted results are shown in Table 4.

In order to validate the prediction precision of the proposed
DKL, we compare its predicted result with different modeling
methods in [32] that are trained by the same samples, and
their predicted APE are exhibited in Table 4 and Figure 9.
Column 1 in Table 4 is the measured resonant frequency, and
column 11 is the predicted results by the proposed DKL52
model. Column 2 through 9 in Table 4 present the pre-
dicted results by the ANNs based on cyclical order incremen-
tal update (COIU) algorithm, Powel-Beale conjugate gra-
dient (PBCG) algorithm, one step secant (OSS)algorithm,
scaled conjugate gradient (SCG) algorithm, reduced symmet-
rical conjugate gradient (PRCG) algorithm, Fletcher-Powel
conjugate gradient (FPCG) algorithm, LM algorithm, and
Bayesian regularization (BR) algorithm, respectively. Col-
umn 10 in Table 4 is the predicted results by the GP52
model.

It can be seen from Table 4 and Figure 9 that the APE of
the proposed DKL52 model is 0.648, which is least among
all the other 9 modeling methods. Its prediction accuracy is
higher 14.512% than that of the GP52, 81.206% than that of
the ANNmodel based on COIU algorithm, and 38.926% than
that of the ANN model based on LM algorithm. Therefore,
we may conclude that the DKL52 has strong reliability and
high prediction accuracy.

IV. CONCLUSION
In order to save the time of collecting labeled training samples
for modeling and optimizing electromagnetic component and
improve the design efficiency, a DKL model with multiple-
nonlinear-mapping layers is proposed in this study. The
model transforms correlation characteristics of training sam-
ples through multiple layer mappings, and takes the mapping

output as input of the GP. At the same time, PSO algorithm
is applied to optimize weight and bias of each layer and GP
hyperparameters, also includingmodel structure. These tricks
make up for the shortcomings of the ANN and the tradi-
tional GP, and solves the over-fitting problem of the NNE.
Moreover, to some extent, the proposed DKL model can
avoid the error propagation caused by gradient disappear phe-
nomenon of deep network, improve the prediction precision,
and shorten modeling and optimization time. The resonant
frequency of the RMSA and ARCMSA are used to evaluate
the performance of the proposed model. The experiments
results show that the performance of the proposed DKL is
better than the ANN, GP and NNE in the terms of prediction
precision. The DKL is suitable for processing small samples,
and its generalization ability is great.

Although the experiments presented here considering only
three layers in the hierarchy, the methodology is directly
applicable to deeper architectures, and we also find that the
model prediction ability is associated with number of each
layer’s neurons in the actual experiments, with which we
intend to experiment in the future. The proposed method
is not appropriated for the electromagnetic model with too
high dimensions, e.g., the electromagnetic model with inputs
of 30 dimensions, because it will take too much time to
train the GP, leading to low-cost performance. In conclusion,
the proposed DKL model with multiple-nonlinear-mapping
layers promotes the research on the optimization design of
electromagnetic components further.

APPENDIX
In PSO algorithm, velocity v and position x of the jth par-
ticle at generation t can be updated by the following two
formulas:

vj(t) = ω · vj(t − 1)+ c1 · random(0, 1)

·
(
pbestj − xj(t − 1)

)
+ c2 · random(0, 1) ·

(
gbest− xj(t − 1)

)
(A.1)

xj(t) = xj(t − 1)+ vj(t) (A.2)

where xj is the position of the jth particle, vj repre-
sents the velocity of particle j. Parameter ω is the inertia
weight, and parameters c1, c2 are the acceleration constants.
Pbestj represents the personal best solution (position) found
by the jth particle and gbest is the global best solution
(position). random(0, 1) represents random numbers in the
range [0,1].

According to the optimized objective matrixW, B, θ in the
study, the two formulas (A.1), (A.2) can be updated. Variable
matrixW will be:

vWj(t) = ω · vWj(t − 1)+ c1 · random(0, 1)

·
(
pbestWj −Wj(t − 1)

)
+ c2 · random(0, 1) ·

(
gbestW−Wj(t−1)

)
(A.3)

Wj(t) = Wj(t − 1)+ vWj(t) (A.4)
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The rows and columns of Wj, vWj,pbestWj, gbestW are
same as the input matrix W. Variable matrix B will be:

vBj(t) = ω · vBj(t − 1)+ c1 · random(0, 1)

·
(
pbestBj − Bj(t − 1)

)
+ c2 · random(0, 1) ·

(
gbestB−Bj(t−1)

)
(A.5)

Bj(t) = Bj(t − 1)+ vBj(t) (A.6)

The rows and columns of Bj, vBj,pbestBj, gbestB are same
as the input matrix B. And variable matrix θ will be:

vθ j(t) = ω · vθ j(t − 1)+ c1 · random(0, 1)

·
(
pbestθ j−θ j(t−1)

)
+ c2 · random(0, 1) ·

(
gbestθ − θ j(t − 1)

)
(A.7)

θ j(t) = θ j(t − 1)+ vθ j(t) (A.8)

The rows and columns of θ j, vθ j,pbestθ j, gbestθ are same as
the input matrix θ . The specific values of parameter ω, c1, c2
are set in Section III for the experiments.
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