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ABSTRACT Therapeutic methods taking advantage of low-frequency electromagnetic fields, or in other
words, electrical currents contactless-induced by time-variable magnetic fields, enjoy an ever-growing
interest in rehabilitation medicine. A great interest is paid to the question of using non-conventional
techniques, such as the High Induction Magnetic Stimulation (HIMS). Based on therapeutic principles, it is
possible to expect positive effects of this therapy, but this problem has not yet been considered, and thus,
there are no research results supporting the HIMS application. Due to this, the target of the article presented
here is to study effects of the HIMS on viscoelastic properties of skeletal muscles, since this research has
till been missing. Within the framework of the present study, the HIMS was applied to 15 subjects and
viscoelastic properties of the muscle were measured before and after the application. The evaluation of
hysteresis curves acquired show obvious effects of the HIMS on viscoelastic muscle characteristics. After
the HIMS application, the muscle tone was decreased and the elasticity of the tissue exposed was increased

in the sample studied.

INDEX TERMS Biceps, high induction magnetic stimulation, muscle, myotonometry, viscoelasticity.

I. INTRODUCTION

In rehabilitation medicine, ever-growing attention is being
paid to problems of the therapy of soft tissues with the use
of electromagnetic fields. Therapeutic effects are dependent
inter alia on the intensity of the field applied and possibly also
on the frequency [1]. The High-Induction Magnetic Stimu-
lation (HIMS) is a therapeutic method using high-intensity
fields (up to 2.5 T), which produce high current density in the
tissue exposed [2]. However, insufficient attention has been
paid to the therapy of the locomotor apparatus with the use
of the HIMS and thus, results of appropriate studies dealing
with this problem are not available.

In contemporary rehabilitation medicine, magnetotherapy
is a frequently used approach and thus, many commercial
devices have been designed for this treatment modality. How-
ever, these devices standardly produce low-intensity induced
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electrical currents and thus, different effects can be expected
compared to the HIMS. In general, there is a certain scep-
ticism as to the therapy with the use of the low-frequency
electromagnetic field. This is particularly due to the fact that
although physiological effects of this stimulation are quite
obvious, their accurate mechanism has not yet been satisfac-
torily explained [3] and relevant studies are still few in num-
ber. The research results available are even more restricted
when considering the therapy with the use of the HIMS. How-
ever, the use of pulsed electromagnetic fields (PEMF) at dif-
ferent intensities and frequencies brought positive therapeutic
results [3]-[6] and presented no hazard in terms of affect-
ing the electric conduction system in the myocardium [2].
In general, the research available is particularly aimed at low-
intensity fields in the therapy of joints, e.g. [7], [8] or possibly
at applications of the HIMS for the Transcranial Magnetic
Stimulation (TMS) [9], [10].

However, from the viewpoint of the HIMS action it seems
that the therapy could be suitably employed for the treatment
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of soft tissues [6]. The assumption of positive HIMS effects
is also supported by research implemented at the cellular
level [11], [12]. With taking into account soft tissues, disor-
ders of skeletal muscle manifested by changes in viscoelastic
properties of the muscle concerned can be frequently encoun-
tered.

The soft tissue of muscles consists of two basic com-
ponents — contractile cells and extracellular matrix (ECM)
[13], [14]. The ECM fulfills many functions and particularly
provides the tissues with the strength and elasticity, thus
maintaining their shape, and it also serves as a biologically
active scaffold. The mechanical behaviour of soft tissues is
strongly affected by the concentration and structural arrange-
ment of particular components as well as by the function of
these tissues in the organism [15]. In terms of mechanics,
the principal components of the ECM are collagen, elastin
and proteoglycans [16]. The extracellular matrix of mus-
cles forms fasciae, the mesodermal tissue particularly com-
prising collagen, known as membranous muscle capsules.
Superficial fasciae continuously merge into the fibrous tissue
inside of the muscle, where they form a harder envelope of
muscle fibres and furthermore grow into internal structures
of the muscle and thus physiologically restrict their excess
tension or overloading (endomysium, perimysium, epimy-
sium) [14]. Thus, fasciae occur on the muscle surface as
well as in deep layers. They separate particular muscles one
from another making possible slipping between them, and
simultaneously interconnect muscles to produce locomotor
chains. The fasciae can be different in the shape, compactness
and volume as a tissue penetrating through the body.

Similarly, as other soft tissues, the fasciae are also sub-
jected to stepwise reduction in length, and as far as they
are not exposed to rhythmical tension changes, they become
tough, and in addition, they become sites of the subcutaneous
fat accumulation furthermore limiting the motion [17]. The
process of fascia toughening is different in different indi-
viduals. It can also be affected by inflammatory processes,
inappropriate nutrition, etc. There is, however, a principal
catabolic effect of the hypokinesis on the contractile appa-
ratus as well as on the skeletal muscle ECM, which results
in the development of the muscle atrophy, reduction in the
synthesis of contractile proteins and disorder of the collagen
metabolism. In this situation, the metabolism of fibrillar as
well as non-fibrillar collagen plays a crucial role in physical
exercise and sports, and affects contractile forces applied to
the skeletal apparatus [18]. Insufficient locomotor activity,
characteristic for a prevalent proportion of the population,
currently including even young individuals, is accompanied
by certain manifestations of the muscle atrophy associated
with changes in the plasticity, i.e. also in viscoelastic proper-
ties of muscles [19]. In spite of the fact that the reaction of
muscle cells to a lack of activity is considered more distinct
than the reaction of the ECM, the insufficient activity also
involves important changes in structures of the connecting
tissue, which lead to a deterioration of functional as well
as structural characteristics of the skeletal muscle includ-

VOLUME 9, 2021

ing its viscoelastic properties, and which are manifested by
enhanced pains in the locomotor apparatus and development
of degenerative changes [20]-[22].

Given the fact that the muscle is a considerably plastic
tissue [14], [23], [24], it is to assume that the HIMS appli-
cation is accompanied by specific mechanical strain of the
muscle resulting from partial rapid contractions of the har-
monic time course (muscle oscillations) or induced by waved
tetanus. As already mentioned, the research results available
are considerably limited and studies dealing with the HIMS
application on soft tissues are mostly missing.

In our previous study, we have focused on the HIMS effect
on connective tissue - patellar tendon. The results showed
significant decrease in the tendon tension after HIMS expo-
sure. Although there were some limitations, the study served
us as a knowledge basis for follow-up studies. Therefore,
the next logical step was to focus on different type of tissue.
The muscle tissue was selected for multiple reasons. Firstly,
the effect of the HIMS on skeletal muscle viscoelasticity has
not yet been studied, but based on the physical intervention
of this method, its application for these purposes seems to be
suitable. On the other hand, the muscle tissue is structurally
different from connective tissue. Therefore, it is also consid-
erably different in terms of rheological properties. This means
that it is not possible to primarily assume feasible results for
different tissue types, i.e. therapy that has a positive effect
on the tendon may not have the same effect in the case of
exposure of muscle tissue. For these reasons, the study target
is a verification of the hypothesis concerning the positive
HIMS effect on the skeletal muscle viscoelasticity, which
could perspectively contribute to the therapy of the loco-
motor apparatus disorders, such as for example the muscle
spasticity.

Il. MATERIALS AND METHODS

A. SUBJECTS

The basic criterion for including a participant in the present
study was a negative personal anamnesis as to any locomotor
apparatus disease, systemic disease and any other diseases,
which could affect the elasticity of the structures examined.
The anamnesis concerning the history of injuries and surgical
interventions should also have been negative. Fifteen subjects
aged 21.9 £ 1.8 years participated in the study. The sub-
jects were informed about the course of the experiment and
acknowledged with the target of the project and schedule of
the experiment and signed their informed consents with their
participation in the research and processing of personal data.
The whole study was implemented under medical supervision
and in agreement with the Helsinki Declaration [25].

B. EXPERIMENTAL SETUP

The elasticity of the exposed tissue was monitored for the
research of dispersion effects of the high-induction mag-
netic stimulation. For these purposes, a myotonometer (see
Fig. 1) was used, designed at the Technical University in
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FIGURE 1. Equipment for measuring tissue elasticity: Myotonometer (left)
and real setup in measurement implementation (right).

Liberec [26]-[28], which simulates the diagnostic palpa-
tion. The palpation is carried out with the help of a chosen
indenter situated on a movable arm driven by a stepping
motor [26], [27].

Based on the chosen indenter profile movement, it is pos-
sible to define the movement velocity, depth of the indenter
impression into the tissue and number of steps (fineness) of
measurements. It is possible to provide a continuous move-
ment at a constant velocity or to achieve other complicated
movement with an acceleration, breaks and waiting in a cer-
tain position, together with all the combinations of the above-
mentioned situations. The movement can be defined by a
fixed site, at which the appropriate force is read off. It is thus
possible to obtain a dependence of the force on the impression
(penetration) of the indenter, and vice versa, a dependence of
the impression depth on the force applied.

The maximum possible measurable force acting on the
strain gauge via the indenter is 110 N, with a resolution
of 0.43 N and an accuracy of + 1 %. The speed of movement
of the indenter is linear with a deviation of 3 %, at a speed
of 3.5-4mm-s~!.

The force measured (expressed in N) can be converted and
transferred to the pressure depending on the indenter chosen
and the knowledge of its contact surface [28]. To ensure
as uniform conditions as possible, one type of indenter,
penetration velocity, maximum acting force and penetration
depth were used for all measurements (detailed description
follows).

This equipment also makes possible plotting the hysteresis
curve of the loading and relieving force with the help of a
firmware. The elastic and viscose components of the tissue
studied can be expressed based on setups defined.

Possibilities of this diagnostic method were used to answer
research questions concerning attempts to objectivize the effi-
cacy of the High-Induction Magnetic Stimulation (HIMS).

The experimental measurements consist of the HIMS
application with the use of the SETA-D (NPF Dipol, Vitebsk,
Belarus) commercial device - see Fig. 2. The high-induction
magnetic stimulation was applied to the dominant upper limb
in the areas of the m. biceps brachii and radial or pos-
sibly ulnar ligamentum. The magnetic induction was set
at a level of 1.2 T with an inductor - applicator having
100 mm in diameter. The procedure took 10 min and con-
sisted of 10 series/min, 6 pulses in each series.
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FIGURE 2. Applicator for High-Induction Magnetic Stimulation (A.), a loop
of induced electric currents generated in a conductive environment
(tissue) due to a time-varying magnetic field (B).

The data collection was provided immediately before and
after the HIMS application. The principal hypothesis was that
the biomechanical viscoelastic properties of tissues at the site
of the application are significantly varied by the action of the
HIMS application.

Every subject was measured with the same myotonometer
setting to provide the uniformity of measurements and the
possibility of subsequent data evaluation. This setting was
used experimentally in a way providing the correct measure-
ment of the whole hysteresis curve. This was particularly
setting of a maximum limit of the force acting Fj;, = 30 N,
penetration depth dy,,,x = 20 mm and indentation velocity
v = 3 mm-s~!. A cylindrical indenter 18 mm in diameter
was used. Based on known geometry of the indenter, the con-
tact area was calculated. The time period of one measurement
with the use of the myotonometer was of 13.3 s. The mus-
cle was measured at the centre, on the biceps tummy. The
location of the measurement was determined particularly by
taking into account requirements for simple identification and
elimination of effects of different tissues structures.

The hysteresis curve shows the force acting in a spe-
cific penetration depth. Since the indenter motion is linear,
the penetration depth is directly proportional to time. From
this curve, the following statistical values (parameters) are
calculated. A parameter was employed for the analysis, char-
acterizing the maximum indentation force achieved F,,, ata
maximum penetration defined — 20 mm. This parameter char-
acterizes the resistance of the tissue examined in the defined
maximum penetration depth. A further parameter monitored
was the force F,,; characterizing the force situated on the
elasticity curve (hysteresis curve midline) in the region with
the highest energy, provided that this region is characterized
by the penetration depth d,,,4 [29]. In addition to the above-
mentioned quantities, the ratio Fy,q/d,uq and furthermore,
based on a conversion to the known indenter area, also the
maximum pressures achieved P, or P,,q were included into
the analysis. These parameters are associated with the tissue
viscosity. The last parameter monitored is the dissipation
energy, i.e. the area between curves representing loading and
relieving. This parameter corresponds to the tissue elasticity
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FIGURE 3. Examples of hysteresis curves characterizing viscoelastic
properties of the m. biceps brachii before application of High-Induction
Magnetic Stimulation-blue curve (1) and after the application-lilac
curve (2).

and thus, a higher dissipation energy means a lower muscle
plasticity [30], [31]. The parameters mentioned are shown
in Fig. 3 together with an example of hysteresis curves.

In addition, parameters characterizing the deflection and
inclination of each curve were also used for the curve descrip-
tion. These parameters were acquired by using the methodol-
ogy according to [27], [31], where the Inclination Parameter
is represented by a line segment between two points of the
line, and the perpendicular distance from this line segment to
the most distant point of the curve represents the Deflection
Parameter. In the interpretation of these parameters, a fact
is considered that the curve with a steeper slope, i.e. lower
inclination value is closer to the Euclidian solid matter, which
could be related for example to a spastic muscle whereas the
healthy muscle should exert a higher Inclination Parameter,
i.e. lower curve slope [31], [32]. In the case of the Deflection
Parameter, the healthy muscle should exert a higher vis-
coelasticity and thus also a higher Deflection Parameter [31]—
[33]. Thus, the Inclination Parameter indicates the muscle
tone or stiffness [31], [34] and the Deflection Parameter indi-
cates the muscle elasticity [31]. For a possible comparison
of values measured in particular subjects, a normalization is
then carried out according to:

Xi

ey

Xnorm; = max(x)’
where X, 1S the normalized value of the parameters for
the i-th measurement, x; is the original value of the parameter
for the i-th measurement, and max(x) is the maximum value
of the parameter in the dataset, where i = 1...N and N is
the size of the data sample i.e. the number of measurements.
Thus, after this normalization, the values of Deflection and
Inclination Parameters vary within the interval (0; 1).
Presented parameters were selected with respect to the
study design. Such parameters derived from the hysteresis
curve were proven to be suitable for evaluation of viscoelastic
properties of muscle tissue in previous studies [26], [27],
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[31]. Therefore, we can consider them sufficient regarding
the study design and aim of the study.

C. STATISTICAL ANALYSIS

The parameters directly obtained in the measurements on the
m. biceps brachii were completely processed at the end of
experiments, i.e. post-hoc, to avoid effects of the examination
process on the evaluation at the site and in the course of the
research activity.

Particular parameters acquired before and after the HIMS
application were statistically compared. With respect to the
sample size and refused hypothesis of the normal distribution
based on Jarque-Bera [35] and Kolmogorov- Smirnof [36]
tests, the statistical similarity was tested with the use of
the Wilcoxon signed-rank test [37] at a significance level
of « = 5 %. The distribution of particular parameters was
represented by using boxplots. The parameters represented
do not include the parameter d,,,,, which was set to a fixed
value, i.e. it was constant for all the measurements.

The statistical processing was carried out in the Matlab
2017a programme environment (MathWorks, Natick, United
States).

IIl. RESULTS

The distribution of particular parameters is represented
in Fig. 4 together with the indication of statistically signif-
icant differences prior to and after the HIMS application,
which means that for the parameter concerned the p-value
was obtained by means of the Wilcoxon signed-rank test is
lower than 0.05.

The distributions obviously show that in all the parameters
monitored, the expected behaviour was observed - reduction
in the median parameters related to the force, penetration
depth, energy or pressure, and vice versa increase in param-
eters in the cases of Inclination and Deflection parameters.
In most parameters, changes were statistically significantly
changed. Only two parameters, d,,¢ and Inclination, were
exceptional, but even in these parameters, there was an
assumed course, i.e. decrease or increase in the median after
the HIMS application.

IV. DISCUSSION

The distribution of particular parameters shows an obvious
interindividual variability in the group of the subjects exam-
ined. However, this is not surprising. Viscoelastic properties
of the muscle are affected by many factors, where for exam-
ple the sex [38] or daily activity [39] play important roles.
Kubo et al. demonstrated that there are significant differences
between viscoelastic characteristics of men and women mus-
cles. In women muscles, the stiffness and hysteresis were
lower in general [38]. Kawczynski et al. reported changes in
viscoelastic properties of muscles 24 hours after a specific
training [39]. The interindividual variability is thus a quite
natural phenomenon. To eliminate these influencing factors,
the most homogeneous group of subjects was selected. Also,
due to the study pretest-posttest design where paired testing
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FIGURE 4. Graphical representation of distributions of particular parameters prior to and after application of High-Induction Magnetic Stimulation (HIMS)
with indication of statistically significant differences in particular parameters prior to and after HIMS application.

was applied, the effect of interindividual variability is mini-
malized.

Given the nature of the viscoelastic properties, the ther-
apy with the use of the PEMF at high intensities obviously
positively affects the muscle elasticity. In all the parameters
studied, there was an expected decrease or increase, which is
illustrated by boxplots in Fig. 4. With respect to the p-values
mentioned, in most parameters, there were statistically signif-
icant changes between conditions before and after the HIMS
application. However, it is necessary to take into account
two facts as follows. Subjects participating in the study were
healthy young people and thus, the muscles exposed to the
therapy were also healthy. The second fact was a single
exposure of the muscle to the therapy for a period of time
of 10 min. There is a possibility that after repeated exposures
of spastic muscles to the HIMS, the positive effect of the
therapy can be even deeper.

The values of particular parameters obtained suggest that
the force necessary for achieving the defined depth was
reduced. In this way it was also sufficient to induce lower
pressures for the indenter penetration into the depth required.
After the application of the HIMS, viscoelastic properties of
the muscle were modified. The muscle became “softer”” and
thus exerted a reduced resistance and also energy losses in
relieving the indenter, i.e. the parameter E4;; was significantly
lower. The increase in the Inclination Parameter similarly
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indicates a decrease in the hysteresis curve slope. In practice,
this means that prior to the HIMS application, the muscle
is close to the condition of the Euclidian solid matter [40].
After the HIMS application, the muscle is contrastingly closer
to the horizontal representation, thus being closer to the
Pascal liquid matter [40]. Researchers point out a fact that
the lower slope of the hysteresis curve suggests that there is
a lower muscle tone and vice versa [31], [34]. The muscle
tone was thus reduced after the HIMS application. As far
as the shape of the hysteresis curve is concerned, the HIMS
application obviously significantly affected its curvature.
This is supported by a change in the Deflection Parameter.
Sifta et al.. shows that the healthy muscle manifested a more
considerable bending, which suggested that its elasticity was
enhanced [31]. It is thus to state that with respect to the
Deflection Parameter, the elasticity of the tissue exposed was
altered after the HIMS application.

The principle of the rapid action of the high-induction
magnetic stimulation HIMS on the soft muscle tissue can be
explained by effects of the HIMS on the extracellular matrix
rather than on the contractile muscle cells, myofibrils.

The inactivity of skeletal muscles results in losing muscle
contractile proteins and the force [41], [42]. The muscle
weakening is accompanied by a loss of the muscle mass and
diminishing of the muscle cell size [41], [43]. A reduction in
the protein synthesis and enhancement of their degradation
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occurs in the contractile apparatus as well as in the ECM [41].
However, we do not expect that the contractile apparatus
of the muscle could be significantly affected in the course
of a rather short time interval of the HIMS action in one
procedure carried out with the muscle investigated,. Biome-
chanical affecting of the ECM at the microlevel of its structure
is contrastingly a likely reason for the objectively demon-
strated changes in viscoelastic muscle properties after the
HIMS application. The ECM of connecting tissues actually
facilitates not only their attachment to other tissues, but
also plays a crucial role in the maintenance of the muscle
tissue structure [44]. Rapid changes in ECM characteristics
can be induced by the physical activity [45], [46], which
subsequently means changes in mechanical properties of the
skeletal muscle. In addition to slow changes in the col-
lagen concentration by the action of the physical activity,
rapid changes in its crosslinking were also recorded, which
exerted considerable effects on mechanical characteristics
of the skeletal muscle, particularly on the decrease in its
stiffness [47], [48].

If one considers the original assumption, the physical prin-
ciple of the HIMS and the fact that the muscle is highly plas-
tic, then a mechanical strain exerting the nature of interrupted
oscillations occurs in the muscle exposed; it is to believe
that this mechanism starts adaptation mechanisms principally
similar to physically induced processes of the recovery from
the muscle atrophy.

The above-mentioned facts suggest that the focused HIMS
energy (even in short procedure of the application of this
physical intervention) is sufficient to overcome forces of
undesirably weak chemical bonds and to cause a physiologi-
cal conversion of the tertiary or quaternary collagen structure,
i.e. to facilitate the conversion of a rather solid colloidal
suspension (gel) to the state of matter with a considerable
abundance of the phase sol. In this way, a return to the desir-
able structural form of the ECM accompanied by changes in
physiological viscoelastic properties can be achieved.

V. CONLUSION
The article deals with the study of the High-Induction Mag-
netic Stimulation (HIMS) effect on viscoelastic properties of
the skeleton muscle, specifically of the m. biceps brachii. The
HIMS was applied with the use of a commercial instrument.
The viscoelastic properties of the muscle were evaluated
based on data acquired from myotonometric measurements,
where the myotonometer indenter simulated the diagnostic
palpation. These measurements were always carried out prior
to and after the HIMS application in a group of 15 healthy
subjects. From the hysteresis curves obtained, parameters
were evaluated, which were subsequently statistically pro-
cessed. The results of the study show that the HIMS actually
affects the viscoelastic properties of the muscle exposed in a
way, in which the elasticity of the muscle is enhanced and the
muscle tone is reduced.

The study was limited by the number of subjects. For
more complex results, it would be necessary to consider
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more numerous subjects exposed to the HIMS. There is also
a limiting fact that the subjects were participants without
any diseases and without formerly experienced injuries. This
means that the muscles examined were healthy. On the other
hand, the present research serves as a pilot study in the field
of interest concerned with respect to the fact that no attention
has still been paid to HIMS effects on the soft tissues.

The present research is thus the first study dealing with
HIMS effects on the skeletal muscles and it can thus serve
as an initial basis for subsequent research in this field. For
the further research, the research sample should be thus more
numerous not only with respect to the number of healthy sub-
jects, but also with taking into account subjects with diseases
of the tissue exposed. A comparison of HIMS effects on the
soft tissue in the case of different setting of the treatment in
context of the field intensity and pulse frequency could also
be beneficial.
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