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ABSTRACT The purpose of this work was to develop an open-source deep learning-based algorithm for
motion capture marker labelling that can be trained on measured or simulated marker trajectories. In the
proposed algorithm, a deep neural network including recurrent layers is trained on measured or simulated
marker trajectories. Labels are assigned to markers using the Hungarian algorithm and a predefined generic
marker set is used to identify and correct mislabeled markers. The algorithm was first trained and tested
on measured motion capture data. Then, the algorithm was trained on simulated trajectories and tested on
data that included movements not contained in the simulated data set. The ability to improve accuracy using
transfer learning to update the neural network weights based on labelled motion capture data was assessed.
The effect of occluded and extraneous markers on labelling accuracy was also examined. Labelling accuracy
was 99.6% when trained on measured data and 92.8% when trained on simulated trajectories, but could
be improved to up to 98.8% through transfer learning. Missing or extraneous markers reduced labelling
accuracy, but results were comparable to commercial software. The proposed labelling algorithm can be used
to accurately label motion capture data in the presence of missing and extraneous markers and accuracy can
be improved as data are collected, labelled, and added to the training set. The algorithm and user interface
can reduce the time and manual effort required to label optical motion capture data, particularly for those
with limited access to commercial software.

INDEX TERMS Optical motion capture, marker labelling, machine learning, biomechanics.

I. INTRODUCTION
Optical motion capture has been widely used for entertain-
ment, clinical, and research applications to quantify human
motion. Passive motion capture systems measure the three-
dimensional position of retroreflective markers using a series
of infrared cameras. However, these systems are unable to
associate the measured coordinates with specific physical
markers. For most applications, it is therefore necessary to
assign labels to the marker data to define what each marker
physically represents (e.g. an anatomical landmark). Given
perfect motion capture data, this problem can be formulated
as the search for an injective map from a set of three-
dimensional coordinates to a set of labels. However, in prac-
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tice, there may be extraneous markers in the data due to
reflection artefacts, known as ghost markers, or undesired
markers being in the cameras’ field of view resulting in
coordinates that do not correspond to any label. Additionally,
physical markers may be occluded at times resulting in labels
that are not assigned. The labelling process can be tedious
and time-consuming, particularly if the data are noisy and
contain occlusions and/or extraneous markers, which occurs
frequently in practice.

Previous work has sought to develop automated methods
to perform motion capture marker labelling. One approach
is to propagate labels forward through time after initializ-
ing the labels in the first frame of data [1]; however, this
can fail if the frame rate is not high enough, the marker
set is dense, ghost markers are present, or markers become
occluded and reappear later. Moreover, any errors that occur
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are propagated forward through time. Therefore, some have
incorporated skeleton models into their procedures to help
identify the markers [2]–[5]. These typically require an ini-
tialization pose or movement to generate or scale the skeleton
model for each participant. Statistical techniques such as
graph matching [6] and Gaussian mixture models [7] have
been proposed, but have been sensitive to marker occlusions.

Recent work has sought to apply advances in machine
learning to the problem of automated marker labelling. Han
et al. [8] and Rosskamp et al. [9] rendered the 3D marker
coordinates as a depth image and used convolutional neural
networks to perform themarker labelling. Ghorbani et al. [10]
framed the problem as the recovery of the correct ranking of a
shuffled marker set that could be approached using permuta-
tion learning. Jiménez Bascones et al. [11] used the Adaboost
algorithm to select an optimal set of weak classifiers based
on geometric relationships between markers to assign marker
labels. A limitation ofmachine learning-basedmethods is that
they require a large amount of existing labelled data to train
the model for each marker set. Han et al. [8] demonstrated
the use of synthetic data for model training by generating
simulated marker trajectories for their hand marker set from
Kinect (Microsoft, Redmond, USA) data for five participants.

Previously proposed marker labelling techniques have
reported accuracies ranging from 59.6-99.9%, depending on
data quality [2], [7], [8], [10], [11]. However, for most users
applying these techniques would be a significant challenge as
code to implement the methods has not been made publicly
available in most cases. Han et al. [8] shared code providing
the architecture of their neural network and some training data
for their hand marker set; however, this is only one part of
what is required to use the method to label data. There is also
commercial software available to semi-automate this process,
such as Nexus (Vicon Motion Systems Ltd, Oxford, UK;
vicon.com), Qualisys Track Manager (Qualisys, AB, Göte-
borg, Sweden; qualisys.com), and Cortex (Motion Analysis
Corporation, Santa Rosa, USA; motionanalysis.com). These
typically require some manual labelling to be performed to
initialize the labelling model for each participant. Further-
more, commercial options require the purchase of software
licenses and, therefore, may not always be accessible.

Our aim was to develop an open-source algorithm that can
automatically label motion capture markers using machine
learning in the presence of occluded and extraneous markers.
The algorithm can be trained on existing labelled motion
capture data or on simulated marker trajectories if there is
a lack of labelled training data. Here, we demonstrate both
applications and examine the influence of occluded or extra-
neous markers on labelling accuracy. We also assess the
potential to improve the accuracy of the algorithm as data
are collected and labelled using transfer learning. We share
code and data to generate simulated marker trajectories for
any custom marker set, train the algorithm, and perform the
labelling as well as a graphical user interface (GUI) that can
be used to run the algorithm, visualize the results, and correct
any errors.

II. METHODS
The marker labelling algorithm assigns labels to raw motion
capture data based on probabilities predicted using a deep
neural network, then verifies and corrects the results based
on a pre-defined marker set. We demonstrated the use of the
algorithm for two use cases on different data sets. We first
trained the algorithm on pre-existing labelled data using Data
Set A, a large data set of processed marker trajectories.
We then trained the algorithm on simulated marker trajecto-
ries and tested the accuracy on Data Set B, which consisted
of raw, unprocessed motion capture data for a wide range of
movements. With Data Set B, we also showed how perfor-
mance can be improved as data are labelled and added to the
training set using transfer learning. We assessed the accuracy
on movements not contained in the training set, examined the
impact of occluded and extraneous markers, and compared
the results to commercial software.

A. EXPERIMENTAL DATA COLLECTION
Two motion capture data sets were used. Data Set A included
optical motion capture data for 184 participants randomly
selected from a larger existing data set [12]. At the time of
testing, participants provided informed written consent for
future use of the data and the Health Sciences Research Ethics
Board at the University of Ottawa approved the secondary use
of the data (H-08-18-1085). Reflective markers were placed
at 45 anatomical locations directly on the participant’s skin
or clothing. Each participant then performed a series of func-
tional athletic movements including a drop jump and right
and left versions of a hop-down, L-hop, lunge, step-down,
bird-dog, and T-balance [12]. Data were recorded at 120Hz
using a Raptor-E motion capture system (Motion Analysis
Corporation, Santa Rosa, USA). Marker labelling and gap
filling were performed using the software Cortex (Motion
Analysis Corporation, Santa Rosa, USA). The marker labels
were rigorously checked and manually corrected to provide
ground truth labels. The gap-filled data with any extraneous
markers removed were used for all training and testing as we
did not have access to the raw data. These data were randomly
divided into a training set of 100 participants (1140 trials),
a validation set of 42 participants (474 trials), and a test set
of 42 participants (480 trials).

Data Set B consisted of 18 participants performing the
same athletic movements listed above as well as a series of
functional and transitional movements including three trials
of running, one of walking, and three trials each of kneel-
to-prone, kneel-to-run, prone-to-run, prone-to-kneel, run-to-
prone, and run-to-kneel movements [13]. For the walking
trial, participants walked in a criss-cross pattern to cover the
capture volume. In the running trials, the participants started
the trial outside of the capture volume and ran through the
volume. For the other trials involving running, the partici-
pants ran into or out of the capture volume, depending on the
task. All participants provided informed written consent and
the protocol was approved by the University of Ottawa Ethics
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Board (H-06-18-721). In this data set, 62 reflective markers
were attached to the participant at anatomical locations and
in clusters on rigid, plastic plates. Data were recorded at
240Hz using a Vantage V5 motion capture system (Vicon,
Oxford, UK). Unprocessed and unlabelled marker trajec-
tories were exported from Vicon Nexus 2.5 to .c3d files.
It was not guaranteed that each ‘marker’ in the .c3d file
contained the data for one physical marker and these some-
times contained data for multiple physical markers as they
became visible or occluded. Therefore, when the raw data
were imported by the algorithm, trajectories were split and
added as a new marker trajectory when the distance between
the marker before and after an occlusion was greater than
the distance to the closest marker in the frame following
occlusion.

Data Set B contained extraneous markers beyond the
62 markers that were part of the marker set. Three partici-
pants had an additional 23 anatomical markers attached as
calibration markers that were not removed for the motion
trials. Five participants had the four-marker calibration wand
lying on the floor within the capture volume as well as ghost
markers resulting from other infrared cameras, and eleven had
the calibration wand and infrared cameras and one or two
additional markers attached to the participant (C7 and/or
scapula). Two versions of Data Set B were created: one with
the extraneous markers removed and one where they were
retained. The data set was randomly divided in two, with nine
participants available to be used for additional training and
nine reserved only for testing.

The markers for Data Set B were labelled in Nexus and
labels were exported at three stages of the labelling process.
The automatic labelling in Nexus uses a participant-specific
labelling skeleton. The joint centre locations and marker
positions on each segment are estimated based on correctly
labelled motion capture data. This skeleton is then fit to new
motion capture data to automatically assign labels. First, a
static calibration trial was manually labelled and used to scale
a generic skeleton and calibrate marker locations to create
the skeleton for each participant. The automatic labelling
pipeline was then run and the resulting labels were exported
to produce the first set of labels (Nexus-Stc). Next, a func-
tional range of motion trial was automatically labelled using
the statically calibrated skeleton then manually corrected for
each participant. These were used to perform the dynamic
skeleton calibration in Nexus. This procedure updates the
skeleton’s joint andmarker locations as well as estimates joint
axes of rotation, joint ranges of motion, and expected vari-
ability in marker positions. The automatic labelling pipeline
was run using the dynamically calibrated participant-specific
skeletons for each motion trial and the labels were exported
(Nexus-Dyn). Finally, these labels were manually verified
and corrected to obtain the ground truth labels for Data Set
B. Labelling in Nexus was performed only with extraneous
markers retained as they could not be automatically removed
from the Vicon input files.

FIGURE 1. A participant from Data Set A performing an L-Hop. The
45 measured markers are shown in pink and the simulated locations of
the 63, 62 markers of the Data Set B marker set are shown in blue.

B. SIMULATED MARKER TRAJECTORIES
We used OpenSim 4.0 [14] to generate simulated trajectories
for the cluster-based marker set used in Data Set B using
the kinematics of 100 participants from Data Set A. First,
the 45 markers used in Data Set A were placed on a mod-
ified version of the Rajagopal model [15]. The model was
modified to include a neck joint and the range of motion
was increased for all joints. Then scaling, inverse kinematics,
and a body kinematics analysis were performed in OpenSim
for the 100 participants in Data Set A. An OpenSim marker
set was created for the 62 markers used in Data Set B and
simulated trajectories for these markers were generated based
on the body kinematics and local segment coordinates of the
markers (Fig. 1). Data were upsampled using cubic spline
interpolation to match the 240Hz of Data Set B.

C. PRE-PROCESSING
To prepare the data for input to the neural network, the marker
coordinates were first rotated about the vertical axis, so that
the participant faced the positive x-direction at the start of the
trial. In the training data, this was performed automatically
based on the acromion markers. In the test data, the rota-
tion angle to approximately align the data was manually
input. Trajectories were low-pass filtered with a zero-phase
second-order 6Hz Butterworth filter [16] and gaps smaller
than 12 frames were linearly interpolated. For each marker,
mi, the marker trajectories were windowed across the vis-
ible range of mi. In the test and validation data, windows
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FIGURE 2. Overview of initial label assignment with an example of three
physical markers (labels A, B, and C) that are split into five trajectories
due to occlusions.

of 120 frames were created. If the number of frames was
not divisible by 120, the last window would be smaller,
unless there were 12 or fewer frames remaining in which case
these were added on to the previous window. In the training
data, each window was a random length between 12 and
240 frames so that the neural network would have seen win-
dows of different sizes to prepare for the last window of each
marker that was usually a different size. If there were more
markers than the number of labels, Nlabels, then the Nlabels
markers visible for the greatest portion of the window were
retained. If there were greater than Nlabels markers with equal
visibility, the Nlabels markers closest to the marker of interest
were retained. Any gaps in the retained marker trajectories
were filled with the mean position of the retained markers.
The x, y, and z coordinates of the retained markers relative
to mi were calculated and the trajectories were sorted by
mean distance to mi. The Euclidean norm of the velocity and
acceleration of the retained markers relative to mi were cal-
culated. Relative positions, velocities, and accelerations were
normalized by the mean values observed across all markers
in the training data. A (window size) × (5 ∗ (Nlabels − 1))
matrix was constructed containing the positions, velocities,
and accelerations of the retained markers relative to mi for
input to the neural network (Fig. 2).

D. NEURAL NETWORK
A deep neural network was used to calculate the prob-
abilities of the labels for each window of mi. Five neu-
ral network architectures were compared to select the final

TABLE 1. Comparison of neural network architectures.

architecture for the algorithm. These included two architec-
tures using recurrent layers: long short-term memory units
(LSTMs) or gated recurrent units (GRUs). These networks
included two recurrent layers (LSTM or GRU) with 10%
dropout and 128 cells, a fully connected layer with 128 nodes,
one-dimensional batch normalization, a rectified linear unit
(ReLU), a fully connected layer, and a softmax function.
Three established convolutional neural network (CNN) archi-
tectures were examined as well, including ResNet-18 [17],
ResNet-50 [17], and EfficientNet [18]. Each CNN was mod-
ified such that the first convolutional layer took one channel
as input and the output of the final fully connected layer
matched the number of markers in the marker set. All neural
networks were implemented in PyTorch [19] and a stochas-
tic gradient descent (SGD) optimizer with momentum was
used to train the neural network with a cross-entropy loss
criterion. The algorithm was trained for 10 epochs using
each of these architectures on the Data Set A training set
and tested on the validation set. Training and testing were
performed on one NVIDIA Titan RTX GPU on a server with
two Intel R© Xeon R© Gold 6248 CPUs and 384GB of RAM.
The accuracy was similar for all networks; however, the train-
ing time was significantly less for the recurrent networks
(Table 1). The algorithm was then tested on Data Set B with
the extraneous markers removed using each recurrent net-
work. The LSTM-based algorithm slightly outperformed the
GRU-based algorithm (92.8% vs. 91.8% accuracy). There-
fore, the architecture based on LSTMs was selected to use
going forward.

Hyperparameter tuning was performed to select the num-
ber of LSTM layers, number of LSTM cells, LSTM dropout
percentage, number of nodes in the fully connected lay-
ers, and the momentum and learning rate of the optimizer.
Optimal parameters were determined through Bayesian
hyperparameter optimization using the Ax Platform [20]. The
micro-averaged F1 score, which is the harmonic mean of
precision and recall and is equivalent to the classification
accuracy, was used as the criterion for the optimization. The
100-participant training set and 42-participant validation set
of Data Set A were used for hyperparameter optimization.
Through this analysis, we found the best results with 3 LSTM
layers, 256 LSTM cells, 0.17 dropout, 128 fully connected
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FIGURE 3. Final architecture of the deep neural network used for the
labelling algorithm.

nodes, a learning rate of 0.078, and momentum of 0.65. The
final architecture used is shown in Fig. 3.

E. LABEL ASSIGNMENT
The output of the neural network was a 1 × Nlabels vector
for each window of mi containing the probabilities of each
label being correct. New windows were generated by seg-
menting the trial marker data at frames where any marker
appears or disappears. This ensures that each marker label
exists only once in each window, which is necessary because
a given marker label may be split across multiple trajec-
tories and this is, therefore, not guaranteed with arbitrarily
segmented windows. Assigning labels can be formulated as
an unbalanced assignment problem on a weighted barpartite
graph. Therefore, for each window, the optimal marker labels
were assigned using the Hungarian algorithm [21], which has
a time complexity of O(n3), to minimize the cost function

min
Nmarkers∑
i=1

Nlabels∑
k=1

αikxik (1)

αij = log
(
1− pik
pik

)
(2)

where xik = 1 if marker i is assigned label k and 0 otherwise
and pik is the probability of marker i being label k in this
window, as determined by the neural network.

At this point, it is possible that windows from the
same marker have been assigned different labels. Therefore,
the weighted mode was used to assign one label to the entire
trajectory. The predicted labels in each frame were weighted
by the probability for the prediction. A check was then per-

FIGURE 4. Overview of the marker set verification. First, the distances
between a marker, i , and all other markers in its body segment, Bi , were
compared to the distances observed in the training data, δij . Then the
marker coordinates defined in the marker set were used to attempt to
identify unlabeled markers.

formed to identify cases where two simultaneously visible
markers were assigned the same label and this duplication
was corrected by removing the labels from all but the marker
with the highest probability.

F. MARKER SET VERIFICATION
The OpenSim [14] marker set, which defines the local coor-
dinates of each marker with respect to its associated body
segment, was used to identify incorrectly labelled markers
based on the assumption that each body segment is approxi-
mately rigid (Fig. 4). First, the distances between a marker, i,
and the other markers attached to the same body segment,
j ∈ Bi, were calculated and compared to the distances
observed in the training data set, δij. If the distances to all
other markers on the same segment were outside of three
standard deviations of the distances in the training set for
that marker, the assigned label was removed. An attempt was
then made to assign a label to the unlabelled markers. For
each unlabelled marker, labels that had not been assigned
during the marker’s visible frames were identified and the
mean probabilities were compared. Moving from highest to
lowest probability labels, the distances to other markers in
the body segment that would result from each available label
were calculated and the label was assigned if the distance
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fell within three standard deviations of that observed in the
training set. If the distances were outside of the range for all
available labels, this marker remained unlabelled.

Finally, the marker set was used to attempt to assign labels
for body segments where at least three markers were iden-
tified, but one or more were unlabelled. The local marker
coordinates, defined in the OpenSim marker set, were scaled,
rotated, and translated using a Procrustes analysis [22] to
align them with the measured markers. If a good alignment
was achieved, indicated by the distances between the aligned
marker set and measured markers all being less than a chosen
threshold, th1, an attempt was made to locate the unlabelled
marker. If there was an unlabelled marker within a threshold,
th2, of the expected position based on the aligned marker
set coordinates, it was assigned the missing label. We used
th1 = 3cm and th2 = 4cm based on the spacing of markers
in our marker set.

G. ANALYSIS
We first explored the case where the algorithm is trained on
pre-existing labelledmotion capture data. The neural network
was trained on the 100 participants in the Data Set A training
set and the labelling algorithmwas used to label the 42 partici-
pants in the test set. To assess performance, the predicted and
ground truth labels for the markers were compared at each
frame of data across all trials. The classification accuracy
(micro-averaged F1 score), markers labelled incorrectly, and
markers that should have been labelled but were not (falsely
unlabelled) were calculated.

We then examined the performance for a different data
set using simulated marker trajectories to train the neural
network. The simulated marker trajectories for the Data Set
B marker set were used to train the neural network. The
algorithm was then used to label all trials from the nine
participants in the Data Set B test set with the extraneous
markers removed. Whereas Data Set A had previously been
gap-filled, Data Set B provided a realistic test of the accuracy
of the labelling procedure on raw marker data that contain
occlusions, missing markers, marker data split into multiple
trajectories, and movements outside of those in the training
set. Metrics to quantify data quality were also calculated.
We examined the sensitivity of the algorithm to the size of the
training set by training the algorithm on subsets of simulated
trajectories ranging from 10-100 participants.

In practice, it would be possible to add correctly labelled
data into the training set of simulated data as the procedure
is used over time. Therefore, we used transfer learning by
starting with the algorithm trained on the simulated data
from 100 participants and performed additional training on
labelled data from Data Set B. We evaluated the effect of
increasing the training set through transfer learning by per-
forming additional training on a single trial from Data Set
B and then for all trials from 1-9 participants in the training
set of Data Set B. Each trained algorithm was used to label
the nine participants in the test set. The addition of one

TABLE 2. Description of the data sets used.

(Sim+1) and nine (Sim+9) participants was investigated in
more detail.

Lastly, the accuracy of the labelling procedure when extra-
neous markers are present was tested. The algorithm was
trained on simulated marker trajectories used to label Data
Set B with the extraneous markers retained.We calculated the
same metrics as above as well as the percentage of markers
that should not have been labelled but were (falsely labelled).
Falsely labelled markers only exist if there are extraneous or
ghost markers present in the data. The data of one participant
with extraneous markers retained were used to update the
neural network weights and the test set data was labelled.
The same process was followed for updating based on nine
participants with extraneous markers included. These results
were compared with the automatic labelling with the extra-
neous markers retained performed in Vicon Nexus using the
statically and dynamically calibrated skeleton models.

Five trials where the labelling accuracy for our algorithm
and Nexus were within 1% of each other and were close to
90% were selected for manual correction in both Nexus and
our GUI. The time to perform the correction for each trial was
recorded.

III. RESULTS
A. DATA SET A – TRAINING ON PRE-EXISTING DATA
Data Set A had previously been gap filled and, as a result,
had few occlusions and gaps in marker trajectories (Table 2).
It included no extraneous physical markers and few trials
where markers were missing for the entire trial.

The accuracy of the marker labelling algorithm on the Data
Set A test set was 99.6%. Across all data frames in the set,
0.1% of markers were assigned an incorrect label, and 0.3%
of markers were not assigned a label (Table 3).

B. DATA SET B – TRAINING ON SIMULATED
TRAJECTORIES
Data Set B comprised raw motion capture data before any
labelling, filtering, or gap filling had occurred. Additionally,
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TABLE 3. Labelling performance on data sets A and B.

the movements performed frequently caused marker occlu-
sion. As a result, marker data were split into a greater number
of trajectories and there were more occlusions than in Data
Set A (Table 2).

The algorithm was trained on the simulated marker trajec-
tories generated based on the body kinematics of 100 partici-
pants from Data Set A. In the nine participants from the Data
Set B test set, 92.8% ofmarkers were labelled correctly across
all frames when extraneous markers were removed (Table 3).
3.7% of markers were assigned an incorrect label and 3.4%
were not labelled. Using transfer learning to update the neural
network weights based on correctly labelled marker trajecto-
ries from one participant (Sim+1) improved the accuracy of
the labelling procedure to 97.1%. Adding the labelled data of
nine participants (Sim+9) further improved the accuracy to
98.8%.

In Data Set B, the participants performed the same athletic
movements used in Data Set A as well as eight movements
unknown to the neural network.When the neural networkwas
trained on the simulated trajectories alone, 97.2% of markers
were accurately labelled for movements included in the train-
ing set compared to 87.0% in previously unseen movements
(Fig. 6A). However, updating the neural network weights by
adding in labelled data from just one participant (Sim+1)
increased the accuracy on these unknown movements to
95.0%, and further improvement to 98.2% was obtained by
adding nine participants to the training data (Sim+9).

The number of participants used to train the algorithm
had a greater effect on the accuracy for previously unknown
movements than for the known movements contained in the
training data (Fig. 5A). Adding labelled data to the simulated

FIGURE 5. Accuracy of labelling the Data Set B test set with extraneous
markers removed for known and unknown movements. (a) The effect of
the number of participants included in the training set of simulated
marker trajectories. (b) The effect of the number of participants used for
transfer learning. A single trial from a single participant is also included.

training set through transfer learning also had a larger effect
on the accuracy for unknown compared to knownmovements
(Fig. 5B). Adding a single trial increased the overall accuracy
by 1% and adding all trials from one participant increased
accuracy by 3.2%. Additional participants typically contin-
ued to improve accuracy by less than 1% per participant.

When the extraneous markers from Data Set B were
included in the input to the labelling algorithm, the overall
accuracy was reduced to 83.5% (Table 3). When the algo-
rithm was trained on only the simulated marker trajectories,
the labelling accuracy was 87.4% for known movements and
78.2% for unknownmovements (Fig. 6B). However, updating
the neural network weights by performing additional training
on labelled data including extraneous markers from one par-
ticipant (Sim+1) increased the accuracy to 92.3% for known
movements and 89.0% for unknown movements. Performing
training on the data of nine participants (Sim+9) includ-
ing extraneous markers improved the accuracy to 96.6%
for known movements and 94.1% for unknown movements.
Overall, the accuracy of the Sim+1 and Sim+9 algorithms
had similar performance to the statically and dynamically
calibrated models in Nexus, respectively. Nexus had a higher
percentage of falsely labelled markers whereas the algorithm
had more falsely unlabelled markers.

The visibility of the markers, which indicates the amount
of time the markers were not occluded, was associated with
increased accuracy of the labelling algorithm (Fig. 7A).
Whereas the number of markers missing from the entire trial
had little effect when extraneous markers were removed,
a greater number of missing markers negatively affected
the accuracy when the extraneous markers were included
(Fig. 7B). There was a similar relationship between these
parameters and accuracy for the automatic labelling per-
formed in Nexus using a static calibration (Fig. 7C).

The five selected trials took an average of 13.4± 6.7 min-
utes to manually correct in our GUI and 22.6± 23.9 minutes
in Nexus. The difference in time was mainly due to one trial
taking significantly longer (62 vs. 12 minutes) in Nexus; the
times for the other trials were similar.
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FIGURE 6. Accuracy of the labelling procedure on nine participants from Data Set B when trained on simulated trajectories (Sim) and updated using
motion capture data from one (Sim+1) or nine participants (Sim+9) and accuracy of automatic labelling in Vicon Nexus following the static
(Nexus-Stc) and dynamic (Nexus-Dyn) calibrations. Results are shown when extraneous markers are removed (a) or retained (b) and are separated by
movement type.

FIGURE 7. Associations of marker visibility and missing markers with
labelling accuracy the Sim+1 models when extraneous markers were
removed (a) or retained (b) and for the automatic labelling in Nexus
following static calibrations (c). Missing markers indicated the number of
labels missing from the entire trial. R2 values for linear regressions
between the variables are shown.

Themedian time to load and label a trial with our algorithm
was 5.8 seconds (range 0.6-331.3s) with a mean processing
speed of 254± 74 frames/s. The mean speed of the automatic
labelling in Nexus was 130± 40 frames/s. In addition, a total

of 32.8 minutes was spent to manually label static calibration
trials for the nine participants in Nexus, which were used
for the static calibration of the Nexus skeleton (Nexus-Stc).
A total of 17.1 hours was spent to manually correct the labels
in the functional range of motion trials in Nexus used for the
dynamic calibrate of the Nexus skeleton (Nexus-Dyn) for the
nine participants.

C. GRAPHICAL USER INTERFACE (GUI) AND SOURCE
CODE
To facilitate use of the algorithm, we created a graphical
user interface that allows a user to import a .c3d file, run
the automatic labelling routine, review the results, correct
any errors, and export a labelled .c3d file (Fig. 8). The
GUI provides error detection for unlabelled and duplicated
markers. The marker visualization indicates the confidence
in the predicted label based on the probability. The other
options for visualization are to highlight unlabelled mark-
ers or to colour the markers based on their associated body
segment. Mousing over a marker in the plot provides the
marker number and current label. The GUI was tested on a
Windows 10 desktop with an Intel R© CoreTM i7-9700 CPU
and 16GB of RAM. The data required to generate the sim-
ulated marker trajectories and source code are available at
https://github.com/aclouthier/auto-marker-label.

IV. DISCUSSION
We have developed an algorithm for automatically labelling
motion capture markers using machine learning. The algo-
rithm can be trained on measured or simulated marker tra-
jectories. It is able to label movements outside of those con-
tained in the training data with an opportunity to improve
the accuracy by adding additional labelled motion capture
data to the training set. There is no participant-specific ini-
tialization or calibration required. The algorithm is able to
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FIGURE 8. GUI that allows a user to run the automated marker labelling procedure on a .c3d file, make any necessary corrections, and
export a labelled version. The visualization colours the markers based on the confidence in the predicted label.

label markers in data that contain occlusions, ghost markers,
missing markers, and extraneous markers. We have provided
Python code for generating the simulated training data based
on custom OpenSimmarker sets, training the neural network,
and running the labelling procedure as well as a GUI for
performing the labelling and verifying the results.

The performance when training the algorithm on labelled
motion capture data using Data Set A was excellent, with
an accuracy of 99.6%. This Data Set represented close to
optimal conditions as it contained high-quality data with few
occlusions and no extraneous markers, no movements outside
of those in the training set, and a large amount of labelled data
to use for training. In contrast, we used Data Set B to examine
a more realistic case where there were a larger number of
occlusions, extraneous markers, movements outside of the
training data, and no existing training set.

The marker labelling algorithm trained on simulated tra-
jectories performed very well on the activities included in
the simulated data, achieving an accuracy of 97.2% across all
frames of data for nine participants in Data Set B. However,
on previously unseen movements, the accuracy varied by
task. Walking trials and trials involving kneeling all had a
mean accuracy greater than 80%, but the mean accuracies for
running trials and trials transitioning between running and
prone positions were between 70-80%. With the exception
of the bird-dog, the training movements all involved upright
postures, which may be the reason for this reduction in
accuracy for prone positions. The accuracy was likely less
for running movements because of the greater velocities and
accelerations compared to the training movements as well

as the participant entering and exiting the capture volume,
reducing marker visibility at the start and end of the trial.
We obtained continuous improvements in accuracy with each
participant added to the training set through transfer learning.
However, addingmotion data from one participant in Data Set
B improved the accuracy such that all movement types had
mean accuracies greater than 90%. Therefore, in practice, this
reduction in accuracy for movements outside of the simulated
data can be largely eliminated once a few trials of the new
movements have been labelled and added to the training set.

We have demonstrated that the algorithm can label markers
in the presence of occlusions and extraneous markers. Data
Set B included both temporarily occluded markers as well as
up to five markers missing from the entire trial. A smaller
marker visibility percentage was somewhat associated with
lower accuracies (Fig. 7). The number of missing markers
was associated with reduced accuracy only if the extrane-
ous markers of the calibration wand, infrared camera, and
additional anatomical markers were included. It was expected
that decreased marker visibility and missing markers would
negatively affect the performance and the correlations were
similar to those resulting from the automatic labelling in
the commercial software Nexus. When the algorithm was
trained on simulated trajectories, the presence of extraneous
markers in the trial decreased labelling accuracy, reducing it
to 83.5% compared to 92.8% when extraneous markers were
removed. A previously proposed approach similarly reported
reduced accuracies when additional markers were present in
the capture volume [8]. Updating the neural network weights
based on the data from one participant, including extraneous
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markers, improved the accuracy to 90.9%, which was on par
with the performance of the statically calibrated Nexus model
at 91.6%. Our algorithm also offers the ability to further
improve results by continuing to add data to the training set
as more trials are labelled.

The processing speed of our algorithm was faster than that
of the automatic labelling in Nexus. However, a significant
advantage of our algorithm is not requiring a participant-
specific calibration. This requires significant manual effort,
especially for the dynamic calibration for which a functional
range of motion trial must be labelled for each participant.
If the algorithm is trained on existing motion capture data,
then no manual intervention is required before labelling new
data using the same marker set. If simulated marker trajec-
tories are used in training, then some additional trials may
need to be labelled, corrected, and added to the training set
to attain the same accuracy as Nexus. However, these can be
trials that would otherwise need to be corrected and once an
acceptable accuracy is reached, no further manual effort is
required for new participants. Additionally, we found that the
time required to manually correct the labels using our GUI
was similar to or less than when using Nexus, depending on
the trial.

The presented labelling algorithm does have some limita-
tions. The algorithm requires the participant to be facing in
the positive x-direction and large deviations from this will
reduce the accuracy. Ghorbani et al. [10] proposed using
principal component analysis to align the marker data during
pre-processing; however, their data consisted of walking,
jogging, sitting, and jumping tasks. This method will fail to
align the marker data in postures that deviate from a standard
posture, such as kneeling or having the arms raised above
the head. Therefore, we have opted to perform this alignment
manually, when it is necessary, and have included an option
in our GUI to input the degrees to rotate about the vertical
axis based on the marker visualization. The data are rotated
back to their original orientation before being exported. Our
simulated trajectory generation and marker set verification
steps require a marker set to be defined in OpenSim. If our
pipeline to generate simulated trajectories is used, the marker
set must be based on the same OpenSim model used here.
However, if existing data are used for training, any OpenSim
model can be used, including the addition of external objects.
Furthermore, the algorithm could be used without the marker
set verification steps if the user does not wish to create the
OpenSim marker set. This algorithm cannot be used for real-
time marker labelling as currently implemented. However,
it is intended for use in post-processing of data and is able to
label more frames/s than Nexus and exceeds or is similar to
previously reported speeds, which range from 4-251 frames/s
[3], [4], [6]. The initial time to train the neural network on the
simulated data is somewhat long due to the size of this data
set (100 participants). It took 21 hours to train 10 epochs on
an NVIDIA Titan RTX GPU. However, this only needs to be
completed once for a given marker set and then no further
initialization or calibration is required for individual par-

ticipants. Furthermore, good accuracy can still be achieved
using less training data, especially for movements contained
in the training set (Fig. 5), which would reduce training time.
Adding to the training set through transfer learning is also
quicker, taking approximately one minute per trial. Finally,
in the GUI, small gaps are interpolated using a cubic spline,
but more advanced gap filling methods could be implemented
in the future.

V. CONCLUSION
The proposed algorithm is able to automatically label motion
capture markers in the presence of occluded and extraneous
markers. The algorithm can be trained on existing or simu-
lated marker data. The accuracy of the algorithm is on par
with commercial software and has the potential to improve
as data are collected, labelled, and added to the training set.
The code and data required to generate the simulated marker
trajectories and train the algorithm and the GUI are open
source, making the algorithm accessible for many motion
capture users. This automated marker labelling algorithm has
the potential to reduce the time and manual effort required
to label motion capture data, especially for those who have
limited access to commercial software.
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