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ABSTRACT The learning of classification models to predict class labels of new and previously unseen
data instances is one of the most essential tasks in data mining. A popular approach to classification is
ensemble learning, where a combination of several diverse and independent classification models is used
to predict class labels. Ensemble models are important as they tend to improve the average classification
accuracy over any member of the ensemble. However, classification models are also often required to be
explainable to reduce the risk of irreversible wrong classification. Explainability of classification models is
needed in many critical applications such as stock market analysis, credit risk evaluation, intrusion detection,
etc. Unfortunately, ensemble learning decreases the level of explainability of the classification, as the analyst
would have to examine many decision models to gain insights about the causality of the prediction. The aim
of the research presented in this paper is to create an ensemble method that is explainable in the sense that
it presents the human analyst with a conditioned view of the most relevant model aspects involved in the
prediction. To achieve this aim the authors developed a rule-based explainable ensemble classifier termed
Ranked ensemble G-Rules (ReG-Rules) which gives the analyst an extract of the most relevant classification
rules for each individual prediction. During the evaluation process ReG-Rules was evaluated in terms of its
theoretical computational complexity, empirically on benchmark datasets and qualitatively with respect to
the complexity and readability of the induced rule sets. The results show that ReG-Rules scales linearly,
delivers a high accuracy and at the same time delivers a compact and manageable set of rules describing the
predictions made.

INDEX TERMS Data mining, ensemble learning, explainable algorithms, rule-based classification.

I. INTRODUCTION
One of the most important tasks in Data Mining applications
is predictive analytics, or, in other words, the classification
of previously unseen data instances by learning models from
training data with known groundtruth. Various algorithms
exist to develop such predictive models, i.e. one popular
predictive algorithm is the Top Down Induction of Decision
Trees (TDIDT) such as ID3 [1] or C4.5 [2], also known as
‘Divide and Conquer’. A more recent approach to predictive
model generation is Deep Learning [3]. However, whereas
Deep Learning has a reputation for developing highly accu-
rate models in comparison to alternative approaches (such
as decision trees), they are black box approaches, meaning
they do not explain to the human analyst the causality of
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individual predictions. Such explainability has also been the
motivation of rule-based algorithms for predictive analysis
such as Ripper [4], CN2 [5], G-eRules [6], a set of related
algorithms collectively termed the Prism family of algorithms
with its first algorithm described in [7], etc. Rule-based
algorithms also offer greater explainability compared with
Decision Trees as tree-based classifiers tend to suffer from
various problems, such as the ‘replicated subtree problem’
[7], [8]. Rule-base models offer a more concise explanation
of how they arrive at a particular prediction.

However, standalone classifiers, such as the aforemen-
tioned rule based techniques, aim to create a perfect model
during training and thus often overfit on the training data
and do not perform well on the test data. There is no ideal
learning algorithm that can avoid overfitting on all types of
data sets [9]. An important technique to reduce overfitting
of standalone classifiers is ensemble learning [10], [11].
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Ensemble versions of standalone classifiers improve the clas-
sifier in terms of its stability and classification accuracy.
An unstable classifier shows considerable variations to small
changes in the training data.

Recent applications of such ensemble approaches have
been for example to forecast demands in the electric energy
sector [12], for fault diagnosis in refrigeration systems [13],
in education to characterise at-risk students and improve
retention [14], in banking systems to determine credit scoring
[15], etc.

In ensemble learning various base classifiers are induced
on various samples of the training data, typically using the
same algorithm. The prediction is usually derived through
a voting strategy, i.e. majority or weighted majority voting.
Ensemble classification approaches tend to improve the aver-
age classification accuracy over anymember of the ensemble.
A notable representative of tree-based ensemble learning is
the Random Forest classifier [16]. Also, rule-base ensemble
learners have been developed, such as Random Prism [17].
However, the use of ensemble approaches with explainable
base classifiers, such as trees or rule sets, defies the purpose
of explainability, as the human analyst is presented with a
large range of entire classification models, such as multiple
decision trees. Random Prism builds an ensemble of rule
sets using PrismTCS [18] as a base classifier to improve
PrismTCS’s classification accuracy. However, the ensemble
votes on every prediction with the entire rule set and does not
extract relevant rules for prediction. Hence many rules need
to be considered for explaining a prediction which obscures
the explainability of the approach.

The terms explainable and expressive are similar, but there
is a subtle semantic difference how they are used in this paper.
The term explainability refers to classification models that
explain the outcome of a predicted label to the analyst. The
less information is needed to explain the model the higher
the degree of explainability. Similarly, the term expressive
is used in this paper in the context of single rules. A rule is
more expressive the more compact the information leading to
a prediction is encoded in the rule. This paper focuses on the
explainability aspect of ensemble classifiers by minimising
the amount of rules needed to derive a prediction. However,
on a rule level also the most expressive types of rules are
utilised.

This paper’s authors recent work has extended the afore-
mentioned Prism family of rule-based classifiers by more
expressive rule-terms in order to enhance explainability of
Prism classifiers further [19]. Their recent development,
G-Rules-IQR, has shown in empirical experimentation to
outperform other members of the Prism family in terms of
accuracy, F1 score, tentative accuracy and produces slimmer
and thus easier to interpret rule sets [19]. This paper proposes
a new rule-based ensemble learner that is different compared
with its predecessors as it aims to maximise overall accu-
racy as well as maintaining a high level of explainability
in terms of rule examinations needed for tracing individual
predictions. It is based on the most recent G-Rules-IQR

approach due to its more expressive rule term structure and
proposes a method to merge local rule sets and thus in turn
minimises the human analyst’s number of rule examinations
to explain a prediction. Furthermore, compared with stan-
dalone G-Rules-IQR, it increases accuracy and considerably
reduces the abstaining rate. The abstaining rate for rule-
based prediction is the percentage of data instances remaining
unclassified due to no matching rules being available. This
is sometimes seen as a drawback of rule-based classifiers,
however, abstaining may be desirable in applications where
a false classification is costly, such as in finance, health and
safety, etc. E.g. one would want a self-driving car to abstain
from decision-making and hand back control to the driver if
it cannot classify a situation, rather than making an arbitrary
decision. Nevertheless, for most applications a low abstaining
rate is desired.

The contributions of this paper are (1) a new ensemble clas-
sification algorithm that produces expressive human-readable
rules, (2) a local RuleMerging algorithm to reduce the overall
number of rules induced by the classifier without loss of rule
coverage and (3) a decision committee facility to reduce the
overall number rules presented to the human analyst giving
insights about the prediction.

Overall, an empirical evaluation presented in this paper
shows that the proposed ensemble approach produces a
higher classification accuracy than the original G-Rules-IQR
classifier, offers a much lower abstaining rate and produces
a moderate size prediction set of rules and thus maintains a
high level of explainability for the human analyst.

The remainder of the paper is structured as follows:
Section II describes related work on rule-based classifiers
especially the Prism family of algorithms. Furthermore,
this Section also gives a summary of ensemble learning
approaches. Section III then examines the authors’ previous
work on G-Rules-IQR in more detail as this is a building
block of the proposed ensemble approach. Then Section IV
introduces the proposed explainable ensemble learner and
Rule Merging strategy followed by a theoretical an empirical
analysis in Section V. Section VI offers a final discussion of
the presented ensemble approach and concluding remarks.

II. RELATED WORK
This Section distinguishes between two types of rule-base
classification systems, (1) single rule-base systems and (2)
ensemble rule-base systems.

A. SINGLE RULE-BASE SYSTEMS
Two common strategies to generate classification rules are the
‘divide and conquer’ and ‘separate and conquer’ approaches.
Divide and conquer induces rules in the intermediate form of
a decision tree by converting each branch of the tree into a
rule. Despite its simplicity and popularity, the decision tree
representation of rules suffers from several problems, most
importantly, decision trees suffer from replicated subtrees.
Rule learners based on separate and conquer approach, also
called ‘covering algorithms’, do not suffer from the replicated
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subtree problem [9]. They produce a set of IF. . .THEN clas-
sification rules directly from a training dataset. The general
approach is as follows: rules are generated one at a time.
Instances covered by that rule will be removed from the
training data before the next rule is induced. Furthermore,
each rule can be maintained independently of the remainder
of the rule set, or even be removed without needing to rebuild
the entire classifier [20], [21]. The aforementioned replicated
subtree problem has been criticised by Cendrowska in [7]
as a main reason for overfitting in decision trees. Although
Cendrowska never uses the term replicated subtree problem,
her study showed that the smallest tree representation for
class x defined as:

IF A3 AND B3 Then Class = x

IF C3 AND D3 Then Class = x
(1)

would result in 10 nodes and 21 branches in a decision
tree, assuming that attributes (A,B,C,D) can each take one
of three possible values and if a classification is not x, then it
must be y. The reader is referred to Cendrowska’s paper [7]
for a detailed example of this problem. The Prism algorithm,
which follows separate and conquer strategy, is introduced
in the same study aiming to generate rules with many fewer
redundant rules terms compared with those extracted from a
tree-based classifier.

Apart from Prism algorithms, there are further rule-based
separate and conquer algorithms such as AQ family, CN2 and
RIPPER. AQ [22]–[24] uses a top-down beam search for
discovering the best rule. CN2 algorithm [5] integrates ideas
from AQ and ID3 algorithms. ID3 induces tree-based clas-
sification rules. CN2 produces a rule set based on AQ tech-
nique with ID3 capability of handling noisy data. RIPPER
algorithm [4] considers the quality and length of generated
rules by utilising an overall optimisation step.

As previously mentioned, the main purpose of Prism algo-
rithm is to prevent the generated classification rule set from
being redundant and unnecessarily complex. Redundant rule
terms and complexity is a necessity in decision trees, but is
also considered an unfavourable outcome of use of tree repre-
sentations [25]. The original Prism pseudo code is described
in Algorithm 1. The approach generates modular classifica-
tion rules directly from training data by inducing one rule at
a time. Each rule is specialised term-by-term by selecting the
attribute-value pair that maximises the conditional probabil-
ity of the rule’s selected target class. The training stops once
the rule only covers instances belonging to that pre-assigned
target class. Instances covered by the induced rule will be
removed from the training data before the induction of the
next rule commences. The process is repeated until there are
no instances left in the training data that match the target
class. Then the same procedure is carried out for each of the
remaining possible classification values.

However, the original Prism is unable to deal directly
with continuous attributes. Also, it does not take clashes
into account which may occur in the training phase when
two or more instances are identical but belong to different

classes. A rule encountering a clash during training is not able
to specialise further and remains incomplete. Tie-breaking is
another problem that can arise during the Prism rule induction
process when there are rule-terms with equal highest condi-
tional probability.

Consequently, several studies have been introduced to
improve the performance of original Prism. Bramer’s Inducer
Software [18] implements an extended version of Prism that
can handle continuous attributes using binary splitting or cut-
point calculations as a local discretisation method. Also,
the Inducer software deals with the clashes in training data
by determining the majority class of the subset that caused
the clash and if it matches the target class the rule is included
in the rule set as it is. If the rule’s target class is different
than the majority class in the clash set, then the rule is dis-
carded. In both cases instances that match the target class are
removed. This strategy is illustrated further in [18]. However,
this way of dealing with clashes could prompt underfitting if
the discarded rule is covered by a large number of instances.
In this case it would be likely during testing, that the rule
set is not covering numerous data instances and thus abstains
from classification. Regarding tie-breaking issue, the inducer
implementation selects rule-terms with highest value of fre-
quency [26].

PrismTCS [25] is another member in the Prism algorithm
family that uses the minority classes in the training data
first as target class. This may result in a lower number of
unclassified examples. Compared with the original Prism,
this algorithm is faster as it does not require to reset the
training data back to it’s original state before switching the
induction process to a different target class [17]. However,
it constructs a classifier with a similar accuracy level as
original Prism.

B. ENSEMBLE RULE-BASE SYSTEMS
Generally speaking, ensemble methodology simulates our
nature to look for several opinions / views before making any
critical decision [27].Wementally assess the individual views
and combine them to attain our ultimate choice. Figure 1
shows the general concept of ensemble learning. It consists
of a collection of n classifiers (C1,C2, . . .Cn), each trained
on a different training subset (S1, S2, . . . Sn) using sampling
with or without replacement and produces a single prediction
(vote). Combining these individual votes (decisions) using a
some kind of voting approach is likely to create an ensemble
with a higher level of overall predictive accuracy than its base
learners. Therefore, the ensemble methodology is considered
to be one of themost effective strategies to improve prediction
performance in data mining [28]. Such an ensemble classi-
fication system can be referred to as a system of systems.
Generating an ensemble model can be done sequentially or in
parallel.

The sequential paradigm uses the concept of dependence
between the individual classifiers where the base learners are
generated sequentially or hierarchically. Boosting is one of
the well-known forms of this paradigm, AdaBoost algorithms
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Algorithm 1: Pseudocode for Cendrowska’s Original
Prism Algorithm

1 foreach class C do
2 Reset input Dataset D to its initial state ;
3 while

D does not contain only instances of class C do
4 Create a rule R with an empty left hand side

(LHS) that predicts class C ;
5 repeat
6 foreach attribute α not mentioned in R,

and each value x do
7 Consider adding the condition α = x

to the LHS of R ;
8 Select α and x to maximise the

accuracy formula ;
9 end
10 Add α = x to R
11 until R is perfect or there are no more

attributes to use;
12 Remove the instances covered by R form D
13 end
14 end

FIGURE 1. General ensemble classification.

in particular. Also, several sequential ensemble approaches
have been recently proposed in the literature such as Vote-
boosting algorithm [29], SENF approach [30] and SEL frame-
work [31].

On the other hand, the parallel ensemble paradigm, which
is more popular and easier to implement, draws on the
independence and diversity between the base learners since
combining their independent decisions can reduce the clas-
sification error effectively [32]. This study uses the parallel
ensemble paradigm because of the beneficial usage of its
independence advantage in parallel computing which can
make the ensemble rule-based model more powerful in prac-
tical applications. Therefore, the following paragraphs briefly
describe a number of parallel ensemble learning algorithms.

A widely used parallel method is Baggingwhich stands for
Bootstrap aggregating. The method introduced by Breiman
in [33] aims to improve the stability and predictive perfor-
mance of a composite classifier [28]. It involves sampling
of data with replacement. Each sample is selected randomly
with a size equal to that of the original data. This indicates
that some of the training instances may appear more than
once in the same sample set and some may not be included
at all. Each classifier trains on a sample of instances which,
statistically, is expected to contain 63.2% of the training data
and provides one vote to its selected class. The final classi-
fication is typically decided by some form of voting, such as
majority or weighted majority voting. The main advantage of
Bagging is the ability to reduce bias and variance in the data
[16], [33], [34].
Random Forest is also a popular independent ensemble

method [16] based on decision trees. It can be considered
as an extended version of Bagging and is inspired by the
Random Decision Forest algorithm introduced by Ho in [35].
Random Forest essentially incorporates the basic Random
Decision Forest approach with Breiman’s Bagging method
[17], [32]. The Random Decision Forest algorithm builds
multiple decision trees. Each tree is constructed using the
whole training dataset in sub-spaces selected randomly from
the feature space. Ho argues that in high dimensional feature
spaces, a considerable number of random subsets of that
feature space can introduce differences in classifiers. There-
fore, each individual tree generalises its classification. On the
other hand, Random Forest evaluates the possible splits at
each node before randomly selecting sub-space features. This
increases (comparedwith RandomDecision Forest) randomi-
sation in the base classifier construction step and produces
an ensemble classifier whose variance is lower than one
produced by the individual learners [28].
Random Prism [17], is an ensemble learner not based

on decision trees but on rule sets produced by PrismTCS
algorithm [25]. It follows the parallel ensemble learning
approach and takes a bootstrap sample by randomly select-
ing n instances with replacement from the training dataset.
On average, each base classifier constructed in Random
Prism will be trained on 63.2% of the total number of training
instances. Thus, the remaining (about 36.8%) will be applied
to Random Prism as a test dataset. It has been shown in [17],
[36] that Random Prism outperforms its stand-alone base
classifier with regard to accuracy and tolerance to noise.

There are also a number of new parallel ensemble algo-
rithms. For example, a parallel deep rule-based ensemble
classifier, called DRB [37], and a parallel fusing fuzzy rule-
based decision tree via Map-Reduce called MR-FRBDT
algorithm [38]. A further example for parallel ensemble
classifiers is IP-kNN which integrates several parallel k-NN
classifiers [39].

C. OBSERVATIONS ABOUT RELATED WORK
As previously described in Section II-A, practically, the orig-
inal Prism algorithm can be adapted to work with continuous
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attributes using binary splitting which is a local discretisation
approach. However, this way of handling numeric values
requires frequent cut-point calculations to calculate the con-
ditional probabilities for each value in order to produce rule-
terms in the form of (x < α) or (α ≥ y) where α is
the attribute’s name and x and y are two current values of
that attribute. Computationally, this is very inefficient as it is
extremely costly in time and space complexity, especially for
a large dataset. An alternative is to use a global discretisa-
tion approach, i.e. ChiMerge [40] in which the data is only
discretised once prior to learning the rule set. That seems
to be a computational advantage over cut-point calculations.
However, ChiMerge suffers from a fundamental weakness
as the method converts each attribute independently of the
others, not considering that classifications are not determined
by just the values of a single attribute. Nevertheless, both,
local and global discretisation require sorting of the values of
each attribute prior to the discretisation process, and the dis-
cretisation process itself can be a significant computational
overhead. The interested reader is referred to [26] which gives
further details supported by examples about both types of
discretisation.

A new heuristic approach based on Gaussian Probability
DensityDistribution (GPDD)was proposed in [41] to develop
an efficient way of handling continuous attributes in the Prism
family of algorithms. The approach introduces a new rule-
term structure in the form of (x < α < y) instead of
two separate rule-terms combinations which greatly enhances
readability of the individual rules. Also, the range of val-
ues between x and y are representing the most common
values of α for a given target class. This would potentially
reduce overfitting, a problem that most rule-based classifi-
cation approaches suffer from. Three Prism based classifiers
are integrating this approach in their numerical rule-term
construction; G-Prism-FB [41], G-Prism-DB [42] and G-
Rules-IQR [19]. Further explanations about making use of
GPDD function in Prism family of algorithms are provided
in Section III, as this method is used in the base learners of
the ensemble learner introduced in this paper.

Concerning, Ensemble rule-base System, an extensive
evaluation study conducted in [43] shows that Random Forest
(RF) algorithm suffers from some weaknesses. Firstly, RF
requires to construct a number of base learners (trees) in the
range of 100 to 500 in order to significantly improve the
predictive accuracy of the classification output. This might
not be a practical solution in the real life applications where
retrieving a fast classification decision is critical. Secondly,
RF algorithms are likely to build highly-correlated complex
trees from a high-dimensional datasets, which could con-
siderably increase the complexity and the forests error rate.
Thirdly, RF does not consider feature interaction (relation-
ships) that might occur in the feature space. On the other
hand, the Random Prism (RP) ensemble learner suffers from
two essential drawbacks. The first weakness is highlighted
in [17], [36] which is the high computational demand as RP
makes use of all its base classifiers’ votes to produce the final

classification for every instance in the testing stage. Also,
RP is an accuracy-oriented ensemble classifier because of its
weighted majority voting system that uses each individual
base classifier accuracy. However, several studies, such as
[44], have found that the accuracy is unreliable as a mea-
sure for the quality of a classifier especially for unbalanced
datasets.

III. PREVIOUS WORK
This section summarises some of the authors’ preceding
work on enriching the Prism family of algorithms with more
expressive rule-based classifiers. One of the developed algo-
rithms is modified as base learner for the presented ensemble
classifier in Section IV. Section III-B gives a brief sum-
mary of the early versions of expressive rule-base classifiers:
G-Prism-FB and G-Prism-DB, while Section III-C details
the most recent G-Rule-IQR algorithm which is a corner-
stone of the in this paper proposed ensemble approach. Next
Section III-A describes the new numeric rule term structure
used in previous and current work.

A. INDUCING RULE-TERMS DIRECTLY FROM NUMERICAL
ATTRIBUTES
The idea of utilising GPDD function in the learning process
is driven by the fact that Gauss or normal distribution is
common in statistics inmany natural phenomena [45]. As dis-
cussed in Section II-C, the GPDD based method can produce
more expressive and computationally efficient numeric rule-
terms compared with converting continuous attributes into
categorical ones in the form of frequent discrete intervals
[41]. The Gaussian distribution is calculated for each con-
tinuous attribute αj with mean µ and variance σ 2 from all
the values associated with classification, ωi. The conditional
probability for class ωi is calculated using Equation 2.

P(αj|ωi) = P(αj|µ, σ 2) =
1

√
2πσ 2

exp(−
(αj − µ)2

2σ 2 ) (2)

The value for P(ωi|αj) (or equivalently log(P(ωi|αj))) is be
calculated using Equation 3, and this value is then used to
determine the probability of a given class label ωi for a valid
attribute value αj.

log(P(ωi|αj)) = log(P(αj|ωi))+ log(P(ωi))− log(P(αj)) (3)

The Gaussian distribution for each class label in the train-
ing data is then used to calculate the probability of αj belong-
ing to class label ωi. This assumes that αj lies between an
upper and lower bound�i. The assumption here is that values
close to µ represent the most common values of numerical
attribute αj for ωi [19], [41], [42].

B. G-PRISM ALGORITHMS
G-Prism-FB algorithm [41] and G-Prism-DB algorithm [42]
are two recent Prism family members based on the new
numeric rule-term structure where G stands for GPDD, FB
and DB refer to the type of upper and lower bounds of the
rule-terms, either fixed (FB) or dynamic (DB). The main
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difference between these two algorithms is illustrated in Fig-
ure 2 as follows: (a) G-Prism-FB produces a rule-term in
the form of (x < α ≤ y) where x and y refer to the next
adjacent attribute values left and right of the of the mean µ
of attribute α; (b) G-Prism-DB has expanded the coverage of
it’s predecessor to include a user defined maximum number
of values k left and right of µ. The algorithm then gener-
ates all possible candidate rule-terms within these maximum
bounds and selects the one that maximises the conditional
probability with which the rule-term covers the target class.
The reader is referred to [19] for details about the advantages
and disadvantages of these two algorithms. Loosely speaking,
the advantages are an improved expressiveness of the rules
induced, whereas the disadvantages are with G-Prism-FB
that rule-term boundaries achieve low coverage of the target
class and thus more rule-terms are induced compared with
G-Prism-DB; and the disadvantage of G-Prism-DB is that the
optimal rule-term boundaries may lie beyond the user defined
range of boundaries.

C. G-RULES-IQR ALGORITHM
A recent study introduced G-Rules-IQR as a new algorithm
of the Prism family with the aim of overcoming or mitigating
some of the aforementioned limitations and drawbacks of
both versions of G-Prism algorithm [19]. The approach is
centered around two aspects: (1) a new rule-term induc-
tion method which is based on a combination of GPDD
and Interquartile Range (IQR) to set boundaries; and (2)
enabling/facilitating this rule-term induction on attributes that
are not normally distributed. G-Rules-IQR is outlined in
Algorithm 2. With respect to (1), as highlighted in Algo-
rithm 2, G-Rules-IQR algorithm utilises the quartiles that par-
tition the probability density function into four quarters (each
containing 25% of data points). Then the algorithm makes
use of Gauss distribution on Z-Score scale to determine the
third and the first quartiles as in Equation 4 in order to find
the upper rule-term and the lower rule-term boundaries. σ is
the standard deviation from the mean, z1 is the standard score
of the first quartile and is ≈ −0.67 while z3 is the standard
score of the third quartile and is ≈ 0.67. x usually represents
the mean µ but in case of data that is normally distributed it
represents the highest probability density of value of P(αj|ωi)
as in lines 15 and 16 of Algorithm 2, where ωi is the current
target class.

Q1 = x = (σ ∗ z1)+ αj
Q3 = y = (σ ∗ z3)+ αj
IQR = Q3 − Q1

(4)

Regarding (2), G-Rules-IQR performs a test for normality
for each attribute. If the values for an attribute are not nor-
mally distributed for a particular target class, then G-Rules-
IQR transforms the attribute values with respect to that target
class to approximate a normal distribution. Loosely speaking
G-Rules-IQR reduces the skewness rate of attribute values
from the normal distribution. A simple and common trans-

formation for attribute values is to take the logarithm of the
values [46]. This method to approximate normal distribution
is used in this paper due to its simplicity. The normality
of each attribute is individually tested against all possible
classes in the dataset using Jarque-Bera test [47]. This is done
beforeG-Rules-IQR is applied. If the values of an attribute are
not normally distributed in regard to a target class, then the
logarithmic approximation to normal distribution is applied.

D. EVALUATION SUMMARY OF G-PRISM AND
G-RULES-IQR
G-Rules-IQR algorithm has been empirically evaluated in
[19], comparing its performance with two different groups of
Prism based approaches. The first group includes the orig-
inal Prism with three different discretisation methods: cut-
point calculations (local discretisation), ChiMerge (bottom-
up global discretisation), and Caim (top-down global dis-
cretisation) [19]. The second group includes the two ver-
sions of G-Prism algorithms that were briefly described in
Section III-B. The transformation to approximate normal
distribution was implemented in both G-Prism versions and
G-Rules-IQR and could be switched off. The study [19] con-
cluded that G-Rules-IQR with transformation outperformed
its competitors with respect to F1 score, accuracy, tentative
accuracy and execution time.

IV. THE ReG-RULES ENSEMBLE LEARNER
The improved version of the G-Rules-IQR algorithm with
approximation to normality component is the base inducer
of the in this paper proposed ensemble classifier; therefore,
it will be illustrated in detail in the current section. The
reason for choosing this algorithm is because the stand-alone
model of G-Rules-IQR approach shows a high performance
in most cases comparing with several other Prism-based clas-
sifiers, while producing more expressive rules [19]. However,
in general, single rule-base classifiers are not stable especially
when they are applied on data containing noise and are also
sensitive to the sampling techniques and consequently the
level of predictive accuracy varies between different samples
[48]. Ensemble learning is an effective approach that can
address several single classifier limitations [48] and will be
explained in Section IV-A.

A. STAND-ALONE CLASSIFICATION SYSTEM LIMITATIONS
According to [48], learning algorithms that produce only a
single classification model suffer from three essential draw-
backs that can be addressed by ensemble classification mod-
els: (i) the statistical problem, (ii) the computational problem,
(iii) and the representation problem.
The statistical issue occurs when the learning algorithm is

searching a large feature space for the amount of available
training instances. In such cases, different classification mod-
els with similar predictive accuracy rates might be generated
and hence selecting one of them is a difficult task. The risk of
choosing an over-fitted model is rather high [21]. Therefore,
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FIGURE 2. Example of finding rule-terms with G-Prism. The shaded area represents values of
attributes αj for class ωi . Part (a) of the figure depicts finding a rule-term using G-Prism-FB and
part (b) of the figure depicts finding a rule-term using G-Prism-DB.

combining the decisions (votes) of these models can lower
this risk [48].

The computational obstacle relates to the size of the
dataset. In real life datasets, considerable dependencies
between different features are likely to exist especially among
large datasets with high dimensionality in the feature space
[49]. This makes the task of finding the best classification
model in a computationally feasible time more challenging.
Consequently, classification algorithms must utilise heuristic
methods to deal with this problem. These heuristics might get
trapped in ‘local minima’ and hence cannot guarantee identi-
fying the best model. Therefore, like with the statistical issue,
selecting several different classifiers rather than a single one
reduces the risk of selecting a bad model, which might suffer
from such a computational problem [48].

Lastly, the representational problem appears when there is
no optimal classifier to be selected within the classification
models spaces. In this case, constructing several weak classi-
fiers might ensure better classification results than trying to
choose the best representative.

In general, a learning model that suffers from statisti-
cal or computational problems is described as model with
high ‘variance’ while the one that experiences representa-
tional problems is said to have high ‘bias’ [48]. Constructing
an ensemble classification model by combining the predic-
tions from several base classifiers can be an effective method
to overcome these two problems as the main strength of
ensemble learning is the ability to handle bias and variance
in the data effectively.

B. FRAMEWORK FOR THE ENSEMBLE CLASSIFIER:
ReG-RULES
This section proposes a new rule-based ensemble classifica-
tion system named: Ranked ensemble G-Rules-IQR (ReG-
Rules). Algorithm 3 details the pseudocode for this classifier.
Figure 3 describes the general framework of this system
which consists of 5 stages with several operations: (1) Diver-
sity Generation, (2) Base Classifiers Inductions, (3) Models
Selection, (4) RuleMerging, (5) Combination and Prediction.
These stages will be illustrated in the following sections
referring to lines of code in Algorithm 3.

C. ENSEMBLE DIVERSITY GENERATION
The performance of an ensemble classification model is
highly dependent on the level of diversity among the
group of classifiers that constitute the ensemble [27], [28],
[32]. Clearly, combining individual classifiers with identi-
cal or even similar outputs leads to a do-nothing ensemble
model. Therefore, if sufficient diversity is obtained, each
classifier commits different errors at different times. Thus an
appropriate combination strategy can result in reducing the
total number of errors in the overall ensemble system.

Nevertheless, unlike regression, in classification context
there is no explanatory theory that defines why and how
diversity among individual classifiers contributes to over-
all ensemble accuracy [50], [51]. However, a widely used
method to obtain classifiers diversity is: ‘using different train-
ing datasets to train individual classifiers’ [32]. This method
is also used in the ensemble classifier presented in this paper.
In this approach all the subsets are drawn from a single
data source, but they can just as well be entirely different
datasets gathered from different data sources, capturing dif-
ferent aspects of data features if an appropriate randomness
is introduced into their sampling technique.

Accordingly, as it can be seen in Figure 3, diversity gen-
eration part in particular, ReG-Rules utilises two types of
sampling in order to maximise the level of base classifiers
diversity: (1) sample a dataset randomly without replacement
into train and test datasets. Please note that the test data is used
only once as unseen data to assess the general performance
of the ensemble classification model, not the individual base
classifiers. (2) Bagging, which is a well-known sampling
with replacement method [33] used to create multiple data
samples. Each sample size is equal to the size of the trained
dataset; hence, some instances may appear more than once
in a sample set while some may not appear. Statistically, the
bagging method produces a sample that is likely to contain
63.2% of the original training dataset. As a result, there are
approximately 36.8% of the original training instances that
are not used to train the model, these instances are called out-
of-bag instances. This portion of the available instances is
used as a validation dataset to measure the performance of
a base classifier.
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FIGURE 3. The general framework of the ensemble rule-based classifier ReG-Rules.

D. BASE CLASSIFIERS INDUCTIONS
Among the factors controlling the induction of any predictive
ensemble model are (1) the total number of base classifiers
induced which is represented by ensemble pool in Figure 3,
and (2) the number of models selected from this pool to
participate in the final ensemble decision [27], [28]. While
the former is explained in this Section, the latter which is also
known as the ensemble size, will be discussed in detail in the
next Section (IV-E).

As it can be seen in Algorithm 3 (lines 2 to 5), ReG-Rules
system utilises a user-defined parameter to induce M base
classifiers fromM bagged samples of the training dataset. An
important aspect of ensemble learning is to determine how
many (M ) base learners should be induced. The impact of
this on the ensemble efficiency in terms of runtime, mem-
ory consumption, diversity, and predictive accuracy make
its determination difficult [50]. There is no ideal number of
component classifiers within an ensemble. However, a major
experimental study conducted in [52] suggested construct-
ing between 64 and 128 base learners to ensure a balance
between computational cost and accuracy. The same study
has shown that there is no significant performance gain if a
larger number of base models is induced. Therefore, a 100
base learners as a default number within this range has been
chosen for ReG-Rules. Also, the experiments presented in
this paper have been carried out with this default parameter.
The induction of these base classifiers is invoked in line 5 of
Algorithm 3. As mentioned in Section III-D, selecting this
algorithm is based on its performance as a stand-alone model
in [19] where it has been empirically evaluated and compared

with other members of the Prism family of algorithms in
terms of accuracy and expressiveness.

In ReG-Rules multiple models are constructed indepen-
dently. Nevertheless, it is not possible to measure the quality
of these models in order to choose the best learner that can
lead to a smaller and more accurate ensemble, until the entire
ensemble members contribute to deciding a final classifica-
tion output. For this reason, as highlighted in Algorithm 3
(lines 6 to 8), a validation data subset is used during induction
stage of base classifiers to perform what is called a classifier
performance weighting.

The basic idea is to associate each individual classifier with
a combination of measurements obtained during the valida-
tion phase, which assesses the performance of the individual
learner. In other words, given M base classifiers are induced
in the training phase, their metrics are organised as an M -
dimensional vector which consists of: (1) rules set size, (2)
average of a rule length, (3) CUR: stands for Correctly Used
Rules, which is the number of times a rule was used during
the validation phase and predicted the correct class label,
(4) abstaining rate, (5) accuracy, and (6) tentative accuracy.
Please note, metrics 1-3 are used in Rules Merging strategy,
one of the contributions of this paper, which is described in
Section IV-F while metrics number 3, 4 and 6 are used in
the combination strategy which is described in Section IV-G.
Definitions of all these metrics are given in Section V-A. The
final step of this stage is represented by the term ‘ensemble
pool’ in Figure 3. The ensemble pool contains all the base
classifiers that are independently evaluated, weighted and
prepared for the models selection stage.
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Algorithm 2: Learning Classification Rules Using G-
Rules-IQR Algorithm

1 for i = 1→ C do
2 D← Training Dataset;
3 while

D does not contain only instances of class ωi do
4 forall attributes αj ∈ D do
5 if attribute αj is categorical then
6 Calculate the conditional probability,

P(ωi|αj) for all possible
attribute-value (αj = x) from
attribute α;

7 else if attribute αj is continuous then
8 Calculate mean µ and variance σ 2 of

continuous attribute α for class ωi ;
9 foreach value αj of attribute α do
10 Calculate the conditional

probability P(αj|ωi) based on
created Gaussian distribution
created in line 8 ;

11 end
12 Select αj of attribute α, which has

highest value of P(αj|ωi) ;
13 Compute 1st and 3rd quartile using

zscore values ;
14 zScore = 0.67 ;
15 x = σ ∗ (−zScore)+ αj ;
16 y = σ ∗ (zScore)+ αj ;
17 Create rule-term rα in form of

(x < α ≤ y) ;
18 Calculate P(rα|ωi)
19 end
20 end
21 Select (αj = x) or (x < αj ≤ y) with the

maximum conditional probability as a
rule-term ;

22 Create a subset S from D containing all the
instances covered by selected rule-term at
line 21 ;

23 D← S
24 end
25 The induced rule R is a conjunction of all selected

rule-terms built at line 21 ;
26 Remove all instances covered by rule R from

Training Dataset ;
27 repeat
28 lines 2 to 26 ;
29 until all instances of class ωi have been removed

form the training data;
30 Reset Training Data to its initial state ;
31 end
32 return induced Rules ;

Algorithm 3: Ensemble Rule-Based Classifier: ReG-
Rules
1 initialise the ensemble model (ReG-Rules)
2 for i = 1→ M do
3 si← Random sample with replacement using

Bagging method
4 vi← out-of-bag set
5 Generate a base classifier BCi by applying

Algorithm 2 (G-Rules-IQR) on si dataset and
learn a rules set Ri

6 Evaluate BCi performance by applying Ri on vi
dataset

7 Calculate a weight for each rule induced in
previous line

8 Send BCi including its rules set weights to the
ensemble pool Epool

9 end
10 Rank all the base classifiers BC collected in Epool

according to the criteria described in Section IV-E
11 Eliminate weak BC by selecting the top models

(topBC) ranked in the previous step according to the
following if statement:

12 if ensemble size type = defualt then
13 Select top 20% BC models in line 10
14 else
15 user decide the ensemble size
16 Assign all the top BC (topBC) selected in line 11 to

the ensemble model (ReG-Rules)
17 for j = 1→ topBC do
18 w1← Rj weight computed previously in line 6
19 Apply Algorithm 4 (Rule Merging) on current

topBcj and update its rules set Rj
20 Re evaluate Rj on the same validation dataset used

for weighting the rules in line 6
21 w2← Calculate the merged rules Rj weight

returned from the previous line
22 if w2 > w1 then
23 replace rules set of the current topBCj by the

new merged rules Rj
24 end
25 Sort the rules set Rj according to their correctly

used times
26 end
27 return ReG-Rules Classifier

E. MODELS SELECTION
As stated in the previous section, how many component
classifiers should be included in the final ensemble is an influ-
ential factor for building an efficient and accurate ensemble
[28], [50]. A large ensemble explores different feature sub-
spaces which might increase its general classification accu-
racy. However, it requires a higher computational overhead
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than of a smaller one and decreases the ensemble’s explain-
ability. To overcome this trade-off, reducing the ensemble
size should be considered but to what extent this reduction
can be applied without causing significant accuracy loss to
the whole model is difficult to determine. According to an
empirical study presented in [53], a compact ensemble can
be extracted from a large one without reducing the whole
ensemble’s predictive performance in terms of diversity and
accuracy. Moreover, the theorem of ‘many could be better
than all’ which was presented in [54] inspired researchers to
introduce many ensemble selection methods such as ranking-
basedwhich is a popular approach for selecting the ensemble
members. The reader is referred to [55] for additional models
selection approaches.

The main concept of ranking-based approach is to sep-
arately rank each base classifier ‘according to a certain
criterion and chose the top ranked classifiers according to
a threshold’ [28]. The most commonly used criterion is the
predictive accuracy which is in ReG-Rules computed for
each individual base classifier using the separate validation
dataset. However, accuracy alone might be an insufficient
metric to evaluate the classifier especially in imbalanced
domains [44]. Taking this into consideration, more measure-
ments are considered in this study. Hence, as previously
presented in Section IV-D, each individual base classifier
induced in the proposed ensemble system (ReG-Rules) is
associated with a combination of metrics that are acquired
using different validation datasets. Three of these metrics
namely (1) tentative accuracy, (2) CUR and (3) abstaining
rate, are used as ensemble selection criteria by ranking all
the base classifiers accordingly. Then, as highlighted in Algo-
rithm 3 (lines 10 and 11), the weak base classifiers will be
eliminated after selecting the top ranked models according to
a predefined ensemble size. Please note that the number of
base classifiers that are retained from the ensemble is deter-
mined using two types of threshold: (1) default or (2) user
defined. There is no optimal ensemble size to be determined
[50] but in this study, the default threshold is the top 20% of
the ranked models and it was set in this way to ensure that
only the strong base classifiers are selected. Thus from the
100 base learners induced in the experiments presented in this
paper, only the top 20 ranked base classifiers are chosen to
design the final ReG-Rules ensemble system and the remain-
ing 80 models are discarded. Despite this big reduction in
the ensemble size, the top 20 models were sufficient accord-
ing to ‘many could be better than all’ theory [54] and this
default threshold worked well in most cases investigated in
this paper.

F. INTEGRATED RULE MERGING (RM) TECHNIQUE
Overlapping rules might occur within a rule set of a selected
base classifier. Overlapping rules are generally unnecessary,
need to be tested at prediction stage, thus incurring unnec-
essary computational cost of classification. The proposed
integrated RM method aims to address locally and indepen-
dently this problem for each selected base classifier in the

FIGURE 4. Rules sets with single term each rule sharing similar features
and classes. In example (a) there is an overlap between rules and in
example (b) the rules do not overlap.

FIGURE 5. Rules sets with two rule-terms sharing similar features and
classes.

ensemble model. The method is described in Algorithm 4 and
represents a post-processing of the induced rules. First the
rules are filtered according to their target class and attributes
contained in their rule-terms. The Rule Merging is applied
for the rules of each target class in turn. During this process
some of the rules within the same target class will either
be discarded or merged with other rules according to their
similarities (overlap of features’ ranges). This results in more
concise and smaller base classifier rule sets, which are thus
more easily read and understood by human analysts. The
following passages describe RM technique using three exem-
plary scenarios.

Figure 4 shows a basic example of the process using two
different rules having the same attributes and class where in
(a) the two rules are overlapped and hence can be merged to
the single rule; (IF 10.6 < α1 ≤ 13.4 THEN low). In case of
(b) the figure shows a gap between the upper bound of the first
rule and the lower bound of the second and thus the merging
cannot be performed.

Figure 5 shows another example of three rules having the
same attributes, α1, α2 and referring to the same class label.
While the second rule cannot be incorporated in the merging
process due to the gap existing between 14.7 and 17.8 in
α2, the first and third rules are overlapped and thus can be
combined together to produce a single rule. The output of this
approach is the following rule set:

IF (2.8 < α1 ≤ 11.3) and (10.6 < α2 ≤ 14.7) Then high

IF (6.8 < α1 ≤ 12.9) and (16.1 < α2 ≤ 22.9) Then high

(5)
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Algorithm 4: Local Rule Merging (RM) Algorithm

1 checkedRules→ empty
2 for i = 1→ R do
3 checkedRules← ckeckedRules+ Ri ;
4 OtherR← R [−checkedRules] ;
5 j = 1 ;
6 repeat
7 if ( class ωi of Ri = class ωj of OtherRj) and

( all attributes α in Ri = all attributes α in
otherRj) then

8 OverlapExist← True ;
9 foreach attribute αr ∈ α do
10 switch the type of attribute αr do
11 case Continuous do
12 OverlapExist← Rangei

Overlap Rangej
13 case Categorical do
14 OverlapExist← value of

αr(i) = value of αr(j)
15 end
16 if OverlapExist = False then
17 Exit for loop in line 9
18 end
19 end
20 end
21 if overlapExist then
22 Compute new upper and lower bounds

for each rule-terms rα ;
23 Create merged rule in a form of

(x < αr ≤ y) or (αr = x) ;
24 Replace Ri in R rules list by the new

merged rule created in line 23
25 end
26 end
27 j← j+ 1 ;
28 until No more rules in OtherR list;
29 end
30 return new rules list R

As previously stated, the main advantage of this approach
is reducing the complexity and improving the interpretability
of rules that might be generated from large datasets or high
dimensional data. As a result, the number of rules for each
selected base classifier in the ensemble model would be
reduced by removing the overlap that might occur between
rules and thus also reduce the computational cost of predic-
tion. Following is another example to show how benefical
this Rule Merging can be. Figure 6 includes four rules (Rule
1, Rule 2, Rule 3, Rule 4); each of which have four terms
( α1, α2, α3, α4 ) and refer to the same class label (low).
Assume that a given classifier is searching this rule set in the
same order to find the first rule that covers an instance with
the following attributes values: ( α1 = 8.1 α2 = 20.2 α3 =

FIGURE 6. Rules set with multiple rule-terms sharing similar features and
classes (before merging).

FIGURE 7. A rule with multiple rule-terms sharing similar features and
classes (after merging).

27.5 α4 = 43.4 ). In this case, the first rule that fires is the
last one (Rule 4). Consequently, the classifier is required to
check all 4 rules in order to find a match.

As it can be seen from Figure 6, each rule-term in any
of the rules in the example is either completely or partially
overlapped with at least one rule that includes the same
attribute. Applying the new merging method to this rules set,
as shown in Figure 7, replaces the four rules with the single
merged rule below and hence less effort is required to find a
rule that matches the instance:

IF (1.7 < α1 ≤ 9.4) and (6.7 < α2 ≤ 20.9) and

(8.2 < α3 ≤ 28.5) and (23.1 < α4 ≤ 44.1) Then low

(6)

G. COMBINATION STRATEGY
Instead of trying to determine the perfect single model,
ensemble methods combine a diverse set of models to achieve
accurate induction ability. Consequently, it is essential to an
ensemble combiner to utilise the appropriate combination
strategy in order to produce not only accurate but more robust
classification results [28]. ReG-Rules adopts the parallel
learning approach, meaning that the induction of each base
learner is independent and can be built in parallel to other
models without cooperation in the training phase. Instead
collaborations between these models are taking place in the
testing stage where their independent decisions are passed to
a combiner using the combination strategy introduced in this
section to generate the final classification decision [32].

A frequently used, simple and thus proven technique is the
majority voting [28], [56]. In this type of voting, all the base
models have the same weights [32]. Thus, in the testing stage,
the ensemble classifier will assign an unlabelled instance to
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TABLE 1. Example of metrics contained in a committee of 20 rules for the classification of one test instance.

the class that has the highest number of votes. Several ensem-
ble classifiers such as Random Forest adopt this equal voting.
However, in classification tasks, it is favoured to useweighted
voting instead to avoid a potential problem of reliability when
some base classifiers are more reliable than others. Assigning
higher weights to the decisions of those qualified models may
further improve the overall predictive performance than can
be achieved by the equal majority voting [27].

The combination method adopted in this research is based
on the latter strategy, but not just on classifier level but also on
individual rule level. For this, ReG-Rules builds a committee
of rules, termed Classification Committee. The process is
described in Algorithm 5. In the algorithm, i refers to the
unseen instance, T denotes the test data and topBC is the
subset of top ranked base classifiers build according to the
selection method described in Section IV-E and represented
by the model selection stage in the general framework of the
system (Figure 3). Essentially for each unseen instance, i,
the combiner creates a committee of rules, which comprises
the first rule that fired from each base classifier contained in
topBC . As previously explained in Section IV-F, please note
that these rules are already improved locally within each base
classifier contained in the topBC. The improvement involves
applying the Rule Merging techniques to the rules of each
target class in turn and then sorting the resulting merged rules
according to their performance during validation phase (see
lines 20 to 28 in Algorithm 3).

Table 1 shows this committee of rules on an example,
how it has been computed by lines 1 to 6 in Algorithm 5.
Each prediction received by the committee from the topBC is
associated with the following components:

1) Tentative accuracy of the base classifier fromwhich the
rule comes from. The tentative accuracy is computed
only on classification attempts.

Algorithm 5: Combiner: ReG-Rules Committees

1 for i = 1→ T do
2 Generate new classifier committee com
3 for n = 1→ topBC do
4 voten ← predict class Ci for instance ti
5 Add voten to comi including the weight of the

model topBCn and the weight of its rules set
Rn that has been used for the prediction

6 end
7 Eliminate the abstaining classifiers whose Rules

set does not cover the instance ti
8 Compute the score wi for each class in comi
9 return committe decision comi that has highest

weighted average probability Evaluate comi final
prediction

10 end

2) The number of times a rule was used during the valida-
tion phase and predicted the correct class label (CUR).

3) The predicted class label of the rule.
4) The classification type, i.e. did the base classifier use a

rule or was it just a majority vote.

Next in lines 7 to 10 in Algorithm 5 the votes are combined.
First all votes that are based onmajority class as classification
type are not considered for computing the weight. The reason
is because no rule has fired for these base classifiers, thus
they have abstained and their votes are considered unreliable.
In this example this is concerning classifiers 84 and 38. Next
the score for each class label in Table 1 is calculated, in this
case there are 3 class labels namely A, B and C .

The computed scores in this example are shown in Table 2.
For each class, the score contains the following components:
vote frequency, sum tentative accuracy, and total CUR. Vote
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frequency is simply how often there is a base classifier in the
classification committee that voted for a particular class. Sum
tentative accuracy is simply the sum of tentative accuracies
of the rules’ base classifiers that have voted for that class.
The total CUR is the sum of all CUR values of the rules’
base classifier that voted for that class. Thus, as it can be seen
in Table 2:

TotalCURforclassA = 3

TotalCURforclassB = 81

TotalCURforclassC = 2

Accordingly, CUR value is used to assign a class to the
test instance for which the committee of rules was build for.
A higher CUR indicates a better class label discrimination
and thus is selected as the final prediction of the committee.

If there is a tie break, meaning two or more classes have
achieved the same highest CUR, then the highest sum of
tentative accuracies per class is used to discriminate further.
If tie break issue still exist, then vote frequency per class label
will be considered.

V. EVALUATION
This section first introduces the experimental setup in
Section V-A and the datasets used in Section V-B. The
evaluation comprises four investigations. The first investiga-
tion in Section V-C explores ReG-Rules runtime complexity.
The second investigation, which is explored in Section V-D,
aims to empirically evaluate the overall performance of
the new rule-based ensemble learner ReG-Rules compared
with the stand-alone G-Rules-IQR. The third investigation
explained in Section V-E empirically evaluates the ranking-
based [55] approach for selecting an ensemble subset. The
approach, which is previously described in Section IV-E,
is compared with another method for selecting an ensem-
ble subset without ranking its members. Lastly, Section V-F
describes the fourth investigation which qualitatively evalu-
ates the performance of new proposed Rule Merging tech-
nique in terms of rules complexity and quantity.

A. EXPERIMENTAL SETUP
All the experiments were performed on a 2.9 GHz Quad-
Core Intel Core i7 machine with 16GB 2133 MHz LPDDR3,
running macOS Catalina version 10.15.1. All 24 datasets
used in the experiments were picked randomly from the UCI
repository [57], the only condition being that they contain
continuous attributes and involve classification tasks. All
algorithms have been implemented in the statistical program-
ming language R [58] and reuse the same code base differing
only in the methodological aspects described in this paper.

The algorithms were evaluated against 5 metrics for clas-
sifiers which are described below:

• Number of Rules: This is the total number of rules gener-
ated for G-Rules-IQR classifier and the average number
of rules generated by the ensemble base classifiers.

TABLE 2. Predicted classes’ scores.

• F1 Score: This is also known as the harmonic mean of
precision and recall. A high F1 score is desired. This is
a number between 0 and 1.

• Accuracy: This is the ratio of data instances that have
been correctly classified. Unclassified instances are
classified using the majority class strategy. A high clas-
sification accuracy is desired. This is a number between
0 and 1.

• Tentative Accuracy: This is the ratio of correctly clas-
sified instances based only on the number of instances
that have been assigned a classification. A high tentative
accuracy is desired. This is a number between 0 and 1.

• Abstaining Rate: The proportion of cases a classifier
abstains from classification, i.e. the proportion of exam-
ples not covered in the rule set. Tentative accuracy is
based only on the number of instances that have been
classified and does not count the ones the classifier
abstained of, while accuracy considers the abstained
instances as misclassification. Hence, the higher the
abstaining rate, the higher the tentative accuracy and the
lower the accuracy. This is a number between 0 and 1.

B. DATASETS
The characteristics of the datasets used in the experiments
are highlighted in Table 3 in terms of number of instances,
attributes (including type of attributes) and class labels.
Datasets 15, 16 and 24 included few missing values. A com-
mon strategy to estimate each of the missing values using the
values that are occur in the dataset is called: replace by most
frequent / average value [26]. This approach is adopted in
this research by replacing a missing categorical value with
the most frequently occurring value and estimating a missing
numerical value with the average value for the concerning
attribute.

Two evaluation methods have been applied to all experi-
mental datasets in the present paper: (1) train and test method
inwhich each dataset was randomly sampledwithout replace-
ment into train and test datasets. While the test set consists
of 30% the data instances, the remaining 70% were used to
build the classifiers. The test data is used only once to assess
the general performance of the classification models. (2) five-
fold cross validation method, in which each dataset was shuf-
fled and randomly divided into 5 partitions (folds) of equal
size. Then for each fold, a learning algorithm was trained
on the remaining four folds and then tested on the current
fold. The two evaluation methods were used to comparatively
evaluate both classification systems; the presented ensem-
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TABLE 3. Characteristics of the datasets used in the experiments.

ble ReG-Rules versus the stand-alone rule based classifier
G-Rules-IQR.

C. RUNTIME COMPLEXITY
The induction process of ReG-Rules involves 4 components
that need to be considered for estimating the runtime com-
plexity with respect to the number of instances N and the
number of features M. These components are (1) Diver-
sity Generation, (2) Base Classifier Inductions, (3) Models
Selection and (4) Rules Merging (see Figure 3). These com-
ponents are executed sequentially, hence the complexity of
ReG-Rules is determined by the component with the highest
complexity.

With respect to component (1) Bagging is used. Bagging
has a complexity of O(N ) since N sample instances are
taken. Bagging is not dependent on the number of features
M . Hence, the complexity of Diversity Generation can be
described with O(N ). With respect to component (2), G-
Rules-IQR base classifiers have a theoretical worst case com-
plexity of O(N 2M ) [19], in which case each data instance
would be covered by a single rule. However, according to [36]
the complexity of algorithms of the Prism family (to which
G-Rules-IQR belongs) is estimated to be linear on average.
Thus, the runtime complexity of ReG-Rules’ Base Classifier
Inductions component can be estimated as d · O(N 2

· M ),
where d is the number of base classifiers induced. d can
be neglected here as it is not dependent on the size of the
training data. With respect to component (3) the Models
Selection is not dependent on the training data but represents
a summand m added to the runtime dependent only on the
number of models generated. With respect to component (4)
the merging of rules is not dependent on the training data
but represents a summand r depending only on the number

of rules generated. Thus, the total runtime complexity can
be described as O(N ) + O(N · M ) + m + r , which can be
simplified to a runtime complexity of O(NM ). Thus it can be
said that ReG-Rules is likely to scale linearly with respect to
the number of data instances and features in the training data.

D. EMPIRICAL EVALUATIONS OF THE ENSEMBLE
ReG-RULES CLASSIFIER
The experimental results presented in Tables 4 and 5 were
obtained using the train and test evaluationmethod. Similarly,
Tables 6 and 7 present the experimental results acquired using
the five-fold cross validation method. Please note that each
evaluation method’s results will be discussed separately in
the following sub-sections. In each table the # symbol refers
to the number of the dataset in Table 3. The best result(s) in
the tables for each dataset are highlighted in bold letters. The
tables show the results with respect to the 5 evaluationmetrics
previously described in Section V-A.

1) EVALUATION USING SEPARATE TRAINING AND TEST
DATASETS STRATEGY
Table 4 compares three types of induced rules sets for each
dataset: (1) number of rules generated by G-Rules-IQR clas-
sifier, (2) average number of rules induced by ReG-Rules
classifier before utilising the local RM algorithm, and (3)
average number of rules generated by ReG-Rules after inte-
grating the local RM algorithm in its selected base classifiers’
rules sets. As it can be seen in Table 4, on average a ReG-
Rules base classifier produces fewer rules than G-Rules-IQR
for all the 24 datasets. However, further minimising in the
number of induced rules without reducing the performance of
the classifier is desired and beneficial to the human analyst.
For this reason, ReG-Rules integrates the local RM approach
in its construction. As it can be observed from Table 4 and
Figure 8, in 18 out of 24 datasets a reduction in the number
of rules was achieved after applying the local RM algorithm.
In some cases the reduction was more than 45% and only
in 6 out of 24 datasets ReG-Rules classifier produced the
same number of rules sets before and after utilising the RM
method. Due to this significance, the remaining experimental
results in this section will consider only the version of ReG-
Rules which employs the local RM technique in its con-
struction. Table 4 also shows that the ensemble ReG-Rules
is lowering the abstaining rate to zero in 21 out of the 24
datasets. On the remaining 3 cases, ReG-Rules’s abstaining
rate was very close to zero, while in terms of the single base
classifier, G-Rules-IQR, the abstaining rates were higher than
10% on several datasets. In three datasets (9, 10, and 20)
G-Rules-IQR’s abstaining rate reaches 30%, 19% and 40%
respectively.

Table 5 uses the evaluation method of separate Training
and Test datasets to compare ReG-Rules and G-Rules-IQR in
terms of F1 score, accuracy and tentative accuracy metrics.
With respect to F1 score, which is the harmonic mean of
precision and recall, the results show that the proposed ReG-
Rules outperforms G-Rules-IQR on 12 out of 24 datasets.
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TABLE 4. Number of rules and abstaining rates using separate training and testing sets method.

FIGURE 8. Difference (in percentage) of average number of rules of
ReG-Rules classifier after integrating RM approach compared with before
the merging process.

Also, in 6 out of the remaining 12 cases where ReG-Rules
did not outperform its competitor, it still performs at the
same level of score as G-Rules-IQR. On two datasets (1 and
9), ReG-Rules algorithm was not the best method, but was
still very close within 3% difference to the best F1 score.
With respect to accuracy, in almost all cases ReG-Rules
achieved the highest accuracy. In particular, it outperforms
the G-Rules-IQR algorithm in 15 out of 24 datasets and
performs at the same level as its competitor in 7 out of the 9
remaining cases. On one of the two datasets (16) where ReG-
Rules did not outperformG-Rules-IQR, the accuracy of ReG-
Rules was lower by only 4% compared with G-Rules-IQR.
With respect to tentative accuracy, the ReG-Rules algorithm
performs better or equal than G-Rules-IQR in 18 out of 24
datasets. In these 18 cases, the proposed ReG-Rules classifier
outperforms G-Rules-IQR in 8 cases. On 5 out of the remain-

TABLE 5. F1 score, general accuracy and tentative accuracy using
separate training and testing sets method.

ing 6 cases, where ReG-Rules was not the best method, it only
underperformed by a maximum difference of 3%.

2) EVALUATION USING CROSS VALIDATION STRATEGY
Table 6 compares the number of rules generated by the
G-Rules-IQR classifier with the average number of rules
generated by the ReG-Rules classifier. As it can be seen
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TABLE 6. Number of rules and abstaining rates using cross validation
method.

in the table, on average a ReG-Rules base classifier that
integrated local RM in its construction produces fewer rules
than G-Rules-IQR on all the 24 datasets. The table also shows
that compared with its standalone G-Rules-IQR, the problem
of abstaining in ReG-Rules was almost non-existent on all
the 24 datasets. Only on two datasets (10 and 23) was ReG-
Rules’s abstaining rate slightly above zero.

Table 7 compares the proposed ensemble ReG-Rules and
G-Rules-IQR in terms of F1 score, accuracy and tentative
accuracy using the evaluation method of 5-fold cross vali-
dation. Regarding F1 score, the results illustrate that ReG-
Rules achieves best score on 18 out of 24 datasets. On these
18 datasets, ReG-Rules was the best classifier in 10 cases and
performs at the same level of scores as its competitor in the
remaining 8 cases. Also, on 4 out of the remaining 6 datasets
(7, 8, 10, 24), ReG-Rules classifier only underperformed by a
maximum difference of 4%. With respect to accuracy, ReG-
Rules classifier outperforms G-Rules-IQR in 21 out of 24
datasets and performs at the same level on the remaining 3
datasets. Regarding tentative accuracy, ReG-Rules performs
equal or better than G-Rules-IQR on 18 out of 24 datasets.
Among these 18 cases, ReG-Rules outperformsG-Rules-IQR
on 9 datasets.

Generally speaking, the results of all the experiments con-
ducted in this research using cross validation are consistent
with the previous results obtained from the evaluation strat-
egy of separate training and testing datasets. Both strategies
show that ReG-Rules base classifiers are not only producing
fewer rules on all the 24 datasets but also almost never
abstain from making a classification decision compared with
G-Rules-IQR which suffers from high abstaining rate on
multiple datasets. In terms of F1 score, accuracy and tentative

TABLE 7. F1 score, general accuracy and tentative accuracy using cross
validation method.

accuracy, both evaluation approaches demonstrate that ReG-
Rules outperforms G-Rules-IQR in most cases.

E. EMPIRICAL EVALUATION OF RANKING CUR APPROACH
As explained in Section IV-E, the idea behind this approach is
to rank once the individual ensemble members according to
a certain criterion which is based on their rule sets quality
and not just the overall accuracy of these base classifiers,
and then select the top base classifiers whose rank is above a
given threshold (a fixed user-specified amount or percentage
of models). A rule’s quality is measured using a track record
of its performance during the validation stage and this track
record is associated with the general performance of the base
classifier that has generated this rule. In this part of the exper-
imental study, ranking approach is empirically evaluated in
order to show not only its performance but also to what
extent this strategy contributes towards the improvement of
overall accuracy of the ensemble classification. For evalu-
ation purposes, another version of ensemble ReG-Rules is
implemented using the same code base differing in the ensem-
ble selection method. In other words, the second version of
ReG-Rules algorithm will not rank the available composite
classifiers before selecting a sub-ensemble according to the
same user defined ensemble size that has been chosen in the
first version. Detailed results of the experiments are depicted
in Tables 8 and 9. The best result(s) in these tables for each
dataset are highlighted in bold letters.

For simplicity, the bar chart shown in Figure 9 sum-
marises the performance comparisons between the two differ-
ent implemented versions of ReG-Rules algorithm. Version
1: ReG-Rules classifier incorporates a prior ranking to its
base classifiers according to their tentative accuracies and
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TABLE 8. Comparison between two types of ensemble selection models
applied to ReG-Rules classifier in terms of number of rules and abstaining
rate.

FIGURE 9. Performance of ReG-Rules classifier with ranking-based
approach over ReG-Rules classifier without ranking-based approach.

the average of CUR numbers of these models’ rules sets
before selecting the top ranked members. Version 2: ReG-
Rules classifier that does not involve any ranking process to
its composite classifiers before selecting the same subset size
of ensemble as for the first version. The figure reports the
number of wins, losses and ties. These numbers refer to the
number of datasets where Ranked ReG-Rules algorithm (ver-
sion 1) outperformed, underperformed or performed the same
compared with version 2. With regards to number of rules
measure, the results demonstrated in Table 8 and in Figure 9
suggest that the ranked version of ReG-Rules achieves the
best results in 11 out of 20 datasets with 6 wins, 5 ties. Hence
the results indicates that there is no clear winner in terms of
number of rules. Concerning the abstaining rates metric, both
versions performed almost equally well with 18 ties out of 20
datasets.

However, the results detailed in Table 9 and summarised
in Figure 9 show that integrating ranking method into the
proposed ensemble algorithm improves the classification per-
formance in most cases in terms of F1 score, accuracy and

tentative accuracy. With regards to F1 score, Figure 9 reflects
that ReG-Rules (version 1) outperforms (version 2) in 9
out of 20 datasets. Also, among the remaining 11 datasets
where it is not surpassing, the ranked version of ReG-Rules
algorithm achieves similar scores in 8 datasets compared with
the other version. Concerning accuracy, ReG-Rules (version
1) achieves the highest results in 18 out of 20 datasets with
9 wins and 9 ties. Only on two datasets (11 and 20) where
the proposed ReG-Rules algorithm was at most 2% lower in
accuracy than the results accomplished by ReG-Rules (ver-
sion 2). In terms of tentative accuracy, ReG-Rules (version
1) performs equal or better than the other version of ReG-
Rules on all 20 datasets with 9 wins and 11 ties. It is important
to note that the similarity in accuracy and tentative accuracy
results highlighted in Table 9 are caused by having abstaining
rates of nearly zero as can be seen in Table 8, this is due to
the relationships between these metrics which were explained
previously in Section V-A.

F. QUALITATIVE EVALUATION OF RULES MERGING (RM)
ALGORITHM
The RM method developed in this paper is detailed in
Algorithm 4 and aimed to mitigate the complexity of rules
set for the individual classifier by reducing the number of
rules/terms. TheRMapproach has been empirically evaluated
with respect to the ReG-Rules ensemble in Section V-D.
This Section evaluates the RM method qualitatively on two
case studies where the rule sets produced by a G-Rules-IQR
classifier without RM and one with RM are examined.

The two case studies are the blood transfusion and the
wine datasets from the UCI repository [57]. The descriptions
of the two datasets can be found in Table 3 in terms of
number of instances, attributes (including type of attributes)
and classes. Both datasets are used previously among other
datasets to evaluate the original G-Rules-IQR algorithm in a
published work [19]. Also they are used in the current study
to evaluate the ensemble classifier (ReG-Rules). The datasets
have been randomly sampled without replacement into train
and test datasets; whereas the test sets consist of 30% the data
instances and the remaining 70% were used to learn the rule
set.

1) CASE STUDY 1: EXPERIMENTS CONDUCTED ON BLOOD
TRANSFUSION DATASET
The same 524 training instances were used to learn the classi-
fier and induce the rules sets illustrated below. The 20 original
rules were induced by G-Rules-IQR algorithm before apply-
ing the merging approach while the 12 merged rules are the
ones generated using RM approach. Both, the original and the
merged rule sets are validated on the same test data examples
which consists of the remaining 224 instances. The results
can be seen in Table 10.
Original Rules:

R1 : 18.59 < Time ≤ 51.41 → 0

R2 : 30.8 < Time ≤ 73.2 → 0
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TABLE 9. Comparison between two types of Ensemble selection models applied to ReG-Rules classifier in terms of F1 score, accuracy and tentative
accuracy.

R3 : 2.41 < Monetary ≤ 2.98 &

−1.06 < Time ≤ 33.06 &

0.44 < Frequency ≤ 0.51 &

0.70 < Recency ≤ 1.01→ 0

R4 : 2.41 < Monetary ≤ 2.98 &

−2.44 < Time ≤ 34.44 &

0.44 < Frequency ≤ 0.51 &

0.50 < Recency ≤ 0.90→ 0

R5 : 2.41 < Monetary ≤ 2.98 &

0.44 < Frequency ≤ 0.51 &

1.45 < Time ≤ 26.55→ 0

R6 : 0.69 < Recency ≤ 1.12 &

−3.45 < Time ≤ 39.45 &

0.17 < Frequency ≤ 1.44 &

2.39 < Monetary ≤ 2.40→ 0

R7 : − 6.43 < Time ≤ 42.43 &

0.17 < Frequency ≤ 0.43 &

0.93 < Recency ≤ 1.42 &

2.39 < Monetary ≤ 2.40→ 0

R8 : 48.54 < Time ≤ 99.46 → 0

R9 : 6.60 < Time ≤ 15.41 → 0

R10 : 0.32 < Recency ≤ 0.63 &

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0→ 0

R11 : 12.43 < Time ≤ 19.57 → 0

R12 : 3.99 < Time ≤ 4.0 → 0

R13 : 1.12 < Time ≤ 1.64 → 1

R14 : 0.75 < Time ≤ 1.48 → 1

R15 : 1.25 < Time ≤ 2.03 &

0.87 < Frequency ≤ 1.29→ 1

R16 : 0.29 < Time ≤ 1.11 → 1

R17 : 1.76 < Time ≤ 1.93 → 1

R18 : 1.61 < Time ≤ 1.82 → 1

R19 : 1.60 < Frequency ≤ 1.69 → 1

R20 : 1.95 < Time ≤ 1.97 → 1

Merged Rules:

R1 : 18.59 < Time ≤ 99.46 → 0

R2 : 2.41 < Monetary ≤ 2.99 &

−2.44 < Time ≤ 34.44 &

0.44 < Frequency ≤ 0.51 &

0.50 < Recency ≤ 1.10→ 0

R3 : 0.69 < Recency ≤ 1.42 &

−6.43 < Time ≤ 42.43 &

0.17 < Frequency ≤ 0.44 &

2.39 < Monetary ≤ 2.40→ 0

R4 : 6.6 < Time ≤ 19.57 → 0

R5 : 0.29 < Time ≤ 1.64 → 1

R6 : 1.61 < Time ≤ 1.93 → 1

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0→ 0

R7 : 2.41 < Monetary ≤ 2.98 &

0.44 < Frequency ≤ 0.51 &

1.45 < Time ≤ 26.55→ 0

R8 : 0.69 < Recency ≤ 1.12 &

−3.45 < Time ≤ 39.45 &

0.17 < Frequency ≤ 1.44 &

2.39 < Monetary ≤ 2.40→ 0

R9 : − 6.43 < Time ≤ 42.43 &
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TABLE 10. Experimental results of case study 1.

0.17 < Frequency ≤ 0.43 &

0.93 < Recency ≤ 1.42 &

2.39 < Monetary ≤ 2.40→ 0

R10 : 48.54 < Time ≤ 99.46 → 0

R11 : 6.60 < Time ≤ 15.41 → 0

R12 : 0.32 < Recency ≤ 0.63 &

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0→ 0

It can be seen that the number or rules and rule terms
is considerably reduced, making it easier for the analyst to
understand the rule model. In this case the number of rules
were reduced from 20 to 12. The RMmethod merges without
loss of information, thus instances covered by a rule before
merging should still be covered either by the same rule or the
resulting merged rule (leading to the same classification)
after RM was applied. Nevertheless, what can also be seen
in Table 10 is that there are very small variations in precision,
F1 score, accuracy and tentative accuracy. A closer examina-
tion of the results on the test data revealed that the variation
are a result of the order in which the rules are applied.
Before merging a data instance may have been covered by
two or more rules each leading to a different class label and
the first rule applied and matching the data instance would
determine the class label. The same effects are still true after
the RM, if two rules are merged they are not anymore listed
consecutively and the rule order may change slightly.

2) CASE STUDY 2: EXPERIMENTS CONDUCTED ON WINE
DATASET
The same 125 training instances were used to learn the classi-
fier and induce the rules sets illustrated below. The 13 original
rules were induced by G-Rules-IQR algorithm before apply-
ing the merging approach while the 9 merged rules are the
ones generated using RM approach. Both, the original and the
merged rule sets are validated on the same test data examples
which consists of the remaining 53 instances. The results can
be seen in Table 11.
Original Rules:

R1 : 0.09 < Noflavan phenols ≤ 0.12→ 1

R2 : 0.58 < Total phenols ≤ 0.62→ 1

R3 : 0.59 < Total phenols ≤ 0.65→ 1

R4 : 0.05 < Noflavan phenols ≤ 0.11→ 1

R5 : 13.68 < Alcohol ≤ 13.70→ 1

TABLE 11. Experimental results of case study 2.

R6 : 1.93 < Magnesium ≤ 2.02→ 2

R7 : 1.85 < Magnesium ≤ 2.01→ 2

R8 : 2.01 < Magnesium ≤ 2.15→ 2

R9 : 2.77 < Proline ≤ 2.89 → 2

R10 : 0.39 < Total phenols ≤ 0.46→ 3

R11 : 509.6 < Proline ≤ 670.4→ 3

R12 : 0.34 < Totalphenols ≤ 0.43→ 3

R13 : 0.57 < Hue ≤ 0.62→ 3

Merged Rules:

R1 : 0.05 < Noflavan phenols ≤ 0.12→ 1

R2 : 0.58 < Total phenols ≤ 0.65→ 1

R3 : 1.85 < Magnesium ≤ 0.65→ 1

R4 : 0.34 < Total phenols ≤ 0.46→ 1

R5 : 13.68 < Alcohol ≤ 2.02→ 1

R6 : 2.01 < Magnesium ≤ 2.15→ 2

R7 : 2.77 < Proline ≤ 2.89 → 2

R8 : 509.6 < Proline ≤ 670.4→ 3

R9 : 0.57 < Hue ≤ 0.62→ 3

Here it can be seen as well that the number or rules and
rule terms is considerably reduced, again, making it easier
for the analyst to understand the rule model. In this case the
number of rules were reduced from 13 to 9. As discussed for
Case Study 1, the merging does not cause loss of information,
merely the rule order may be influenced. In this case no
effects of the rule order can be observed with respect to the
performance metrics listed in Table 11.

VI. CONCLUSION
The paper presents the development of a new predic-
tive ensemble learner termed ReG-Rules. ReG-Rules aims
to improve the predictive performance of expressive and
explainable rule-based predictive learners, while presenting
the human analyst with an explainable model for predictions.
ReG-Rules merges classification rules from the base classi-
fiers and offers the analyst a human readable and compact
rule set for a prediction. ReG-Rules uses a validation set to
measure the base classifier performance which is a composite
measure composed of various metrics. Out of these best
ranked base models a classification committee of rules is
being built for each classification attempt.

ReG-Rules was evaluated empirically and qualitatively
and compared with the standalone G-Rules-IQR classifier it
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aims to improve upon. With respect to empirical evaluation
train and test as well as cross validation where used on
real datasets. It was found that both empirical evaluation
approaches achieved similar results for all performance met-
rics. The performance metrics considered were accuracy, ten-
tative accuracy, F1 score and abstaining rate. It was found that
for all empirical evaluationmetrics, ReG-Rules outperformed
G-Rules-IQR on average and in most cases. Abstaining from
classification, a typical problem of rule-based classifiers, was
almost non-existent in ReG-Rules. The potential changes of
the classification due to the RuleMerging component of ReG-
Rules were also examined empirically and it was found that
there are many fewer rules in the model per base learner than
using original unmerged G-Rules-IQR, while exhibiting only
minor differences in the classification performance. The Rule
Merging component was also evaluated qualitatively and it
was found that merged rule sets are more compact and easier
to read.

However, ReG-Rules requires a human analyst to examine
a small set of rules (classification committee) per classifica-
tion attempt, although this rule set is much smaller than the
entirety of the rules induced by ReG-Rules. Thus ongoing
work aims to extend ReG-Rules by a global Rule Merging
facility to generate a consolidated rule set from all relevant
base learners. This is expected to reduce the number of rules
presented to the analyst per classification attempt and thus
is expected to enhance ReG-Rules’ expressive power further,
while maintaining ReG-Rules’ predictive power.

Overall, it can be said that rule-based predictive models are
among the most expressive classification techniques in data
mining. Ensemble learners aim to improve classification per-
formance but generally often at the expense of explainability.
ReG-Rules successfully provides an approach to harvest the
predictive power of an ensemble learner, while maintaining
explainable aspects of rule-based predictive models.
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