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ABSTRACT In 5G ultra-dense networks, a distributed wireless backhaul is an attractive solution for
forwarding traffic to the core. The macro-cell coverage area is divided into many small cells. A few of these
cells are designated as gateways and are linked to the core by high-capacity fiber optic links. Each small cell
is associated with one gateway and all small cells forward their traffic to their respective gateway through
multi-hop mesh networks. We investigate the gateway location problem and show that finding near-optimal
gateway locations improves the backhaul network capacity. An exact p-median integer linear program is
formulated for comparison with our novel K-GA heuristic that combines a Genetic Algorithm (GA) with
K -means clustering to find near-optimal gateway locations. We compare the performance of K-GA with
six other approaches in terms of average number of hops and backhaul network capacity at different node
densities through extensive Monte Carlo simulations. All approaches are tested in various user distribution
scenarios, including uniform distribution, bivariate Gaussian distribution, and cluster distribution. In all
cases, K-GAprovides near-optimal results, achieving average number of hops and backhaul network capacity
within 2% of optimal while saving an average of 95% of the execution time.

INDEX TERMS 5G, backhaul network capacity, gateway location problem, heuristic, machine learning,
small cells, ultra-dense networks.

I. INTRODUCTION
The recent introduction of 5G networks around the world
induced the development and deployment of many wireless
services, such as, ultra-high-definition video streaming, aug-
mented reality, sophisticated on-line video gaming, security
applications, intelligent farming, and connected vehicles.
5G has three stated objectives: (1) support for enhanced-
Mobile Broadband services (eMBB), (2) support for ultra-
Reliable and Low Latency services (uRLL), and (3) support
for massive Machine Type Communications (mMTC). This
paper addresses the first stated objective where 5G networks
aim to increase the data rate by as much as two orders of
magnitude [1].

Expanding a wireless network’s capacity by two orders
of magnitude or more is an ambitious target, but extensive
research and development efforts have put this target within
reach. In the quest for much faster data transmission, 5G net-
works are deploying several technologies to improve network
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capacity and spectrum efficiency. One of these technologies is
massiveMIMO (multiple-input multiple-output), which helps
improve the channel capacity and signal strength by employ-
ing multiple antennas for transmission and reception [2].
Another important technology is the millimeter wave (mm-
wave) band. 5G is set to exploit the massive spectrum space
available at higher frequencies. The mm-wave frequencies
are expected to provide hundreds of megahertz of bandwidth
to meet the requirements of higher data rates [3]. In addition
to massiveMIMO andmm-wave, network densification is the
third and most promising approach to handle higher spectrum
demands in crowded venues. Densification of crowded cells
increases network capacity in terms of bits/sec/Hz/unit area.
The basic approach is to make the network as dense as
possible by deploying a large number of access nodes within
a coverage area. These access nodes are referred to as ‘‘small
cells’’. Cell densification improves link quality and signif-
icantly increases network capacity [4]. The combination of
wider RF bandwidth, massive MIMO, and deployment of
many small cells gives rise to what is now known as anUltra-
Dense Network (UDN) [5], in which cells have a very high
data rate per unit area.
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While cell densification using anUDN increases the capac-
ity in terms of bits/sec/Hz/unit area, it complicates the back-
hauling problem. ‘‘Backhaul’’ refers to the links between
access points and the core network. An obvious solution to
the backhaul problem is to directly connect each small cell
to the core using fiber optic or any broadband cabling, but
this is costly and cumbersome. On the other hand, a wireless
backhaul solution is flexible and cost-effective. In particular,
the use of mm-wave bands provides the spectrum resources
needed to connect small cells to gateways [6]. The idea of
using wireless links to facilitate backhauling received special
attention in 3GPP Release 16 [7]. One of the key novelties in
Release 16 is to integrate access and backhaul using small
cells called Integrated Access and Backhaul (IAB) nodes.
An IAB node is a miniature base station that communicates
with user equipments (UEs) on a given frequency and delivers
UE traffic to the core network on a different frequency as part
of the backhaul network. This technology has gained much
attention in the industry because IAB is seen as a cost efficient
and convenient solution [8].

This paper explores the use of IAB nodes (or small cells)
in multi-hop wireless networks that carry the access traffic to
the core. We use the term ‘‘distributed wireless backhaul’’,
to imply that N small cells are clustered into groups, each
group is associated with a gateway (GW) bymeans of amulti-
hop mesh network, and all connections among small cells
(including gateways) usemm-wave links. Our networkmodel
is based on the IAB architecture in Release 16, where an IAB
node is referred to as a small cell and an IAB donor is called
a gateway. IAB nodes (small cells) and donors (gateways)
collectively form a multi-hop backhaul architecture. Proper
backhaul network design is crucial for maximizing the back-
haul network capacity (BNC).

A well-designed wireless-based backhaul network should
deliver all access traffic intercepted at all small cells to the
core using minimum spectral resources. There are two impor-
tant considerations: (1)Bottleneck avoidance: wemust ensure
that small cell to small cell link capacities are large enough to
accommodate the accumulated traffic volume, especially near
the gateways; and (2) Redundancy minimization: information
bits intercepted at small cells will be transmitted several times
during their journey to the gateways. Minimizing the Average
Number of Hops (ANH) throughout the network is crucial
in addressing these two considerations and in improving
the backhaul network spectral efficiency (bits/sec/Hz/unit
area) [9].

The gateway location problem (GLP) studied in this paper
involves finding gateway locations (M out of N small cells)
such that BNC is maximized. This means finding the small-
est ANH over every possible combination of M out of N
selections, which is combinatorically explosive. For example,
if N = 400 and M = 4, then there are more than a billion
possible solutions. The GLP is similar to the p-median prob-
lem, which is known to be NP-Hard [10].We have formulated
the p-median problem as an Integer Linear Program (ILP) to
find provably optimal gateway locations, but as the size of

the problem instance increases, the ILP becomes too large
to solve in a reasonable amount of time. For this reason,
we explore heuristic methods based on Artificial Intelligence
(AI) and Machine Learning (ML) to find GW locations and
to associate small cells to them.

Our new K-GA algorithm combines (i) ML’s K -means
clustering algorithm with (ii) AI’s genetic algorithm and
(iii) Dijkstra’s shortest path algorithm from operations
research. Genetic Algorithms (GAs) are stochastic optimiza-
tion heuristics inspired by biological evolution [11]. Thewell-
known K -means and K -medoids clustering are unsupervised
machine learning algorithms, which are simple partition-
based algorithms where k clusters create k centroids or k
medoids [12], [13]. Dijkstra’s shortest path algorithm [14] is
used to associate small cells to GWs. Preliminary work on
the algorithm appeared in [15]. The main contribution of the
work reported here is as follows:

• The development of a new heuristic algorithm (K-GA),
which provides locations for GWs within 2% of the
optimal locations in all small cell distribution scenarios.
The proposed heuristic is much faster than the exact
integer programming method.

• Various network topologies are investigated under dif-
ferent small cell distribution scenarios (uniform, bivari-
ate Gaussian, and cluster distributions), to assess the
performance of the proposed K-GA heuristic.

• Extensive Monte Carlo based simulations compare
the proposed K-GA with K -means, GA, K -medoids,
a baseline approach, and a hybrid of K -medoids and
GA (KM-GA), in terms of ANH and BNC.

The rest of this paper is organized as follows. After pro-
viding the background information on the p-median prob-
lem, Genetic Algorithms, K -means clustering algorithm,
K -medoids clustering algorithm, and Dijkstra’s shortest
path algorithm, Section II reviews the relevant literature.
Section III describes the network model of the distributed
multi-hop wireless backhaul. Section IV gives the problem
formulation in terms of BNC and Section V formulates the
mathematical model of the GLP. The K-GA heuristic is
detailed in Section VI. Section VII describes the experimental
methodologies, and the results are presented in Section VIII.
Section IX concludes the paper with an outlook on future
work.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
1) P-MEDIAN PROBLEM
The p-median problem is in the larger class of minisum
location–allocation problems [16]. The goal is to locate
p facilities (medians) to minimize the total weighted dis-
tance between the median points and the demand points.
Hakimi [17] introduced the median location problem on
graphs in 1964. Several methods have been developed for
general networks. If the basic graph of the network is a
tree, then the p-median problem can be solved with known
algorithms in polynomial time.
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a: COMPLEXITY OF P-MEDIAN PROBLEM
Matula and Kolde [18] provided an algorithm in 1976 with
complexity O(N 3p2) for locating the p-medians of a tree
where p is the number of facilities to select out of N facilities
and p > 1. In 1979, Kariv and Hakimi [19] proved that the
p-median location problem on a general network is NP-hard.
In addition, they also investigated the p-median problem on
tree graph networks and designed an algorithmwith complex-
ity O(N 2p2). A new algorithm was designed in 1982 for trees
with complexity O(N 3p) by Hsu [20]. Around 15 years later,
Tamir [21] improved the time complexity on tree networks to
O(N 2p). In 2005, Benkoczi and Bhattacharya [22] designed
an algorithm for trees with O(N 2logp+2) runtime.

2) GENETIC ALGORITHMS
A GA is parallel in nature, which improves speed when
applied to the p-median problem [23]. GAs are stochas-
tic, efficient, and easily manageable for complex problems
and have been widely used in analyzing data, integrating
information, and using the resulting insights to improve
decision making [24], [25]. In the fields of neural net-
works, computer science, machine learning, artificial life and
others, GAs are used as a stochastic search and optimization
heuristic [26], [27].

GAs search for a suitable solution through evolution and
randomness. A solution is represented as a ‘‘chromosome’’
string. A population of chromosomes is initially generated
randomly. These have an associated fitness score, which
affects their probability of being selected for the mating
pool. Pairs of chromosomes are selected from the mating
pool for the crossover operation, which creates new chromo-
somes by swapping their ends at a random crossover point.
These chromosomes are then subjected to the mutation oper-
ation, which changes the values of some elements randomly.
These operations produce a new population of chromosomes
(generation), and over a series of generations, better solutions
are evolved [28], [29].

a: COMPLEXITY OF GENETIC ALGORITHMS
The computational complexity of a genetic algorithm is well
studied [30]–[33]. It depends mainly on the problem size,
the fitness function, and parameters such as the selection
probability, mutation probability, number of chromosomes,
etc. In our problem, theGA’s complexity isO(NGnpop), where
N is the number of nodes or data points, G is the number of
generations, and npop is the number of chromosomes [34].
Assume that the mutation probability (Pm) and crossover
probability (Pc) for single point crossover are less than 1. The
selection process completes its operation in npop operations
at each iteration. Single point crossover exchanges the val-
ues in O(NPcnpop/2) time and the mutation process changes
elements in O(NPmnpop) time, where Pc�1 and Pm�1, and
this reduces the complexity to O(Nnpop) in a single genera-
tion. So, the overall complexity of a genetic algorithm for G
generations is O(NGnpop).

3) K-MEANS CLUSTERING ALGORITHM
K -means clustering is a popular and widely used machine
learning algorithm for data mining across different disci-
plines. It is used to process large amounts of unstructured
data [35], [36]. The main goal is to divide the N data
points intoM clusters so that the within-cluster total squared
Euclidean distance is minimized [37].

a: COMPLEXITY OF K-MEANS CLUSTERING ALGORITHM
The computational complexity of K -means clustering is
O(NMI) [38], where N is the number of data points (number
of small cells in our case), M is the number of clusters, and
I is the number of iterations. Generally, M � N , and the
computational complexity of K -means reduces to O(NI).

4) K-MEDOIDS CLUSTERING ALGORITHM
The K -medoids clustering algorithm is similar to K -means
clustering, but the cluster center, called a medoid, must be
a member of that cluster. Unlike K -means, this algorithm
returns medoids that are actual nodes. It uses partitioning
around medoids (PAM) [39] and proceeds in two steps:
• Build: For cluster center initialization, M nodes out of
N are selected randomly as medoids. Then, M clusters
are constructed by assigning each node to the nearest
medoid based on squared Euclidean distance.

• Swap: Within each cluster, each node (small cell in our
case) is tested as a potential medoid by checkingwhether
the sum of within-cluster distances gets smaller using
that node as the medoid. If so, the node is defined as a
new medoid.

K -medoids clustering iterates through the build and swap
steps until the medoids do not change.

a: COMPLEXITY OF K-MEDOIDS CLUSTERING ALGORITHM
The computational complexity of K -medoids is O(M (N −
M )2I ) [40], where M is the number of clusters or gateways,
N is the number of nodes (number of small cells in our case),
and I is the number of iterations. Generally,M � N , and the
computational complexity of K -medoids reduces to O(N 2I ).
K -means is more efficient compared to K -medoids in cases
where the number of data points (small cells) is large.

5) DIJKSTRA’S SHORTEST PATH ALGORITHM
Dijkstra’s algorithm is a well-known way to find the shortest
path between two points in a given network [14]. A variant
finds the shortest paths from a source node to all other nodes
for a given graph G (V, E) where V is the set of nodes and E
is the set of edges. Each of the edges in E has a weight, which
represents the length of the edge in terms of hops or distance.
See e.g. [41]–[43] for details and pseudocode.

a: COMPLEXITY OF DIJKSTRA’S SHORTEST
PATH ALGORITHM
The computational complexity of Dijkstra’s algorithm for a
single source shortest path is O(N 2) [44], [45], where N is
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the number of nodes. So, for N sources of shortest path trees,
the computational complexity becomes O(N 3).

B. RELATED WORK
Two popular backhaul architectures have been proposed
in the literature [9], [46]: ‘‘centralized’’ and ‘‘distributed’’.
In the centralized architecture, the small cells are connected
to a single point (usually the site of a macro-cell) through
which all traffic is backhauled to the core by fiber optic
cables. In the distributed architecture, the small cells are clus-
tered into groups. Each small cell connects to a gateway and
gateways connect to the core via fiber. Most reported work
compares the centralized and distributed schemes. The dis-
tributed architecture is shown to have better results in terms
of capacity and energy efficiency [9], and the distributed
architecture achieves higher throughput [46].

In the recent 3GPP Release 16, mm-wave is an acceptable
backhaul solution for small cell networks [7], and numerous
studies [47]–[49] on wireless backhaul technologies high-
light mm-wave wireless backhaul as the most acceptable
solution for 5G communications. Reference [47] investigated
the advantages and disadvantages of mm-wave and free
space optics (FSO) for fronthaul/backhaul links and showed
mm-wave to be better than FSO in terms of energy efficiency
and availability. A mm-wave backhaul-based massiveMIMO
scheme is proposed in [48] for 5G ultra dense networks.
It is shown that mm-wave can be easily merged with mas-
sive MIMO by deploying a large number of antennas in
the wireless backhaul network. Reference [49] evaluated the
advantages such as low latency and high quality of service in
a mm-wave wireless backhaul.

There have been several studies on different aspects of IAB
networks in 5G ultra-dense scenarios. For instance, the IAB
node (or small cell) placement problem [50]–[53], interfer-
ence management [54]–[59], resource allocation [60], [61],
the IAB donor (or gateway) placement problem [62]–[66],
and mobility management [67]–[69] have been studied in the
context of 5G ultra-dense networks. The focus in this paper is
on the gateway location problem in 5G ultra-dense networks.

Several works have been proposed for the GLP in sce-
narios such as Wireless Mesh Networks, Wireless Sensor
Networks, and Satellite Networks. The work in [70] focused
on gateway placement in 5G satellite hybrid networks for
improving network reliability. An optimal enumeration algo-
rithm and a cluster-based approximate placement algorithm
are applied for the GLP. Reference [71] proposed the method
of multiple surface gateways positioning in underwater sen-
sor networks. References [72]–[74] focused on the GLP in
wireless mesh networks, showing that a GAworks better than
other algorithms for optimizing the locations of gateways.
Reference [72] used a genetic algorithm for minimizing the
variance in hops count between each internet gateway and its
associated mesh router in the network. Reference [73] imple-
mented a genetic algorithm and a simulated annealing algo-
rithm for optimization inWMN for improving performance in
terms of cost and quality of service. In [74], the comparative

analysis shows that a genetic algorithm performs best among
all combinatorial algorithms.

There is little work on the GLP in UDNs. In [62], a fiber
backhaul is compared with a wireless backhaul solution in
the IAB architecture. The performance of the IAB network
is evaluated for applications such as the 3GPP HTTP model.
A subset of the IAB nodes are assumed to be IAB donors
(or gateways) and no gateway placement strategy is involved,
whichmay result in overloading some IAB-donors or increas-
ing the number of hops. In [63] the authors design a wireless
backhaul network planner to reduce the cost of the deploy-
ment. The main objective of the algorithm was to maximize
the overall coverage while minimize the number of gateways.
Reference [64] focused on the joint selection of cluster heads
and number of base station antennas to maximize the overall
system throughput. Reference [65] concentrates on maximiz-
ing the wireless BNC, but optimally selecting gateways was
not investigated. Reference [66] proposed a solution for the
gateway placement to increase energy efficiency. A compara-
tive summary of our proposed scheme with the existing work
on GLP in 5G ultra-dense networks is presented in Table 1.

Unlike [62]–[66], which address GLP in a different way,
our work aims to fill the research gap found in previous
studies by proposing the K-GA heuristic for locating a given
number of gateways such that the average number of hops
from small cells to gateways is minimized and backhaul
network capacity is maximized in an efficient way.

This paper is a significant extension of work originally
reported in [15]. In the present work, we develop an ILP
formulation for the p-median problem to find optimal gate-
way locations and compare the optimal solutions with the
proposed K-GA heuristic. We have also added theK-medoids
algorithm for comparison with K-GA to validate its perfor-
mance. Our earlier work tested a uniform distribution sce-
nario, which is the standard and simplest assumption about
user distribution within the coverage area. When users are
uniformly distributed, we also assume that the small cells
will be uniformly distributed. This is a mathematically simple
model, but rarely happens in the real world. In this paper we
also simulate more realistic distributions of users and small
cells such as the bivariate Gaussian distribution and a cluster
distribution [75]. We have also analyzed the computational
complexity of all approaches and assessed execution time of
K-GA in comparison with the optimal ILP approach.

Our approach directly tackles the GLP in a 5G multi-
hop ultra-dense scenario to increase the wireless backhaul
network capacity. K-GA provides promising near-optimal
results in all distribution scenarios and achieves better results
than other heuristics. It is significantly faster than the
optimum ILP.

III. NETWORK MODEL
A circular UDN is considered where the coverage area is
divided into N small cells. M out of N cells must be desig-
nated as gateways. The gateways are connected to the core
network by fiber optic links with very high capacity. The
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TABLE 1. Summary of existing solutions on GLP in 5G UDNs.
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FIGURE 1. Network model.

remaining (N-M) cells are grouped intoM clusters with each
cluster served by one gateway. Each small cell connects to
its serving gateway either directly or through multiple hops
within the cluster. We further assume that small cells use mm-
wave wireless links to connect with each other or with the
gateway [65]. Our work does not consider the access part of
the network, and only focuses on the wireless backhaul for the
5G ultra-dense network. The overall model is shown in Fig.1.

The main assumptions for this model are listed below:

• Each small cell has a fixed circular backhaul coverage
area.

• The backhaul coverage areas of small cells are equal.
• Two small cells must be in the transmission range of
each other to communicate.

• Each small cell has the same capacityWS , which is larger
than the incoming access traffic.

• The capacity of a gateway is WG, which is the capacity
of the fiber link between the GW and the core.

• Any small cell can be selected as a gateway for forward-
ing backhaul traffic to the core network.

IV. PROBLEM FORMULATION
Our main goal is to choose M gateways out of N small cells
such that the average number of hops in the entire coverage
area is minimized, and the spectral utilization efficiency and
thereby the backhaul network capacity of the wireless back-
haul network is maximized, where M is given. Each small
cell has wireless links to its neighbor with capacity WS . The
capacity of a gateway is denoted by WG. A formula for the
backhaul network capacity of the UDN is given below [65]:

C(M ,N ) =
min(N ·Ws,M · (WG−Ws))

min(Y (M ,N ))
+M ·Ws (1)

where min(Y (M ,N )) represents the ‘‘minimum average
number of hops from a small cell to its associated gateway’’.

The ‘‘average’’ is taken over the entire backhaul network.

Y (M ,N ) =
1
N

∑N

i=1
Yi(M ,N ), (2)

where Yi(M ,N ) is the number of hops between ith small cell
and its associated gateway, i = 1,. . . , N , and M ≥ 1.
In developing this formula, the authors maximized the total

number of bits generated at all small cells and successfully
delivered to all gateways within a period T , and took the
limit when T tended to infinity. Each information bit was
counted once. For a given spectral bandwidth, the informa-
tion throughput is achieved by maximizing the number of
simultaneous transmissions (represented by the numerator
of the first term) divided by the average number of hops.
The second term (i.e., M ·W s) does not utilize any spectral
resources because it represents the gateway’s own access
traffic transmitted directly over cables to the core.

It should be noted that in an UDN, the number of small
cells is usually too large. As the traffic is forwarded to a
gateway, each hop utilizes a wireless channel which carries
more and more traffic as it nears the gateway. The total
required spectrum resources increase as the number of hops
increases. Each bit is transmitted many times, once for each
hop, and this redundancy wastes spectral resources. Thus,
minimizing the number of hops is essential to increasing the
spectral utilization efficiency and thereby the capacity of the
backhaul network to carry more information bits per unit
time. Minimizing the ANH is achieved by optimizing the
gateway locations.

V. MATHEMATICAL FORMULATION
The gateway location problem in the distributed wireless
backhaul for 5G ultra-dense small cell networks is similar to
the p-median problem of selecting p centers or medians and
allocating all other points to their nearest centers with the goal
of minimizing the sums of the distances between the centers
and their assigned points. Each center is chosen from among
the given points.

The complexity of this GLP isO(N 3
+(N 2logp+2)), i.e., the

complexity of calculating shortest path trees for all nodes plus
the complexity of the p-median problem. This shows that as
the size of the problem instance increases, it rapidly becomes
too large to solve.

Mathematically, the GLP for 5G ultra-dense small cell
networks can be summarized as follows:

Inputs:
dij = Distance between small cell i and gateway j, in num-

ber of hops
p = Number of gateways to locate
Decision Variables:

Xj =

{
1, if we locate gateway at small cell j
0, if not

(3)

Yij =

{
1, if small cell i is served by gateway j
0, if not

(4)
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Minimize: ∑
i

∑
j
dijYij (5)

subject to: ∑
j
Yij = 1 ∀i ∈ N (6)∑
j
Xj = p (7)

Yij − Xj ≤ 0 ∀j ∈ M; i ∈ N (8)

• (3) and (4) specify that the decision variables (location
variables Xj and allocation variables Yij) are binary.

• The objective (5) minimizes the total weighted distance
(hops) of all small cells to the assigned gateways.

• Constraint (6) ensures that each small cell is assigned to
exactly one gateway.

• Constraint (7) ensures that exactly p gateways are
selected.

• Constraint (8) ensures that any small cell i is assigned
only to a location that is a gateway (Xj = 1).

This integer linear programming problem is solved by the
CPLEX solver [76]. The input data are:

• A finite number of small cells with locations.
• A finite number of possible gateway locations. In our
case any small cell can be selected as a gateway.

• A distance matrix d[N ][N ] of dimension N × N , where
N is the number of small cells including potential gate-
ways. Each element dij represents the smallest number of
hops between small cell i and small cell j, calculated via
Dijkstra’s algorithm where each potential link has nom-
inal length 1. A shortest route tree formulation reduces
the calculation effort.

Solving this problem provides the minimum total distance (in
hops) from gateways to small cells along with the optimal
gateway locations. The minimum ANH is calculated using:

ANH = Total minimum distance/(N−M ) (9)

VI. PROPOSED K-GA ALGORITH
Optimal algorithms can solve only small instances of the
p-median problem in reasonable time, so heuristic solu-
tions are needed. Complete bibliographies for several meta-
heuristic techniques for the p-median problem are given
in [16], [77]. Important meta-heuristics methods to solve
the p-median problem are: (i) Tabu Search, (ii) Variable
Neighborhood Search, (iii) Genetic Algorithms, (iv) Scatter
Search, (v) Simulated Annealing, (vi) Heuristic Concentra-
tion, (vii) Ant Colony Optimization, and (viii) Neural Net-
works. Genetic Algorithms are most widely used to solve the
p-median problem [23], [78]–[82]. The GA initial population
is chosen randomly, but this gives a higher likelihood of being
trapped at a local optimum. A better-chosen initial population
can provide higher quality chromosomes, leading to better
final solutions.

There has been very little research on methods that gener-
ate a better initial population for GA to solve the p-median
problem, especially in the case of 5G ultra-dense networks.
Generating a better initial population for GA using K -means
clustering is an interesting research area [83], [84]. Motivated
by the effectiveness of GAs for the p-median problem and the
efficiency of K -means, a novel heuristic K-GA is proposed
here to solve the p-median problem in the context of the
gateway location problem in 5G ultra-dense networks. The
K-GA algorithm has three phases. The steps are listed in
Algorithm 1.

A. PHASE 1: K-MEANS CLUSTERING
We start with the unsupervised K -means ML algorithm
applied to the unlabeled elements (i.e., the elements not
assigned to any group or cluster). We use the squared
Euclidean distance metric. The algorithm has two stages:

Stage 1 finds the centroids given the number of clusters
and the data points, and then associates each small cell with
the nearest centroid.

Stage 2 updates the centroids. New centroids are calculated
by taking the average of the locations of the small cells
associatedwith the cluster. The small cells are then reassigned
to the new centroids.

The process is iterated within a replication until no further
changes in centroids or small cell associations occur [85].
Rmax is the maximum number of replications and controls
the number of times the clustering process is repeated. For
each replication, the initial centroids are selected randomly.
The best result from all replications is selected as the final
result of this stage. It consists of M centroids that have the
smallest sum, over all clusters, of the within-cluster sums of
small-cells-to-cluster-centroid distances.

B. PHASE 2: COMBINING K-MEANS AND GA
In this phase, we generate an initial population for the next
phase of K-GA. Using the K -means result, we select the
t1, t2, t3, . . . , tM small cells nearest to the M centroids. Note
that the number of small cells associated with each centroid
could differ. In this work,M = 4 and t1 = t2 = t3 = t4 = 4.

C. PHASE 3: GENETIC ALGORITHM
A Genetic Algorithm [86] comprises the last stage of K-GA.
Since there are N small cells, an individual GA chromosome
is a binary string of length N with one position for each
small cell. A ‘1’ indicates that the associated small cell is
a gateway, and a ‘0’ indicates that it is not. GAs require an
initial population of different chromosomes, each encoding a
solution specifying the location of theM gateways.
The GA population size is determined by the process of

generating the initial population, as follows. Phase 1 returns
M clusters with M centroids, and Phase 2 returns the sets
of t small cells nearest to each centroid. We generate an
initial population of tM chromosomes by listing all com-
binations of one gateway taken from each of the Phase 2
sets. Using M = t = 4 gives 44 = 256 combinations for
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Algorithm 1 K-GA Heuristic
Inputs:
• Locations of small cells
• M : number of gateways to be chosen
• t: number of small cells closest to each K -means cen-
troid to be selected

• Rmax : maximum number of K -means replications
• Pm: GA mutation probability
• Gmax : GA maximum number of generations

Output:
• Gateway locations

BEGIN
1. Do Rmax times:
2. Arbitrarily chooseM initial centroids
3. Repeat until convergence is achieved:
4. Assign each small cell to the cluster having the

closest centroid
5. Calculate the new centroid of each cluster
6. Save the result of this replication
7. Find the best result among all replications and extract

locations of theM centroids
8. Select t small cells nearest to each of theM centroids
9. Generate tM small cell combinations as the initial pop-

ulation of chromosomes
10. Calculate fitness of each chromosome in the initial

population
11. Do Gmax times:
12. Perform selection process tM times to generate the

mating pool
13. Do tM /2 times:
14. Perform crossover operation to generate two new

chromosomes
15. Performmutation operation using Pm on each new

chromosome
16. Perform repair operation as necessary
17. Calculate fitness of the two new chromosomes
18. Find and save the chromosome with the best fitness

in this generation
19. Replace current population with the new population
20. Extract and output the gateway locations from the saved

best chromosome
END

gateway locations, which constitutes the initial population
of 256 chromosomes.

The fitness value of a chromosome is the ANH associated
with the solution it encodes. The fitness function runs the
shortest path algorithm to assign small cells to gateways and
generate shortest path trees for calculating ANH as the fitness
value. A small cell closest to a GW in terms of number of
hops becomes part of the shortest path tree rooted at that GW.
Lower ANH indicates better fitness.

Roulette wheel selection is used along with single-point
crossover and 1% mutation probability. A repair procedure
may be needed after crossover and mutation if the number of
gateways in a new chromosome is not equal to M . If there
are too many gateways, then randomly chosen ‘1s’ equal to
the number of extra GWs are converted to ‘0’. If there are
insufficient gateways, then randomly chosen ‘0s’ equal to the
number of missing GWs are converted to ‘1’.

After mutation, the fitness values are calculated. The
process of selection, crossover and mutation repeats until
enough new individuals have been produced to create a new
generation.

The selection, crossover, and mutation processes continue
for Gmax generations. The chromosome having the best fit-
ness over all generations is output, providing the final gate-
way locations and allowing the calculation of ANH and BNC
using (2) and (1), respectively.

1) K-GA COMPUTATIONAL COMPLEXITY
K-GA’s complexity is O(NI + GnpopN 2/M ). It takes O(NI)
time to generate the best cluster centers for the initial GA
population, where N is the number of small cells and I is the
maximum number of iterations for the K -means algorithm.
The complexity of the final stage of K-GA isO(GnpopN 2/M ),
where G is the number of generations for GA, npop is the
number of chromosomes, and M is the number of gateways.
There are on average N /M small cells associated with each
of the M gateways, each requiring a Dijkstra’s shortest route
tree solution of complexityO(N /M )2. Generally,M � N and
the complexity of K-GA reduces to O(NI +N 2Gnpop).

VII. METHODOLOG
A. NETWORK TOPOLOGY
We consider an UDN in a circular area with a radius of 1,000
meters for all three distribution scenarios. Small cells are
placed using a homogenous Poisson Point Process (PPP)
scheme [87]. The number of small cells is a Poisson random
variable with mean λ, where λ represents the average num-
ber of small cells in the circular area. To simulate dif-
ferent access traffic distributions, the network topology is
simulated in three different scenarios: Uniform Distribu-
tion (UD), bivariate Gaussian Distribution (GD), and Cluster
Distribution (CD).

The transmission range for all small cells is considered as
200meters in all three distribution setups [9], [65].Millimeter
wave backhaul does not allow small cells to have larger
transmission ranges because of high path loss. Generally,
a 200m coverage radius is considered ideal for small cells [5],
[88], [89]. Small cells are placed apart from each other to
avoid complete overlap of their backhaul coverage areas.
While generating a network distribution, we enforce restric-
tions on network topologies to maintain a certain minimum
inter-small cell distance. We consider different minimum
inter-small cell distances in different network distributions to
represent various small cell distribution patterns.
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FIGURE 2. UD network topology.

1) UNIFORM DISTRIBUTION SCENARIO
In the circular area, the locations of small cells are gen-
erated using a uniform random distribution, i.e., nodes are
distributed uniformly and randomly in all directions. The
uniform distribution is widely used because of its simplicity
and systematic flexibility. An example of a topology created
using a uniform random distribution is shown in Fig.2. Small
cells are separated by a minimum distance of 50 m to avoid
complete overlap of coverage area between adjacent cells.

2) BIVARIATE GAUSSIAN DISTRIBUTION SCENARIO
Small cells are distributed in the circular region according to
a symmetric bivariate 2D Gaussian with a peak at the area
center. This makes the simulation environment more realistic.
For example, it is a good model of a city where the downtown
(center of the city) has more users compared to the outskirts
of the city. The bivariate Gaussian distribution is completely
determined by its parameters (µ and σ 2), the expected value
and variance for the random variable [75].

We set µ = 0 and the standard deviation is normalized to
0.40 to provide a narrower and denser distribution around the
center. The theoretical distribution of a Gaussian extends to
infinity, but we limit the area to a radius of 1,000 m. If the
radius is large enough compared to the standard deviation,
the edge effect is negligible (the probability of generating
a point outside the service area is very small). A topology
generated using a bivariate Gaussian distribution is shown
in Fig.3. Small cells are separated by a minimum distance
of 40 m.

3) CLUSTER DISTRIBUTION SCENARIO
In this scenario, more nodes are generated in specific regions,
which represents more users gathered at ‘hotspots’, which
may be offices, universities, shopping malls, etc. The cluster
distribution to model this topology is a combination of groups

FIGURE 3. GD network topology.

of small cells (clusters) and uniformly distributed small cells.
This provides a scenario closer to real world situations where
more users are clustered at particular places, and others are
also present outside these regions. Small cells are usually
deployed based on traffic demand per unit area, where more
users clustered together indicate higher traffic and denser
small cell deployment.

A cluster distribution topology is constructed in two
phases. First, we generate clusters within the original circular
area. To get the first cluster’s center coordinates, a random
angle θ on a 500 m radius circle is generated and the coordi-
nates of the center are derived as

x = radius× cos(θ ), (10)

y = radius× sin(θ ). (11)

We generate locations of small cells within a 100 m
radius around the first cluster center using a bivariate random
Gaussian distribution with a peak at the cluster center and
standard normal parameters µ = 0 and σ 2

= 1. Small cells
in a cluster are separated by a minimum distance of 25 m.
For the center of the next cluster, we derive a new θ as
follows:

θnew = θ +
360◦

Number of clusters needed in a topology
(12)

Using equations (10) and (11), new cluster center coor-
dinates are generated as described earlier. This process is
repeated for the required number of clusters. The number of
nodes in each cluster is different. In the second phase of the
CD procedure, nodes are generated using a uniform random
distribution, with a minimum distance of 50 m separating the
small cells. A cluster distribution topology with 3 clusters is
shown in Fig.4. In this paper, we generate CD topologies with
6 clusters at all node densities.
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FIGURE 4. CD network topology with 3 clusters.

B. CONNECTIVITY GRAPH
We create the neighbor table for each small cell based on
the data received from the Hello messages broadcast by its
neighbors [90]. Each Hello message contains a small cell’s
ID and coordinates. A small cell lists other small cells in
its transmission range in its neighbor table once it receives
their Hello message. Using the neighbor tables of all small
cells, we generate the connectivity graph and ensure that the
resulting network is fully connected. If there is a least one
isolated node in the network, that topology is discarded and
replaced.

C. SHORTEST PATH TREES
Dijkstra’s shortest path algorithm is employed to find the
minimum number of hops from a small cell to its assigned
gateway. The locations of GWs (available at the output of an
algorithm) and the connectivity graph are input to Dijkstra’s
algorithm, and shortest path trees are found from gateways
to small cells. Setting all small cell connection ‘‘distances’’
to 1 in the connectivity graph means that route lengths are
measured in number of hops. Finally, we calculate the number
of hops from all small cells to their GWs in these trees and
take their average as ANH.

D. COMPARATORS
Several methods are implemented for comparison with
K-GA: a genetic algorithm, K -means, K -medoids, a baseline
approach, and the combination of K -medoids and a genetic
algorithm (KM-GA). We also implemented an optimal ILP to
find the exact GLP solution.

1) GENETIC ALGORITHM
Its implementation is identical to the GA stage in the K-GA
algorithm except for the generation of the initial popula-
tion, which is done by randomly generating M 1s in each
chromosome.

2) K-MEANS ALGORITHM
Based on the final output of M centroids of M clusters from
the K -means algorithm, we choose the small cell nearest to
each centroid as a Gateway. This set of M GW locations is
used as input to the shortest path algorithm for calculating
the ANH.

3) K-MEDOIDS ALGORITHM
The best result from all replications is selected as the result of
theK -medoids clustering algorithm. It consists ofM medoids
that have the smallest sum, over all clusters, of the within-
cluster sums of small cells-to-cluster medoid distances. The
final M medoids (or small cells) are selected as gateway
locations for calculating ANH.

4) BASELINE METHOD
Gateways are placed at fixed locations at equal distances
around a 500 m radius circle within the original circular area
for the uniform random distribution and bivariate Gaussian
distributions. For the cluster distribution, the small cells near-
est to the cluster centers are chosen as GWs. From among C
nearest small cells of cluster centers,M gateways are chosen,
where C is the total number of clusters present in a topology
and C ≥ M. These gateway locations are provided as input
to Dijkstra’s shortest path algorithm to obtain ANH.

5) COMBINED K-MEDOIDS AND GENETIC
ALGORITHM (KM-GA)
KM-GA is identical to K-GA except for the 1st phase, where
an actual small cell is returned as a cluster center (or medoid).
Using the K -medoids output, we select the M medoids and
t1 − 1, t2 − 1, t3 − 1, . . . , tM − 1 small cells nearest to the
M medoids to generate the initial population for the GA. The
complexity of KM-GA is O(N 2I +N 2Gnpop), where N is the
total number of small cells,G is the number of generations for
GA, and npop is the number of chromosomes. I is the number
of iterations for K -medoids.
Based on the computational complexity and runtime results

of both algorithms, K-GA proves better than KM-GA.

6) OPTIMAL ILP
The exact ILP solution is provided by the CPLEX mixed-
integer solver [76] using a model formulated in the OPL
Optimization Programming Language [91]. OPL is part of the
CPLEX software package.

VIII. PERFORMANCE EVALUATION
A. SIMULATION ENVIRONMENT
The p-median problem is formulated and solved in IBM
ILOG CPLEX Optimization Studio [76]. Extensive simula-
tions for the heuristic approaches (K-GA, GA, K -medoids,
K -means, KM-GA and Baseline) are implemented and
executed using MATLAB R2019b [92]. We calculate the
backhaul network capacity using (1) whereWS is 1 Gbps and
WG is 100 Gbps [65], [93].
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Five different node densities of small cells are tested in
a circular area having a radius of 1,000 meters for uniform
distribution, bivariate Gaussian distribution and cluster dis-
tribution. For convenience we define node density as the
population of small cells in the 1,000 meters radius test area.
To realize the ultra-dense deployment scenario, a higher small
cell density per 1 km radius macro-cell coverage area is
used, as is highly anticipated [5], [9], [65]. We consider node
densities from 310 to 470 in this paper. A study shows that
40% of the operators are expected to deploy nearly 350 small
cells per square kilometer [94], while another study shows
that expected numbers for small cells deployment are mostly
between 251–500 in 2020–2025 for different scenarios [95].
For each node density in all distribution scenarios, we gener-
ate 100 different topologies as a part of our Monte Carlo sim-
ulation setup. Overall, to evaluate all scenarios, we generate
1,500 different network topologies and solve via all methods
separately on each topology. We calculate the mean value of
the ANH and the BNC for the 100 topologies at each node
density in all distribution scenarios and compute the 95%
confidence intervals (CIs) as well. We use 4 gateways for all
node densities.

Parameter settings are as follows:

• K-means: 100 replications for each node density.
• K-medoids: 100 replications for each node density.
• GA: 100 generations for each node density. The popula-
tion size is 300 for all node densities (310 to 470).

• K-GA: 50 replications of K -means and 50 GA gener-
ations for each node density. Population size 256 is
used for all node densities because a constant size initial
population is generated from the K -means stage.

• KM-GA: 50 replications of K -medoids and 50 GA gen-
erations for each node density. Population size 256 is
used.

• Baseline: On the 500 meter radius circle for UD and
GD, the 4 gateway locations are generated at the follow-
ing coordinates: (294, 405), (-294, 405), (-294, -405),
(294, -405). For CD, gateways are taken as the nearest
small cells of the center of the cluster 2, 3, 5, and 6. These
gateway locations remain the same for all topologies for
all node densities.

B. SIMULATION RESULTS
1) RESULTS FOR UNIFORM DISTRIBUTION
We also implemented the combination of K -medoids algo-
rithm with a genetic algorithm to confirm the effectiveness
of K-GA. In this section we present two different analyses in
uniform distribution scenarios. First, we compare K-GA with
KM-GA and subsequently we compare K-GA algorithmwith
the five other methods.

a: COMPARISON OF K-GA AND KM-GA
To compare K-GA with KM-GA, we consider node densities
of 310, 350, 390, 430 and 470. We evaluate and compare
the results for both algorithms based on their mean values

FIGURE 5. ANH and time analysis for K-GA and KM-GA.

of ANH and runtimes. Fig.5 and Table 2 show the ANH
and runtimes for both methods. K-GA performs consistently
better compared to KM-GA for all node densities but the
difference in performance is small. K-GA chooses the small
cells nearest toM centroids to generate the initial population
for GA. This provides more diverse locations for the initial
GA population as compared to using medoids and small
cells closer to medoids to generate the initial population in
KM-GA. The more diverse initial K-GA population helps the
GA perform better. K-GA is also faster than KM-GA. They
perform closely in terms of ANH, but K-GA is better than
KM-GA in terms of computational complexity and runtime.

b: COMPARISON OF K-GA WITH 5 OTHER METHODS
This section compares K-GA with five other methods in
terms of ANH and BNC. We simulate 5G ultra-dense net-
works according to our network model with 4 gateways and
small cell densities ranging from 310 to 470. As an example,
the gateway locations selected by all methods for a single
topology are plotted in Fig.6. The K -means and K -medoids
differ in a single gateway location, but the other solutions
differ more significantly. No method finds all 4 optimum
locations.

Fig.7 plots ANH vs. small cell density. As the node density
increases, connectivity increases, enabling the shortest path
algorithm to find better paths resulting in smaller ANH at
higher node densities. ANH for K-GA is significantly smaller
than the baseline method. At a lower node density of 310,
ANH ranges from 3.24 (Baseline) to 2.51 (K -means) to 2.50
(GA) to 2.49 (K -medoids) to 2.44 (K-GA).K -medoids works
slightly better than K -means because of its more effective
clustering and gateway selection mechanism. GA performs
well compared to both K -means and K -medoids at lower
node densities. In K -means, gateway locations are based on
M centroids, so at lower node densities, hops are longer due
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FIGURE 6. Example GW locations in UD scenario.

FIGURE 7. Average number of hops in UD scenario.

to larger distances from centroids to small cells. This reduces
the options for shorter hop paths, resulting in more hops than
forK -medoids and GA. In contrast,K -medoids returns actual
small cells as GWs and GA works directly with the number
of hops as the fitness measure. In general, GA, K -means and
K -medoid’s CIs are overlapping, and they perform similarly.
K-GA improves over GA due to the better initial population
provided by its K -means stage. K-GA improves performance
by 24.69%, 2.79%, 2.4%, and 2% compared to baseline,
K -means, GA, and K -medoids respectively.

At a higher node density of 470, ANH ranges from 2.53
(Baseline) to 2.42 (GA) to 2.41 (K -means and K -medoids)
to 2.37 (K-GA). This is an increase in performance for K-GA
of 6.32%, 1.66%, 1.66%, and 2.07% compared to baseline,
K -means, K -medoids, and GA respectively.

FIGURE 8. Time analysis of K-GA and ILP in UD scenario.

FIGURE 9. Backhaul network capacity in UD scenario.

At higher node densities, K -means and K -medoids per-
form similarly to GA and baseline also shows significant
improvement. This is because the smaller distances from
gateways to small cells provide more connectivity options.
K-GA outperforms the other methods in terms of ANH at all
node densities.

We also evaluate the quality of K-GA by comparison with
the exact solution obtained from the ILP. As shown in Table 4,
K-GA performs within 1.24% of optimal ANH at low node
density (310) and within 0.85% for high node density (470).
We calculate the average runtime for each node density for
K-GA and the optimal solution in the uniform distribution
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TABLE 2. ANH and runtime analysis of K-GA versus KM-GA.

TABLE 3. ANH for baseline, K-medoids, K-means and GA in UD scenario.

TABLE 4. ANH for K-GA and optimal approach in UD scenario.

scenario, as shown in Table 5 and Fig.8. The ILP requires
a very large amount of runtime. In contrast, K-GA finds
near-optimal solutions (within 2%) very quickly in almost
95% less time. Mean values and CIs for ANH for baseline,
K -means, K -medoids and GA are given in Table 3, while
results for the ILP and K-GA are given in Table 4 for the
uniform distribution scenario.

Fig.9, Table 6, and Table 7 illustrate the BNC for all meth-
ods. With increasing node density, ANH decreases, resulting
in increased BNC for all methods. At a lower node den-
sity of 310, BNC is 100.88 (Baseline), 127.53 (K -means),
128.01 (GA), 128.34 (K -medoids), and 131.11 (K-GA).
This indicates a capacity improvement of 29.97%, 2.81%,

2.42%, and 2.16% for K-GA compared to baseline,K -means,
GA, and K -medoids respectively. At a higher node density
of 470, K-GA shows an improvement in capacity of 6.63%,
1.63%, 1.56%, and 2.26% compared to baseline, K -means,
K -medoids, and GA respectively. K-GA obtains backhaul
network capacity within 2% of the optimal solution for all
node densities in the uniform distribution scenario. At the
high node density of 470, K-GA achieves BNC within 0.55%
of the optimal solution.

2) RESULTS FOR BIVARIATE GAUSSIAN DISTRIBUTION
This section summarizes the results for the bivariate Gaus-
sian distribution scenario. High node densities of small cells
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TABLE 5. Runtime analysis for K-GA and optimal approach in UD scenario.

FIGURE 10. Example GW locations in GD scenario.

are considered (from 310 to 470 with an interval of 40).
To illustrate gateway locations found in this scenario, results
for all methods for a single topology are plotted in Fig.10.
K -means and K -medoids have 2 identical GW locations and
GA has totally different locations compared to them. K-GA
shares 3 gateway locations with the optimal solution. K-GA
generally obtains similar results as the optimum ILP in the
Gaussian distribution scenario.

In Fig.11, the average number of hops is plotted for all
heuristic approaches, baseline method and optimal solution
in the bivariate Gaussian distribution scenario. When the
network size increases from 310 nodes to 470 nodes, the dif-
ference between theANH for baseline,K -means,K -medoids,
GA, and K-GA is about 0.01–0.05, which is less than in the
uniform distribution scenario.

In the GD scenario, the probability of small cells placed
near the center (and thus closer to the gateway) is high,
and fewer small cells are near the border. As a result,
most of the small cells need fewer hops to reach a gate-

FIGURE 11. Average numbers of hops in GD scenario.

way. The Baseline method has poor results compared to all
other approaches. K -means, K -medoids and GA have very
comparable performances. GA performs better at low node
densities of 310 and 350 whileK -means andK -medoids have
slightly better performances at high node densities of 390,
430, and 470. K-GA provides better ANH for all node den-
sities compared to all heuristic approaches and the baseline
method. It shows an improvement of 7.79% compared to
baseline at lower node density of 310 and 4.87% at higher
node density of 470.

K-GA beats the standalone results of K -means and GA
for ANH in this scenario. Mean values and CIs for the
ANH for baseline, K -means, K -medoids, and GA are given
in Table 8 and ANH results for optimal ILP and K-GA are
given in Table 9.

As shown in Table 9, there is an average gap of 1% between
K-GA and optimal solution for all node densities: K-GA
achieves near-optimal results. Average runtimes for K-GA
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TABLE 6. BNC for baseline, K -medoids, K-means and GA in UD scenario.

TABLE 7. BNC for K-GA and optimal approach in UD scenario.

TABLE 8. ANH for baseline, K-medoids, K-means and GA in GD scenario.

TABLE 9. ANH for K-GA and optimal approach in GD scenario.
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TABLE 10. Runtime analysis for K-GA and optimal approach in GD scenario.

TABLE 11. BNC for baseline, K-medoids, K-means and GA in GD scenario.

TABLE 12. BNC for K-GA and optimal approach in GD scenario.

and the optimal ILP in GD are given in Fig.12. The optimal
ILP consumes much more time than the K-GA heuristic.
Overall, K-GA saves almost 95% of runtime compared to the
optimal ILP and gives results within 1% of optimal value for
each node density. Runtime analysis for K-GA and optimal
in GD scenario are given in Table 10.

Fig.13 illustrates the backhaul network capacity for all
approaches for the GD scenario. Compared to the baseline
method, capacity improves from 138.02 to 148.68 at a node
density of 310 with K-GA. At a node density of 470, capacity
also improved from 179.61 to 187.76 using K-GA. Like the
ANH results, K -means, K -medoids, and GA perform simi-
larly to each other. K-GA improves over baseline, K -means,

K -medoids, and GA and provides near-optimal results at
all node densities. Table 11 presents the backhaul network
capacity results for the comparison methods.

As seen from Table 12, the gap between K-GA and optimal
reduces from 1.19% to 0.94% as the node density increases.
This indicates that at higher node densities K-GA performs
better and provides BNCs within 1% of optimal in the Gaus-
sian distribution scenario.

3) RESULTS FOR CLUSTER DISTRIBUTION
This section compares K-GA with other approaches in the
Cluster distribution scenario. As before, small cell densities
range from 310 to 470 with a gap of 40. Fig.14 shows

43668 VOLUME 9, 2021



M. Raithatha et al.: Fast Heuristic for Gateway Location in Wireless Backhaul of 5G UDNs

TABLE 13. ANH for baseline, K -medoids, K-means and GA in CD scenario.

TABLE 14. ANH for K-GA and optimal approach in CD scenario.

TABLE 15. Runtime analysis for K-GA and optimal approach in CD scenario.

TABLE 16. BNC for baseline, K-medoids, K-means and GA in CD scenario.
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TABLE 17. BNC for K-GA and optimal approach in CD scenario.

FIGURE 12. Runtimes for K-GA and optimal ILP in GD scenario.

the gateway locations found by all approaches for a sin-
gle 6-cluster topology. K -medoids, K -means, and GA have
gateway locations that are mostly different from each other.
In contrast, K-GA shares 3 gateway locationswith the optimal
solution. Fig.15, Table 13, and Table 14 show the aver-
age number of hops for baseline, K -means, K -medoids,
genetic algorithm, K-GA, and optimal solutions in this
scenario.

As the node density increases, ANH decreases for all
approaches. Fig.14 shows that the baseline’s gateway loca-
tions (small cells nearest to the cluster center) are placed
near to those of other methods, although the average number
of hops is much higher than for all other approaches,
as shown in Fig.15. K -means and K -medoids perform sim-
ilarly for all node densities in CD because of their clustering
nature.

The genetic algorithm performs better at 310 and 330 node
densities, but its performance degrades at higher densi-
ties (430 and 470) compared to K -means and K -medoids.

FIGURE 13. Backhaul network capacity in GD scenario.

At node density 390, GA, K -means, and K -medoids give the
same results. The density of small cells affects their perfor-
mances. Their performance appears to be similar as some of
their CIs overlap. The enriched initial population provided
by K -means leads K-GA to superior results compared to
other heuristics and the baseline method. K-GA achieves
near optimal results as shown in Table 14. K-GA obtains
ANH within 2% of optimal values in the cluster distribution
scenario.

The optimal solution provides slightly better results for
ANH but has much longer runtimes than K-GA. K-GA saves
a significant amount of runtime for larger GLPs. At a high
node density of 470, K-GA takes about 16 seconds to find
the solution while the optimal ILP takes 328 seconds.

Table 15 gives a detailed comparison between the two
solutions in terms of runtime. As shown in Table 14 and
Table 15, K-GA has a maximum gap of 1.5% in ANH while
reducing runtime by more than 95%.
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FIGURE 14. Example GW locations in CD scenario.

FIGURE 15. Average numbers of hops in CD scenario.

Fig.17, Table 16, and Table 17 show the backhaul network
capacities in the cluster distribution scenario. As the node
density increases, backhaul network capacity also increases.
K-GA shows an improvement of 9.65% compared to baseline
at low node density of 310 and 7.77% at high node density
of 470. K -means, K -medoids, and GA perform similarly to
each other at all node densities.

K-GA provides results within 2% of the optimal value
for all node densities in the cluster-based distribution
scenario.

FIGURE 16. Runtimes for K-GA and optimal ILP in CD scenario.

FIGURE 17. Backhaul network capacity in CD scenario.

IX. CONCLUSION AND FUTURE WORK
5G ultra-dense networks are necessary to achieve the high
data rates promised by 5G. Backhaul optimization is a major
challenge for accomplishing the performance objectives for
such networks. Our backhaul networkmodel uses amulti-hop
distributed architecture similar to 3GPP’s IAB architecture
in Release 16. We examined the use of IAB as multi-hop
networks delivering access traffic to the core. We addressed
the gateway location problem of selecting the best locations

VOLUME 9, 2021 43671



M. Raithatha et al.: Fast Heuristic for Gateway Location in Wireless Backhaul of 5G UDNs

for gateways to ensure an effective backhaul network design.
Our work shows that efficiently locating gateways improves
the backhaul network capacity. Our new K-GA algorithm
combines the simplicity of K -means with the evolutionary
improvement in the genetic algorithm.

The GLP was also formulated as an integer linear program
to obtain optimal gateway locations to allow us to analyze the
quality of the K-GA solutions by comparison with the exact
solution. The K-GA heuristic solves the GLP very quickly
with a small percentage deviation from the optimal solution.
We also compared the performance of our proposed heuris-
tic with well-known heuristic techniques such as K -means
algorithm, K -medoids algorithm, genetic algorithm, combi-
nation of K -medoids with genetic algorithm, and a baseline
approach. We tested K-GA in three different small cell dis-
tribution scenarios: uniform, bivariate Gaussian, and cluster
distributions. K-GA provides better solutions in all three
distribution environments compared to other approaches.
K-GA saves on average 95% of execution time compared to
the optimal approach and provides ANH and BNCwithin 2%
of optimal.

There are several possible future research directions for
extending and enhancing the work presented in this paper:
• Many fully loaded small cells and few gateways may
cause congestion at gateways by aggregating small cell
access traffic. This can be avoided by introducing a
dynamic gateway allocation scheme. In case of conges-
tion, such a scheme could add one or more gateways to
the network and re-assign small cells among all gate-
ways based on the minimum average number of hops.
This would alleviate congestion in the backhaul network
of 5G ultra-dense networks.

• Mm-wave is a promising solution for backhaul connec-
tions to support the high data rate traffic demands in
ultra-dense networks. However, mm-wave communica-
tions have short range due to high path loss. A compre-
hensive study is needed on dynamic beamforming as it
can be useful in finding the optimum GW locations by
decreasing the average number of hops.

• A scenario can be explored where small cells adjust
their range to match different user distributions while
optimizing the backhaul capacity and latency. Such
a study would require a comprehensive probabilistic
access traffic distribution.

• The possibility of deploying mobile GWs should be
investigated.

• It will be interesting to explore a scenario where the
traffic of the small cells exceeds the capacity of the
gateways.
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