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ABSTRACT This paper proposes a model of maintenance optimization for a system consisting of two
dependent components in long-term operation, where both components are subject to dependent degra-
dation. Gamma process is used to model the degradation, and Frank Copula is applied to describe the
degradation dependence between the two components.We then consider degradation dependence to optimize
maintenance strategy for the system to maximize its availability. The improved Artificial Bee Colony
(ABC) algorithm is used to jointly determine inspection interval, opportunistic and preventive maintenance
thresholds of the system. Finally, an example is provided to validate the proposed model.

INDEX TERMS Two-component system, maintenance optimization, degradation dependence, availability.

I. INTRODUCTION
With the rapid progress of science and technology, modern
system has become increasingly sophisticated, and consists
of more and more dependent components as well. Traditional
maintenance optimization approaches are usually orienting
single-component system, and cannot be applied to multi-
component system. In this situation, it is of great significance
to consider the degradation dependence in the maintenance
optimization for multi-component system.

The dependence among components of a multi-component
system can be economic, structural or stochastic [1], [2].
Economic dependence can be positive or negative [3]. Pos-
itive economic dependence refers to the case in which the
maintenance cost of several components is less than that
of an individual one; otherwise, it is seemed as negative
economic dependence. Structural dependence refers to the
case that one has to replace or at least dismantle some work-
ing components in order to replace or repair failed ones.
Stochastic dependence refers to the case that the state of one
component can affect the state of other components or their
failure rate. There are many contributions concerning with
the maintenance optimization problem for multi-component
systems. Gustavsson et al. [4] developed a preventive mainte-
nance optimization model for multi-component systems with
the cost of each interval considered by applying the integer
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programming method. Tian and Liao [5] and Zhu et al. [6]
identified the optimal maintenance strategy by establishing
an expense ratio model. Duan et al. [7] considered the depen-
dence of time as well as preparatory cost of maintenance, and
established an opportunistic maintenance optimization model
for a multi-component system, and then calculated the thresh-
olds of opportunistic and preventive maintenance of different
components. Olde Keizer, et al. [8] established a condition-
based maintenance (CBM) optimization model in order to
reduce the maintenance cost by combining various mainte-
nance processes together for systems with redundancy and
economic dependencies. Chalabi et al. [9] focused on mini-
mizingmaintenance cost andmaximizing system availability,
and established a multi-objective maintenance optimization
model with incomplete maintenance considered for multi-
component series repairable systems. Besides, the opti-
mal maintenance plan for those systems was developed by
applying the Particle Swarm Optimization (PSO) algorithm.
Shafiee and Finkelstein [10] established a maintenance opti-
mization model based on the service life of components
in multi-component series system, and demonstrated vari-
ous degradation patterns. Bouvard et al. [11] described the
degradation process of components with Gamma process,
and established a model of component replacement by group
for heavy trucks based on service life. Also, they continu-
ously updated the maintenance decisions using Sliding Time
Window. Vu et al. [3] applied Birnbaum importance to
establish a dynamic maintenance model considering complex
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system with economic dependence and structural depen-
dence. On the basis of their research, Nguyen et al. [12]
proposed a decision-making process considering two levels:
system level and component level. Azadeh et al. [13] estab-
lished a dynamic optimization model of replacing compo-
nents considering the impact of person.

Stochastic dependence includes failure dependence and
degradation dependence. Regarding failure dependence, Do
van [14] considered the constraint of limited maintenance
time in terms of failure dependence, and then developed a
dynamic maintenance optimization model based on the dis-
tribution of failure rate. Zequeira and Berenguer [15] stud-
ied the reliability of dual-component parallel system under
periodic inspection, and found that the failure probability
of one component had an impact on that of another one.
Niu and Jiang [16] presented a maintenance optimization
strategy with health-oriented prognostic control and global
optimization considered together. Rezaei [17] assumed that
the failure of hard-fault components would accelerate that
of soft-fault ones, and then established a periodic inspec-
tion optimization model considering stochastic dependence.
Bouvard et al. [11] and Van Horenbeek and Pintelon [18]
considered the change of working condition of a multi-
component system in its operation, and updated the
distribution of component failures based on the system state
degradation, and thus established a dynamic maintenance
model for multiple components in a long-time operation
environment. Yu and Zhou [19] developed a maintenance
decision model based on hierarchical interaction concept and
interactive mode that the degradation state had an impact on
the ratio of degradation aiming at minimizing maintenance
cost. Rezaei [17] established a periodic inspection optimiza-
tion model considering stochastic dependence, and applied
the proposed model to optimize maintenance decision of a
dual-component system of rotor and filter in a turbine engine.
Rasmekomen and Parlikad [20] identified the interactive
impact relation between two components with the method of
regression, and got optimization result for the pipe in a low
temperature box by applying simulated annealing algorithm,
which demonstrated that the interaction among components
had a significant impact onmaintenance decision. Golmakani
and Moakedi [21] assumed that failure dependence in a dual-
component reparable system is unidirectional and established
a periodic inspection optimization model based on that. With
respect to degradation dependence, Hong et al. [22] investi-
gated the influence of dependent stochastic degradation and
used copula to model the dependent stochastic degradation
of components, and formulated the optimal decision problem
based on the minimum expected cost rule and stochastic
dominance rules. Fan et al. [23] developed a reliability model
for dependent competing failure processes with degradation-
shock dependence considered, and Monte Carlo simulation
was used to calculate the system reliability. Gao et al. [24]
developed reliability models subject to dependent compet-
ing soft and hard failure processes with degradation-shock
dependences. Those proposed models extended previous

researches by considering shock effect patterns resulting from
multiple species of external shocks. Do et al. [25] estab-
lished a CBM optimization model for a two-component sys-
tem with economic and stochastic dependencies considered
together, and adaptive preventive and opportunistic mainte-
nance rules were proposed. Zhang et al. [26] proposed a
fractional Brownian motion (FBM) based degradation model
with long-range dependence and multiple modes considering
the prediction of remaining useful life, and proposed a two-
step method, including change-points detection and linear
segments clustering, to identify the multiple modes in the
degradation process. Liu [27] and Liu et al. [28] proposed
a method to model and evaluate system reliability for multi-
state systems/components with state transition dependency,
and the dependency among state transitions is characterized
by copula functions. Yang et al. [29] studied the influence of
degradation dependence on the reliability of dual-component
degradation system, and established a model to predict sys-
tem reliability and its residual life. Roy et al. [30] proposed
a method to extract health indicators of a multi-component
system by conducting a time-frequency domain analysis and
degradation analysis with the experimental data generated by
a gearbox-accelerated life testing platform.

Two main observations from the above are in order.
Firstly, to the best of our knowledge, most of the existing
researches are focused on the economic dependence. There
is more need to take into account stochastic and/or structural
dependence [31] in maintenance optimization, compared to
economic dependence. Secondly, many existing researches
related to degradation dependence, proposed mainte-
nance optimization models to maximize system reliability.
Nevertheless, when a component of multi-component system
occurs failure, if its function can be restored within limited
time, it then can be deemed as accomplishing the task suc-
cessfully. In this case, we should choose system availability
as the objective of maintenance optimization rather than
system reliability. So, there exists a demand to choose system
availability to model maintenance optimization.

This paper proposes a model of maintenance optimization
for a system consisting of two dependent components in
long-term operation, where both components are subject to
dependent degradation. Gamma process is used to model
the degradation. Considering the practical impact of working
condition, stochastic dependence resulted from failure prop-
agation and load distribution [31] is analyzed. Degradation
dependence between components is analyzed using copula
function, and steady-state probability distribution of the sys-
tem is calculated. Based on that, in order to maximize system
availability, a maintenance optimization model is established,
and the improved Artificial Bee Colony (ABC) algorithm is
applied to obtain the optimal maintenance strategy.

The remainder of this paper proceeds as follows. Section II
describes the system under research in this paper, and
explains why the Frank Copula is chosen. A maintenance
optimization model for two-component system under com-
plete maintenance is developed in Section III. In Section IV,
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an example analysis, which chooses a two-component system
in our Prognostics and Health Management (PHM) labora-
tory as the research object, is given to verify the feasibility and
effectiveness of the proposed model. Section V summarized
conclusions and future research.

II. SYSTEM DESCRIPTION AND DEGRADATION PROCESS
MODEL SELECTION
A. SYSTEM DESCRIPTION AND ASSUMPTIONS
The system in this study consists of two different components
in series. The performance of each component will degrade
continuously. {Xi(t) : t ∈ R+}(i = 1, 2) represents the degra-
dation process of component i at time t . When the cumulative
degradation level exceeds the threshold, the component fails.

The assumptions pertaining to the system maintenance
optimization problem are summarized as follows:

(1) Component failure is regarded as soft failure. It means
that the component will continue to run even if it fails,
although its performance can no longer meet the require-
ments for use. A component is brand new at the initial time,
i.e., Xi(0) = 0;
(2) The degradation state of each component can only be

identified through inspection which is conducted at the same
time for both components. There is no error in the inspection
result;

(3) Maintenance strategy for both components includes
opportunistic, preventive and corrective maintenance.

B. THE SELECTION OF COPULAS
Copulas were first initiated to represent a function combining
the one-dimensional marginal distribution to construct a joint
distribution function. When the variance of variables is infi-
nite or hard to obtain, copula functions can still characterize
the correlation, and copulas can capture the non-linear and
asymmetric correlation among variables, thus in recent years
many researchers applied copulas to describe the interactive
relations among components. There exist three common-
used copulas: Gumbel Copula, Clayton Copula and Frank
Copula, which all belong to the class of Archimedian copula
functions. Since Gumbel Copula leads to a more significant
correlation in the upper tail region, it is commonly used to
analyze components’ dependence for the system, which has
a long service life or a low degradation rate. While Clayton
Copula results in a more significant correlation in the lower
tail region, it is commonly used to analyze early failure dis-
tribution and components’ dependence for the system, which
has a high degradation rate. In order to generalize the pro-
posed optimization model, we use Frank Copula to describe
the degradation dependence in this study. The n-variate Frank
Copula function [32] can be expressed as follows:

C(u1, u2, . . . , un) = −
1
θ
ln

1+
n∏
i=1

(e−θui − 1)

(e−θ − 1)n−1

 (1)

where θ is the dependence parameter, and θ ∈ (0,+∞).
When n ≥ 3, the bigger the value of θ is, the stronger the
correlation among variables is. When θ → 0, the correlation
among variables tends to be independent; and when θ →
+∞, the correlation among variables tends to be completely
positive.

III. MAINTENANCE OPTIMIZATION MODELING FOR
TWO-COMPONENT SYSTEMS UNDER
COMPLETE MAINTENANCE
A. MAINTENANCE STRATEGY
The degradation state of each component is inspected when
the system is operating. The time for the p-th inspection is
represented as tp, and the degradation level of component i at
time tp is represented as Xi(tp). For each component, a control
limit strategy, which integrates opportunistic, preventive and
corrective maintenance, is applied when the maintenance is
carried out. The thresholds of opportunistic, preventive and
corrective maintenance are represented as O = {O1,O2},
M = {M1,M2} and L = {L1,L2} respectively, and then
Oi ≤ Mi ≤ Li.
The system maintenance decision-making process can be

stated as follows:
Step 1 (Determine Maintenance Strategy for Each Com-

ponent): If Xi(tp) < Mi, no maintenance is conducted.
If Mi ≤ Xi(tp) < Li, preventive maintenance should be
carried out. If Xi(tp) ≥ Li, corrective maintenance should be
conducted. When preventive/corrective maintenance occurs
on a component, namely Xi(tp) ≥ Mi, opportunistic mainte-
nance should be conducted if the degradation level of another
component meets the conditionOj ≤ Xj(tp) < Mj; otherwise,
opportunistic maintenance should not be conducted.
Step 2 (Determine Inspection Interval): The inspection

activity should be determined according to the present perfor-
mance degradation state. Generally, when degradation level
is higher than expected, the inspection interval should be
decreased in order to prevent failure occur. Assume that the
current degradation level is denoted as (x1, x2), the inspection
interval can be expressed as follows [33]:

T (x1, x2) = max
{
Tmin, ξ1 −

ξ1 − Tmin
ξ2

×max
{
x1
L1
,
x2
L2

}}
(2)

where Tmin is the minimum inspection interval; ξ1 represents
the first inspection interval for the new system, and should be
≥ Tmin; ξ2 is used to control the inspection frequency, and
should be > 0.
It can be concluded from equation (2) that with the increase

of ξ2, inspection interval increases, and therefore inspec-
tion frequency decreases; conversely, inspection frequency
increases. When ξ1 = Tmin, it is periodic inspection and
the inspection interval is Tmin. xi/Li represents the relative
degradation level of component i, which is used to eliminate
the influence of different degradation index dimensions.

The two-component system degradation and renewal pro-
cess can be expressed in Fig. 1.
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FIGURE 1. System degradation and renewal process in complete
maintenance.

In Fig. 1, Tm(m = 1, 2, . . .) represents the inspection time.
The degradation level of each component can be obtained
through inspection. We then can see that when the two com-
ponents are maintained simultaneously, the entire systemwill
be renewed, that is, the system will be repaired to the status
as new one. Therefore, under above maintenance strategy,
the system state variation can be treated as renewal process,
and the renewal time is Rm,, where R0 = T0 = 0.

B. MAINTENANCE OPTIMIZATION MODELING
Availability, which refers to the probability that a system is
available when it is required at any time, is an important index
of assessing equipment system performance. In this paper, we
optimize maintenance strategy for two-component system by
use of the steady availability when the system is long-term
running. As prementioned maintenance strategy in Section II,
system maintenance is determined by (M ,O, ξ1, ξ2). System
availability in long-term operation can be expressed as:

A(T ) =
ER(TL)− ER(TW )

ER(TL)
(3)

where ER(TW ) represents the expected maintenance down-
time in a system lifecycle; ER(TL) represents the expected
length of the system life.

Maintenance decision is made according to the system
state at time Tm instead of its history states, which accords
with Markov characteristics. Therefore, maintenance times
can be regarded as semi-renewal points of the system
degradation state [34], and the operation time between two
consecutive maintenance decision points is regarded as a
semi-renewal process. Based on that, the system degrada-
tion process between two consecutive maintenance decision
points can be considered as the semi-renewal process of the
system. Through analyzing the characteristics of the system
degradation process in a semi-renewal process, we can then
get the expected system availability expressed as follows:

TA∞(M ,O, ξ1, ξ2) =
ET (TL)− ET (TW )

ET (TL)
(4)

FIGURE 2. Discretization of degradation states.

where ET (TW ) refers to the maintenance downtime within a
semi-renewal process; ET (TL) refers to the expected length
of the semi- renewal process.

C. DEGRADATION STATE SPACE PARTITIONING
In this study, continuous state stochastic process is used to
model the performance degradation for the two-component
system. In order to establish the analytical model, the con-
tinuous state degradation process is simplified through dis-
cretizing the degradation process to finite state spaces.
Consequently, the component degradation process can be
described with the degradation state space transition [35],
[36]. The state space for component i is represented as Si =
{0, 1, . . . , ji, . . . ,Ki,Fi}, where 0 refers the component is
new, while Fi refers it occurs failure. Obviously, Fi = Ki+1.
Based on that, the degradation process of each component can
be described with Ki + 2 discrete states shown in Fig. 2.
The degradation state of component i at time t is denoted

as Si(t), and then the relationship between Si(t) and Xi(t) can
be expressed as:

Si(t) =


0, Xi(t) = 0
ji, Xi(t) ∈ ((ji − 1)δi, jiδi], 0 < ji ≤ Ki − 1
Ki, Xi(t) ∈ ((Ki − 1)δi,Kiδi)
Fi, Xi(t) ∈ [Kiδi,+∞)

(5)

where δi refers to the degradation level between two consec-
utive degradation states. When the component state is ji and
1 ≤ ji ≤ Ki, the median value, x(ji) = jiδi − δi/2, is used
to express the component degradation level. If ji = 0, then
x(ji) = 0, and if ji = Fi, then x(ji) ≥ Lf ,i. As mentioned
above, the failure threshold of component i is denoted as
Li. When the degradation level exceeds the threshold, the
component occurs failure. Consequently, Li = Kiδi, then
δi = Li/Ki.
Based on the partition of the degradation state space of a

single component, the degradation state space of the system
can be defined as S = {(j1, j2) |ji ∈ Si }(i = 1, 2), and then

the system state amounts N =
2∏
i=1

(Ki + 2).
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In order to facilitate the analysis, it is assumed that S =
{(j1, j2) |∀i, 0 ≤ x(ji) < Mi }(i = 1, 2), and S1 refers to the
system state set when no maintenance activity needs to be
conducted after inspection, while S2 refers to the system state
set when preventive/ corrective maintenance activity needs to
be conducted after inspection. Therefore, the set of system
state space can be expressed as S = S1 ∪ S2.

D. STEADY-STATE PROBABILITY DISTRIBUTION FOR
SYSTEM DEGRADATION
In order to obtain the steady-state probability distribu-
tion of the system degradation, the transition probability
between different degradation states needs to be calculated
at first. According to the abovementioned state space parti-
tion method, the system degradation state is determined by
the states of both components. Therefore, analyze the state
transition probability of single component at first, and then
calculate the state transition probability of the system, and
get the steady-state probability distribution of the system at
last.

1) STATE TRANSITION PROBABILITY OF SINGLE
COMPONENT
In the range [Tm,Tm+1], the state transition probability of
single component relates to its degradation state at time Tm
and the maintenance strategy. It includes the following two
cases:

1) If x(ji) < Mi at time Tm, then it is no need tomaintain the
component. According to the independent increment charac-
teristics of Gamma process, the probability that the state of
component i transfers from ji to ki (ji ≤ ki ≤ Ki) in the range
[Tm,Tm+1] is expressed as:

Pji,ki (Tm,Tm+1) = P(Si(Tm+1)

= ki |Si(Tm) = ji ) = P(lbi < 1xi < ubi)

=

∫ ubi

lbi

1

0(αi(Tm+1 − Tm))β
αi(Tm+1−Tm)
i

× xαi(Tm+1−Tm)−1e−
x
βi dx (6)

where1xi = Xi(Tm+1)−Xi(Tm), ubi = (ki− ji+ 0.5)δi, and
lbi = max {0, (ki − ji − 0.5)δi}.
If ki = Fi, that is, the component occurs failure in the range

[Tm,Tm+1], the state transition probability can be calculated
by letting ubi = +∞ in equation (6).
If ki < ji, then Pji,ki (Tm,Tm+1) = 0. Because the com-

ponent degradation process is incremental, we then have
P(Xi(Tm+1)− Xi(Tm) < 0) = 0.
2) If x(ji) ≥ Mi or ji = Fi at time Tm, then maintenance

needs to be done on the component. Under complete main-
tenance, the component can be restored to the original state
as a new one. The probability that the state of component i
transfers from ji to ki in the range [Tm,Tm+1] is expressed as:

Pji,ki (Tm,Tm+1) = P
(
Si(T

+

m+1) = 0 |Si(Tm) = ji
)

×P
(
Si(Tm+1) = ki

∣∣Si(T+m ) = 0
)

= P0,ki (Tm,Tm+1) (7)

where T+m = Tm + Tmm.T+m refers to the time of finishing
maintenance activity at time Tm ; Tmm refers to the mainte-
nance downtime at time. Tm.P0,ki (Tm,Tm+1) can be calcu-
lated by equation (6).

2) STATE TRANSITION PROBABILITY OF THE SYSTEM
Based on analyzing state transition probability of single com-
ponent, we then calculate the state transition probability of
the system. Also, the state transition of the system has two
situations in the range [Tm,Tm+1] :

1) If the system state (j1, j2) ∈ S1 at time Tm, then there is
no maintenance on the system. In this case, the probability
that the system state transfers from (j1, j2) to (k1, k2) for
∀i, ki ≥ ji is expressed as:

P(j1,j2,),(k1,k2)(Tm,Tm+1) = P (Si(Tm+1) = ki |Si(Tm)

= ji; i = 1, 2) = 1
F (1)
Tm,m+1

(ub1)

F (1)
Tm,m+1

(lb2)

×1
F (2)
Tm,m+1

(ub2)

F (2)
Tm,m+1

(lb2)
C(u1, u2) (8)

where 1 refers to difference operation; lbi and ubi are the
same as those in equation (6);1ub

lb f (x)(ub)−f (lb). For system
state (k1, k2), if ∃i, ki < ji, then P(j1,j2),(k1,k2)(Tm,Tm+1) = 0.

2) If (j1, j2) ∈ S2 at time Tm, then at least one component
needs to be maintained. Define �p as the set of components
under preventive or opportunistic maintenance, and�f as the
set of components under corrective maintenance at time Tm.
In this case, the probability that the system state transfers
from (j1, j2) to (k1, k2) for ∀i, ki ≥ ji under complete mainte-
nance is expressed as:

P(j1,j2),(k1,k2) (Tm,Tm+1)

=

∏
i∈{�p∪�f }

P
(
Si(T+m ) = 0 |Si(Tm) = ji

)
×P(j+1 ,j

+

2 ),(k1,k2)

(
T+m ,Tm+1

)
= P(j+1 ,j

+

2 ),(k1,k2)
(Tm,Tm+1) (9)

where j+i =
{
0, i ∈ �p ∪�f
ji, otherwise

and P(j+1 ,j
+

2 ),(k1,k2)
(Tm,Tm+1)

can be obtained from equation (8).

3) SYSTEM STEADY-STATE PROBABILITY DISTRIBUTION
From the above analysis of system state transition probability,
the system steady-state probability distribution can be derived
as equation (10) according to the Markov steady-state distri-
bution characteristics:

π (j1, j2) =
∑

(k1,k2)∈S [P(k1,k2),(j1,j2) (Tm,Tm+1)
× π (k1, k2)]

∑
(j1,j2)∈S π (j1, j2) = 1

(10)

where π (j1, j2) is the steady-state probability of the system in
state (j1, j2).
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E. SYSTEM AVAILABILITY MODELING
According to the above analysis on system steady-state
probability distribution, the expected system availability in
long-term operation can be calculated. Tc represents the
duration of inspection, To,i represents the duration of oppor-
tunistic maintenance, Tp,i represents the duration of preven-
tive maintenance, Tf ,i represents the duration of corrective
maintenance, and Tr,i represents the duration of maintenance
preparation. Generally, Tf ,i > Tp,i. Since opportunistic main-
tenance belongs to preventive maintenance in nature, it is
assumed that the duration of opportunistic maintenance is
equal to the duration of preventive maintenance, i.e., To,i =
Tp,i. According to equation (4), in order to calculate the
expected system availability, the system maintenance down-
time and the length of system semi-renewal process should
be calculated at first.

1) SYSTEM MAINTENANCE DOWNTIME
If the system state is (j1, j2) when performing inspection, the
expected maintenance downtime of the system in the semi-
renewal process is denoted as T(j1,j2). Maintenance downtime
T(j1,j2) can be calculated with equation (11).

T(j1,j2) =



Tc, (j1, j2) ∈ S1

Tc +
2∑
i=1

(
IOi≤x(ji)<MiTo,i + IMi≤x(ji)<LiTp,i+

IMi≤x(ji)<LiTr,i + Iji=FiTf ,i
)
, (j1, j2) ∈ S2

(11)

where I(·) is the characteristic function.
According to the steady-state probability distribution func-

tion of the system, π (j1, j2), the expected maintenance
downtime in a semi-renewal cycle can be calculated by
equation (12).

ET (TW ) =
∑

(j1,j2)∈S
T(j1,j2)π (j1, j2) (12)

2) LENGTH OF THE SEMI-RENEWAL CYCLE
As shown in Fig. 1, the length of a semi-renewal cycle is
inspection interval. The inspection interval is determined
by the degradation state at the time of inspection and the
maintenance strategy. τ(j1,j2) represents the length of the semi-
renewal cycle when the current system state is (j1, j2).

1) When (j1, j2) ∈ S1, the length of the semi-renewal cycle
can be expressed as equation (13) according to equation (2)
and the degradation state space partition.

τ(j1,j2) = T (x1, x2) = max
{
Tmin, ξ1 −

ξ1 − Tmin

ξ2

×max
(
j1 − 0.5
K1

,
j2 − 0.5
K2

, 0
)}

(13)

2) When (j1, j2) ∈ S2, the length of semi-renewal cycle can
be expressed as equation (14).

τ(j1,j2) =
∏

i∈{�p∪�f }

P
(
Si(T+m ) = 0 |Si(Tm) = ji

)
× τ(j+1 ,j+2 )

= τ(j+1 ,j
+

2 )
(14)

where j+i represents the degradation state of component i

after maintenance; j+i =
{
0, i ∈ �p ∪�f
ji, otherwise

and τ(j+1 ,j
+

2 )
can

be calculated with equation (13).
According to π (j1, j2), the expected length of the semi-

renewal cycle can be expressed as:

ET (TL) =
∑

(j1,j2)∈S
τ(j1,j2)π (j1, j2) (15)

To sum up, the expected system availability under
(M ,O, ξ1, ξ2) can be expressed as equation (16).

TA∞(M ,O, ξ1, ξ2) =
ET (TL)− ET (TW )

ET (TL)

= 1−

∑
(j1,j2)∈S T(j1,j2)π (j1, j2)∑
(j1,j2)∈S τ(j1,j2)π (j1, j2)

(16)

3) OPTIMIZATION OBJECTIVE
In this study, the objective of optimizing (M ,O, ξ1, ξ2) is to
maximize the expected availability of the system. Consider-
ing the constraints of decision variables, system maintenance
optimization can be modelled as follows:

(M∗,O∗, ξ∗1 , ξ
∗

2 ) = argMaxTA∞(M ,O, ξ1, ξ2)

s.t.

{
0 < Oi ≤ Mi ≤ Li
ξ1 ≥ Tmin, ξ2 > 0

(17)

F. MODEL SOLUTION BASED ON IMPROVED
ABC ALGORITHM
There are several decision variables in the optimization
model, and the relation between decision variables and objec-
tive function is nonlinear and non-differentiable. Therefore,
it is difficult to calculate the analytical results. Then, we use
the improved Artificial Bee Colony (ABC) algorithm [37] to
optimize maintenance strategy. For the decision variables,Mi
and Oi, the expected availability TA∞ in the ranges jp,iδi −
δi/2 < Mi ≤ jp,iδi+δi/2 and jo,iδi−δi/2 < Oi ≤ jo,iδi+δi/2
are the same with TA∞ under Mi = jp,iδi and Oi = jo,iδi.
Thus, the searching space of decision variables Mi and Oi
can be converted to jp,i, jo,i ∈ {0, 1, 2, . . . ,Ki}, jo,i < jp,i.
Consequently, the searching space of the algorithm is reduced
and the searching efficiency is improved greatly.

Based on the above analysis, for the decision variables,
Mi and Oi, the searching equations for honey-harvesting and
observation stages as follows:

ynew = yold + rand[int(− |yold − yrnd | ,
|yold − yrnd |)]

ynew = ybest + rand[int(− |yrnd1 − yrnd2| ,
|yrnd1 − yrnd2|)]

(18)

where ynew and yold represent the new and initial location
of the honey source respectively; ybest denotes the optimal
location of current population; yrnd , yrnd1 and yrnd2 represent
the locations of other randomly-selected honey sources; and
rand[int(x, y)] represents a random integer in the range [x, y].
For decision variables ξ1 and ξ2, original searching equations
are used to generate candidate solutions.
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IV. EXAMPLE ANALYSIS
In order to demonstrate the effectiveness and feasibility of
the proposed method, this paper takes a two-component sys-
tem, consisting of bearing and gear in the gear transmission
system in our Prognostics and Health Management (PHM)
laboratory, as an example. Bearing and gear are the important
parts in the gear transmission system. The states of bearing
and gear have gradually degraded in long-term operation,
and finally they occur failure because of wear, crack, gear
breakdown, etc. And there exists degradation dependence
between the two components.

The degradation processes of both components start from
state 0, and accord with Gamma distribution. α1 and α2
denote the shape parameters, which are equal to 1 and
2 respectively; β1 and β2 represent the scale parameters,
which are equal to 2/3 and 1/2 respectively. For the two
components, assume their corrective maintenance thresholds,
L1 and L2, are 4mm and 5mm respectively; the duration of
preventive maintenance, Tp,1 and Tp,2, are 0.1h and 0.15h
respectively; the duration of corrective maintenance, Tf ,1 and
Tf ,2, are 0.5h and 0.6h respectively; the duration of inspection
(Tc) for both components is 0.01h; the duration of mainte-
nance preparation, Tr,1 and Tr,2, are 0.1h; and the amount
of degradation state partition (K ) for both components is 10.
Based on that, the degradation level between two consecutive
degradation states of the components, δ1 and δ2, are 0.4mm
and 0.5mm respectively.

According to the n-variate Frank Copula function,
the bivariate Frank Copula function can be expressed as
following:

C(u, v; θ ) = −
1
θ
ln
[
1+

(e−θu − 1)(e−θv − 1)
(e−θ − 1)

]
(19)

In this example, the parameter of degradation dependence θ
is set to be 5.

A. CALCULATING SYSTEM STEADY-STATE
PROBABILITY DISTRIBUTION
According to the maintenance optimization model, the
steady-state distribution of the system closely relates to
the decision variables (M ,O, ξ1, ξ2). Namely, the system
steady-state distribution varies with the decision variables
(M ,O, ξ1, ξ2), and so does the expected system availability.
Fig. 3 (a) shows the steady-state probability distribution of
the system with degradation dependence considered when
(M ,O, ξ1, ξ2) = (2.4, 2, 1.2, 1, 2.5, 1). In the same manner,
in order to illustrate the influence of components dependence
on the steady-state distribution, Fig. 3 (b) shows the steady-
state distribution of the system without degradation depen-
dence considered.

Because the two components are different and dependent,
the steady-state distribution surface is asymmetric. Through
analyzing (a) and (b) in Fig. 3, the distribution of system
degradation state with dependence considered, is more inten-
sive, compared to the situation without dependence consid-
ered under long-term operation. It means that system state

FIGURE 3. (a) Steady-state probability distribution of the system with
degradation dependence considered. (b) Steady-state probability
distribution of the system without degradation dependence considered.

transition is more probable in the situation shown in Fig. 3 (a)
than Fig. 3 (b). We then can conclude that the degradation
dependence has obvious effects on the characteristics of the
steady-state distribution.

B. OPTIMIZING MAINTENANCE STRATEGY
1) INFLUENCE OF THE PARAMETER OF INSPECTION
INTERVAL ON SYSTEM AVAILABILITY
Further, we analyze the influence on expected system avail-
ability TA∞ when the parameter of inspection interval (ξ1, ξ2)
varies. Assume that preventive & opportunistic maintenance
thresholds are fixed, then we analyze the variation trend of
system availability depending on the variation of inspec-
tion interval. Given (M1,M2) = (2.8, 2.6) and (O1,O2) =
(1.6, 3.5), the variation trend of system availability (ξ1 and
ξ2 range in [1, 5] and [0.2, 2] respectively) is shown in Fig. 4.

We can see fromFig. 4 that, the value of TA∞ increases first
and then decreases depending on the increase of (ξ1, ξ2). It is
because when inspection interval is short enough, frequent
inspection can cause maintenance downtime increasing, sys-
tem operation duration decreasing, and thus availability
lowing. With the increase of (ξ1, ξ2), inspection interval will
prolong, and system operation duration will increase corre-
spondingly. When inspection interval is long enough, it will
lead to increasing probability of system occurring failure.
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FIGURE 4. Influence of the parameter of inspection interval on system
availability.

Usually, corrective maintenance duration is fairly long, and
then it will result in system availability decreasing. There-
fore, there exists an optimal (ξ1, ξ2) to maximize system
availability.

2) INFLUENCE OF MAINTENANCE THRESHOLD ON
SYSTEM AVAILABILITY
Similarly, we further analyze influence of maintenance
threshold on system availability. Firstly, assume that oppor-
tunistic maintenance thresholds are fixed, then we analyze the
variation trend of system availability depending on the varia-
tion of preventive maintenance threshold. Given (O1,O2) =
(1.6, 3.5), the variation trend of system availability (M1 and
M2 range in [1.5, 4.5] and [1.6, 3.6] respectively) is shown
in Fig. 5 (a). Hereafter, assume that preventive maintenance
thresholds are fixed, then we analyze the variation trend of
system availability depending on the variation of opportunis-
tic maintenance threshold. Given (M1,M2) = (2.8, 2.6),
the variation trend of system availability (O1 and O2 range
in [0, 2.5] and [0, 2.8] respectively) is shown in Fig. 5 (b).
We can see from Fig. 5 that, the value of TA∞ increases

first and then decreases depending on the increase of Mi or
Oi. When Mi or Oi are small enough, the frequency of pre-
ventive & opportunistic maintenance in a semi-renewal cycle
will be high. Thus, the useful life of the component cannot
be fully taken advantage of, whilst it will cause maintenance
downtime increasing.WithMi orOi increasing, the frequency
of preventive & opportunistic maintenance will decrease, and
system downtimewill decrease aswell, and thus system avail-
ability will increase correspondingly. When Mi or Oi is big
enough, the probability of component occurring failure will
be high. Usually, corrective maintenance duration is fairly
long, and then it will result in system availability decreasing.
Therefore, there exists an optimal Mi and Oi to maximize
system availability.

3) MAINTENANCE OPTIMIZATION BASED ON ABC
ALGORITHM
Given the parameters of ABC algorithm, i.e., NP = 10,
Limit = 20, and Maxcycle = 100, the optimization process
of an iteration of ABC algorithm is shown in Fig. 6.

FIGURE 5. (a) Influence of preventive maintenance threshold on system
availability. (b) Influence of opportunistic maintenance threshold on
system availability.

FIGURE 6. The optimization process of an iteration of ABC algorithm.

The approximate optimal solution of the optimization
model is calculated with the algorithm, and then the
maintenance strategy obtained is denoted as solution I.
We then have the optimal result (M∗,O∗, ξ∗1 , ξ

∗

2 ) =

(2.8, 3.5, 1.2, 1.5, 2.73, 0.45) and the optimal availability
TA∗∞ = 0.9036.
Meanwhile, in order to illustrate the necessity of con-

sidering degradation dependence when making maintenance
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FIGURE 7. The influence of maintenance preparation time on
maintenance optimization result.

decision, we also obtain the optimal maintenance strat-
egy without degradation dependence considered, denoted as
solution II: (M∗,O∗, ξ∗1 , ξ

∗

2 ) = (2.8, 3.5, 1.2, 2, 2.69, 0.50).
The optimal availability is TA∗∞ = 0.9006.

By contrast, system availability TA∞ of solution I is higher
than that of solution II. We can conclude that degradation
dependence has effects on maintenance optimization results,
thus degradation dependence should not be neglected when
making maintenance decision. If degradation dependence is
not considered, maintenance threshold, to some extent, will
make change. It also indicates that, in order to ensure the
effectiveness of maintenance, we should make decision based
on the system-level instead of the component-level for multi-
component system.

C. SENSITIVITY ANALYSIS
Maintenance preparation time Tr , degradation dependence
parameter θ and state amount parameterKi havemajor effects
on system availability, then we analyze the influence of these
three parameters on optimization results.

1) INFLUENCE OF Tr ON OPTIMIZATION RESULT
Under the fixed values of other parameters, the influence of
maintenance preparation time on maintenance optimization
result is shown in Fig. 7.

As shown in Fig. 7, the distinction between the opti-
mal thresholds of preventive and opportunistic maintenance
increases generally depending on maintenance preparation
time increasing. Especially when the maintenance prepa-
ration time is long enough, the opportunistic maintenance
threshold will be 0. It indicates that the component should
be replaced when carrying out inspection. So, it is of great
significance to make full use of maintenance downtime to
maintain components as many as possible.

2) INFLUENCE OF θ ON OPTIMIZATION RESULT
With the system degradation process and other parameters
fixed, the influence of degradation dependence parameter on
optimal maintenance strategies is shown in Tab. 1.

TABLE 1. Influence of degradation dependence parameter on optimal
maintenance strategies.

FIGURE 8. The influence of state amount parameter on optimization
result.

We can see from Tab. 1 that, the optimal maintenance strat-
egy will be different depending on the value of degradation
dependence parameter θ increasing (i.e., the degrada-
tion dependence between components enhancing). When
θ > 1, the opportunistic maintenance threshold of compo-
nent 2 decreases. The reason is the reduction of mainte-
nance threshold can shorten preventive maintenance interval
to ensure the system running stably and reliably, and then
system availability is improved.

We can also conclude that, system availability increases
depending on the value of degradation dependence parameter
θ increasing. It is because that with degradation dependence
between components enhanced, other components can be
maintained simultaneously when a component under main-
tained. Consequently, extra maintenance downtime can be
reduced, and system availability can be improved.

3) INFLUENCE OF Ki ON OPTIMIZATION RESULT
When deriving the steady-state probability distribution, we
replace continuous state degradation process with discretized
system states approximately. Consequently, the accuracy of
system availability can be affected by state amount parameter
Ki. The influence of state amount parameter Ki on optimiza-
tion result is shown in Fig. 8.

As shown in Fig. 8, the optimal thresholds of preven-
tive and opportunistic maintenance vary depending on state
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amount parameter. With the state amount parameter increas-
ing, system availability will decrease gradually. The rea-
son is that, variation of state amount leads to the variation
of thresholds of preventive and opportunistic maintenance,
and system maintenance downtime increases. Consequently,
system availability decreases.

V. CONCLUSION AND FUTURE RESEARCH
In this study, maintenance optimization for a system con-
sisting of two dependent components in long-term operation,
where both components are subject to dependent degradation,
is resolved. Gamma process is used to model the degradation,
Frank Copula is applied to describe the degradation depen-
dence between the two components, and improved Artificial
Bee Colony (ABC) algorithm is used to maintenance opti-
mization. Consequently, inspection interval, preventive and
opportunistic maintenance thresholds of the system can be
jointly obtained. Through an numerical example, it shows that
it is of great significance to consider the degradation depen-
dence in the maintenance optimization for multi-component
system.

In future research, we will extend the model developed
in this paper to a more complex model of multi-component
system and the improvement of opportunistic maintenance.
Firstly, this paper only studies two-component system. Com-
pared with two-component system, multi-component system
has more complex degradation dependence, e.g., a system is
composed of four components, where component 1 and com-
ponent 2 have degradation dependence, while component 3 or
component 4 may also have a degradation dependence with
component 1 or component 2. Study of this kind ofmore com-
plex system is of great interest. Then, a more complex model
needs to be established and analyzed. Secondly, opportunistic
maintenance strategy in this paper only based on condition
monitoring. Condition-based and age-based opportunistic
maintenance policy [34] needs to be further investigated in
maintenance optimization for multi-component system.
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