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ABSTRACT New generations of small advanced aircraft may soon transform how people and freight are
transported. Thus, ensuring safe and reliable operation of these systems, in all plausible scenarios, is of
utmost priority. In this paper, we address this problem by proposing a method to verify the safety of an
autonomous aircraft controller following a navigational policy. The policy is encoded using discrete vector
fields that are meant to drive the vehicle to a goal state and away from obstacles or restricted airspace. The
solution presented in this paper provides the ability to verify the policy, catching unsafe scenarios which
may be missed by random Monte Carlo methods or general reachability analysis. After illustrating the main
theoretical principles, a possible practical implementation is described and compared with analysis based
on Monte Carlo simulations. The comparison shows an insightful example where Monte Carlo simulations
fail to detect several corner cases that are uncovered by the proposed method. In the conclusion of the paper,
we provide insights about possible future research to implement the proposed solution obtaining higher

accuracy and efficiency.

INDEX TERMS Navigation, unmanned aerial vehicles, autonomous agents, reachability analysis.

I. INTRODUCTION
Aircraft navigational flight planning typically consists of
manually laying out long consecutive straight line segments
encoded with vertices called waypoints. These segments are
planned to avoid dangerous areas, such as obstacles or unap-
proved airspace. For increasingly autonomous airplanes, such
as is being envisioned for Advanced Air Mobility (AAM),
deviating from the planned path may require a complete
replan. Without a replan, the aircraft risks flying into haz-
ardous areas on a rejoin. In fact, these types of deviations may
be relatively common due to a myriad of factors including
weather, aircraft to aircraft conflict, or safety maneuvers.
Therefore, for increasingly autonomous aircraft, a "complete
plan" encoded in a "control policy" may be the best option.
For a complete plan, all of the potential states of an aircraft
have an associated control policy. For instance, one popular
method to encode this policy is with a feedback motion
plan [1], [2], which in these cases, provides a calculated
safe heading for the aircraft to capture for every possible
two-dimensional location on a map (see Fig. 2). Having
a pre-calculated complete plan also provides the ability to
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pre-verify that the plan is safe and suitable for the mis-
sion. Verification activities can include simulation or other
analysis, but the intent to verify safe appropriate resultant
trajectories remains, regardless of the approach.

Because of the very large number of possible aircraft states
that need to be checked, a Monte Carlo approach may be used.
However, because of the inherent random nature of the Monte
Carlo approach, some unsafe resultant trajectories may be
missed. Other methodologies, such as Hamilton-Jacobi (HJ)
numerical reachability analysis [3], are more exhaustive, but
their computational and space complexity is high and their
accuracy is affected by both time and space discretization.

This paper proposes a new ‘““‘exhaustive’” geometric method
of analysis and verification, which relies on the derivation of
sets of trajectories and their intersection with unsafe areas.
The proposed method is first compared to HJ reachability
calculations for a small discretized cell containing a single
commanded heading. Then, it is compared with Monte Carlo
simulation results over large trajectories spanning multiple
cells across the entire control policy. The results show that
the generic HJ formulation can underestimate or overesti-
mate the reachable set for a single cell. This is problematic
because when integrated across the entire policy, these inac-
curacies compound to obscure critical insights. Monte Carlo
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FIGURE 1. Examples of corner cases missed by Monte Carlo analysis for
trajectories resulting from a navigational policy encoded with a vector
field of commanded headings.

simulations are also found to miss unsafe “corner cases”
that the proposed geometric method uncovers. Fig. 1 shows
a set of these missed corner cases, where a resulting trajec-
tory would intersect an obstacle causing an obvious safety
concern. Uncovering these unsafe trajectories in verification
allows them to be added to the set of states to be automatically
avoided when the system is in operation.

Il. BACKGROUND
A. AUTONOMOUS NAVIGATION
Autonomous navigation first requires the definition of goals,
obstacles, and areas of restricted airspace. A navigational
planner uses this information, along with vehicle maneuver-
ing constraints, to generate a collision-free path that could
be feasibly followed by the aircraft. Typically, aircraft con-
straints such as turn radius and climb rate are included in
the evaluation of feasibility. After a path has been calculated,
it must be encoded in a way that will allow controllers to
direct the aircraft suitably along the path. Waypoint con-
trollers calculate aircraft position deviation from a straight
line connecting two waypoints and adjust the aircraft heading
to reduce this deviation [4]. As the aircraft progresses, way-
points are successively achieved and the controller adjusts
which waypoints are used to calculate the deviation.
Typically in nominal conditions, deviations from the path
will remain relatively small and progress will be made toward
the goal. However, in certain situations relatively large un-
planned deviations may be necessary. In these cases, there
may not be sufficient information encoded in the waypoints
to enable the controller to safely rejoin the planned path.
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FIGURE 2. Example of the airplane following a feedback motion plan =
encoded in a discrete vector field (red cells are part of the obstacle
region 0).

For instance, an unplanned maneuver to deconflict with an
approaching aircraft may take our vehicle to a position where
obstacles are between it and the planned path. In the absence
of further information, the controller will attempt a normal
rejoin and a collision may occur. Situations such as these
require that a plan carry more information than a typical set
of waypoints contain. Further, additional verification criteria
must also consider resultant trajectories generated from any
feasible vehicle state, not just those near the planned path.
An alternative to using waypoints is to use vector fields in a
feedback motion plan [1]. The vector fields encode a naviga-
tional policy, which is an appropriate action for each possible
location on a map. Using this method, obstacles and restricted
zones can be accounted for regardless of their proximity to the
nominal path. So in essence, an appropriate plan is calculated
for every possible position on a map. The drawback of this
approach is that it is difficult to calculate an optimal policy if
vehicle dynamic constraints are considered. However as has
been shown, a suitable policy is often easily calculated; with
suitability being defined as a plan which, given appropriate
initial conditions, always progresses toward the goal and
avoids intersections with obstacles or restricted airspace.

B. POLICY VERIFICATION

Another advantage of developing a full navigational policy
encoded using vector fields is that its suitability can be veri-
fied offline. In order to accomplish this, however, a model for
the vehicle and controller which follows the plan must also
be developed. In this paper, the vehicle is modeled kinemat-
ically assuming a constant forward velocity and a constant
maximum turn rate, which taken together produce a minimum
turn radius. The controller is modeled as a type of bang-
bang controller, which has three possible control commands
resulting in either minimum radius turns in each direction,
left or right, or a straight trajectory. The controller produces
the control commands to minimize the error between the
vehicle’s heading angle and the vector direction encoded at
the vehicle’s location in navigational policy as in Fig. 2.

A goal of this work is to allow both the policy and the
controller to be verified together to ensure safe operation and
progress toward the goal. This is critically important because
if navigational planners and controllers are both autonomous
and do not rely on human intervention, then they will not be
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approved to fly without ensuring the safety of the system. So,
autonomous systems which can fulfill planning and control
requirements must be developed simultaneously with their
methods of verification.

Two general strategies collectively make up the state of the
art in the verification of navigational control policies. The
first is known here as exhaustive verification. This method
attempts to analyze every possible situation mathematically
to determine the set of states and control inputs that may lead
to critical end states. Typically, these critical end states are
either unsafe states, such as those which end in a collision,
or goal states that the vehicle is trying to achieve. Generally,
exhaustive verification methods utilize reachability analysis,
where techniques to determine whether a particular end state
is reachable given the initial state and the control mecha-
nism. However, exhaustive verification is oftentimes difficult
or impossible to achieve; therefore, numerical methods are
utilized to approximate the solution. Nevertheless, the main
drawback is that often these methods have high computa-
tional and space complexity.

The second strategy involves the simulation of a random
sampling of initial states to find a probabilistic distribution of
end states. These methods are called Monte Carlo methods
and they are typically used when an exhaustive analysis is too
difficult or is computationally intractable. Although Monte
Carlo can be very effective in determining the probability of
certain events, sufficiently rare events are oftentimes missed
by Monte Carlo and thus the method is not ideal to prove the
safety of a system on its own.

For the verification of navigational policies encoded using
discrete vector fields and the proposed aircraft controller
model, precise techniques for exhaustive analysis have not
been developed and collision scenarios can be made suffi-
ciently rare as to be missed by Monte Carlo analysis. This
work attempts to rectify this situation by developing quasi-
exhaustive and precise verification techniques for naviga-
tional plans defined for use within a control system for an
autonomous fixed-wing aircraft.

Specifically, the manuscript presents a novel analytic tool
for the safety analysis of a navigational plan and control sys-
tem built around discrete vector fields. First, the theoretical
principles behind the method are summarized with related
work in Section III and the analytical formulation of the
problem in Section I'V. The paper continues in Section V with
adescription of the method and in Section VI with details on a
proposed implementation, pointing out its flaws. Section VII
details results comparing our method with analysis based on
Monte Carlo simulations showing its ability to detect corner
cases that a probabilistic analysis can easily miss. Finally,
in Section VIII we offer conclusions along with possible
future directions for the work.

lIl. RELATED WORK

A. AIRCRAFT GUIDANCE, NAVIGATION, AND CONTROL
High-level control of an aircraft is generally thought to
encompass three related, but distinct, components which
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are oftentimes grouped as guidance, navigation, and control
(GNC). Guidance refers to the determination of the desired
path needed to achieve a certain goal state, navigation refers
to the determination of the orientation and velocity state
required to follow that path, and control refers to the low-
level manipulation of forces and aircraft moments required
to achieve the orientation and velocity states. In [5], the
authors provide an overview of the methodologies used for
the guidance, navigation, and control of fixed-wing UAVs.
They consider fixed-wing UAVs that generate their forward
speed using a propulsion system such as propellers driven by
electric motors or gas engines. A more detailed exploration
of path following for fixed-wing aircraft can be found in [6].
Here, the authors provide control solutions based on theoret-
ical stability and convergence analyses, which can be applied
to almost all regular 3D paths. The proposed solutions are
validated using hardware-in-the-loop simulations. Encoding
a GNC solution with a vector field, similar to the one analyzed
in this work, can be found in [7]. Specifically, the authors
present a Gradient vector field (GVF) path following and
circular obstacle avoidance that allows a fixed-wing UAV to
avoid detected obstacles without the need to replan the whole
flight path.

Verification of proposed GNC solutions is also presented in
many related works with approaches ranging from simulation
to more formal mathematically derived verification methods.
For example in [8], real-time hardware-in-the-loop simula-
tions are utilized to validate a hierarchical path planning
and control algorithm for a small fixed-wing UAV. Also in
[9], the authors present a safety framework for the online
verification of the safety of each planned trajectory. The
proposed solution uses formal methods to handle uncertainty
and disturbances. The framework can be integrated into exist-
ing motion planning architectures and enables the fail-safe
operation of self-driving vehicles. In [10], the authors use
reachability analysis to compute the reachable sets of each
motion primitive and subsequently to define the satisfaction
relation of motion primitives with formulae in linear temporal
logic.

Reachability analysis, specifically, is of interest in the
formulation of this paper as we try to answer the question:
given a feedback motion plan, which region of the space is
unsafe? The state of the art of numerical analysis for this type
of question is based on the use of reachability.

B. REACHABILITY ANALYSIS

Reachability can either be analyzed in the forward time direc-
tion or in the backward time direction. In forward reach-
ability, a set of initial states is propagated forward for a
specific time interval, finding the total set of possible future
states which can be reached in that time horizon. Conversely,
in the case of backward reachability, starting from a set of
final states, the computation is performed backward for a
specific time interval to find the set of possible initial states
that could have lead to the final states. In a safety analysis
performed using backward reachability, we start with states
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inside an unsafe region and simulate the evolution of the
states backward in time. If the set of states reached intersects
with the set of possible initial states, then the analysis flags
a potential safety hazard. In Fig. 3 one can notice that for a
safe system, the intersection between the backward reachable
set of the unsafe region and the set of possible initial states is
empty.

In [11], the author defines and examines eight types of
forward and backward reachability constructs. It is shown
that forward and backward algorithms can be interchanged
if well-posed backward trajectories can be defined. Further-
more, it is demonstrated that backward reachable tubes are
the most broadly applicable formulation of reachability for
analyzing system safety. Finally, a key insight from the anal-
ysis conducted in this paper is that backward reachability
formulation is more likely to suffer from numerical stability
problems.

In [12], a variety of methods for the reachability analysis of
continuous and hybrid systems are presented, focusing on the
following topics: geometrical objects for representing sets,
approximation schemes, and combinations of graph-search
algorithm and partition refinement. The work in [13] presents
results of using methods to under approximate Reach-Avoid
sets for navigating in space around obstacles with linear
time-invariant dynamics. The work in [14] focuses on under-
approximated boundaries for the backward reachable set of
a simply connected target region computed using linear pro-
gramming approaches. In [15], the authors use Lagrangian
methods to compute forward reachable sets to determine the
region of attraction around an equilibrium point.

1) GEOMETRIC REACHABILITY METHODS

In [16], systems with mixed state and input constraints are
considered. After formulating a reachability controller syn-
thesis problem for this class of systems, the authors show
how standard geometric tools can address the problem for the
special case where disturbance constraints are independent
of the state and control. The work in [17] focuses on the
reachability problem for environments with dynamic geom-
etry. Geometric constructions based on constraints with one
variant parameter are considered. The proposed solution finds
a continuous path between two geometric configurations if
one exists. In [18], the kinodynamic multi-robot planning
problem in cluttered 3-D workspaces for a quad-rotor is
considered. Offline reachability analysis on position invariant
geometric trees is leveraged to find a collision-free geometric
solution that is kinodynamically feasible for the multi-robot
team.

C. SAFETY ANALYSIS BASED ON REACHABILITY

Reachability analysis, as a tool, has several uses in the verifi-
cation of GNC systems. Specifically relevant to this work is
the use of reachability to verify the safety of the system and
the resultant trajectories which are an output of our approach.
This particular use has a broad history and several safety
analyses based on reachability have been proposed in the past.
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FIGURE 3. Example of an unsafe system (left) and a safe system (right).

For instance, the work in [19] addresses formal verification
of automotive collision avoidance systems. Here the authors
present a framework that can be used to formally verify that
a collision avoidance system makes correct decisions that are
robust to measurement errors. In [20], the authors address the
online verification of partial motion plans for aerial robots;
accounting for uncertainty in both the environment’s and the
robot’s state. The solution proposed in this paper consists in
generating robust control invariant sets based on loiter circles,
where the aerial robot follows a circular pattern. The invariant
sets are generated exploiting techniques from reachability
analysis and considering an infinite time horizon, unlike most
of the other methods based on reachability. In [21], invariant
safe sets are computed for self-driving automobiles in linear
time and with provable formal safety guarantees.

The Hamilton-Jacobi (HJ) formulation of reachability is
one of the most general formulations that is applied to non-
linear systems in the presence of disturbances [3], [22], [23].
The drawback of the HJ formulation is that the computational
complexity is exponential with respect to the dimension of
the continuous state. For this reason, various decomposition
methods [24], [25] for specific classes of problems have been
proposed to achieve dimensionality reduction.

D. SAFETY ANALYSIS BASED ON MONTE CARLO
SIMULATIONS

A different approach for the analysis of hybrid and switched
systems is to use Monte Carlo simulations [26], [27]. Monte
Carlo simulations are an effective tool to analyze complex
nonlinear systems having high dimensional state space that
are intractable using other methods. Consequentially, Monte
Carlo simulations are a widely used validation tool. For
instance in [19], Monte Carlo simulations are used to examine
a 6-DOF model of an autonomous underwater vehicle. Simu-
lations are used to analyze the effects of model uncertainties
and to tune the guidance algorithm effectively. Another exam-
ple of validation based on Monte Carlo simulations can be
found in [28], where aircraft 4-D trajectories are constrained
inside specific temporal and spatial boundaries, referred to
as target windows (TWs). In this case, the authors propose
evaluation methods based on both Monte Carlo analysis and
reachability theory. Reachability theory is used to character-
ize the aircraft maneuvering freedom and perform conflict
resolution. The proposed methodology was then validated
using Monte Carlo simulations, which allowed the probabil-
ity of meeting TW constraints and the likelihood of conflict
to be estimated.
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Validation based on Monte Carlo simulations is much more
general and simpler than other methods. Nevertheless, the
shortcoming in this type of testing is that this is a probabilistic
approach in which a specific trajectory is tested with a certain
probability. This means that there is a chance to miss corner
cases in the analysis. For the reader interested in more details
about using Monte Carlo simulations to simulate rare events,
[27] provides a general reference that focuses on the theory of
“Importance Sampling” and “Splitting” techniques as well
as several applications.

IV. PROBLEM FORMULATION

The verification method presented in this paper is based on
the concept of reachability. However, rather than using a
generic formulation such as the Hamilton-Jacobi, specific
functions are derived exploiting geometric principles [29],
[30]. The method is time-independent and allows for the
analysis of the whole 3-D configuration space by propagating
2-D sets. The problem is formulated below to support this
analysis.

Given a workspace W € R? represented with a grid-map
having resolution d and an obstacle region O, our objective is
to categorize each cell of the grid map as either safe or unsafe
according to the following definition:

Definition 1: A cell is safe if there does not exist a config-
uration from which the obstacle region is reachable with the
given plan 7 and vehicle’s controller and kinematic model.

Our formulation relies on the assumption of a discrete
feedback motion plan having the following characteristics:

o The plan indicates the desired heading direction, (called
the commanded heading 6,,) the vehicle should travel at
each free grid-map position.

o The resolution of the grid-map d is smaller than the
vehicle’s minimum turning radius r.

« Bang-bang control is used to correct the error between
the vehicle’s actual heading € and the commanded head-
ing 6.. Therefore, the vehicle can either travel straight
with speed v or turn with its minimum turning radius
r = 7 (w is the turn rate).

Under these assumptions, in each cell, there are five pos-
sible trajectories. If an initial angle 6y is equal to the com-
manded angle 6, the vehicle travels in a straight line. Instead,
if 69 # 6., the trajectory begins a turn in the direction
that minimizes the angular distance required to reach the
commanded heading. When 6, is achieved, the trajectory
continues in a straight line from that point. The last case
is when the vehicle does not converge to the desired angle
before leaving the cell. In this last case, the exit angle is
different from 6., and the path consists of an arc without a
straight line segment. In summary, three types of paths are
possible:

« straight line (S path);
« turn followed by a straight line segment (CS path);
« turn only (C path);
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S stands for straight line while C stands for circular motion.
Since there are two types of circular motion, the complete set
of possible paths is: {S, R, L, RS, LS}, where R and L stand
for right and left respectively.

The configuration space is C = W x S!, therefore a
configuration g € C is the tuple (x, y, ). Similarly we can
define Cp = O x S!, which is the obstacle region in the
configuration space.

Section III-B introduced the concepts of the Backward
Reachable Set (BRS) and Forward Reachable Set (FRS).
Related concepts are the Backward Reachable Tube (BRT)
and the Forward Reachable Tube (FRT). The difference is that
the BRS and FRS are sets of configurations for a specific time
t*, whereas BRT and FRT are sets of configurations for a time
interval [0, £*] [11].

In our case, we define the BRT B (Co, r, w) of Cp as the
set of all the configurations from which Cp is reachable with
a given plan 7 and a minimum turning radius r. A configu-
ration qq is in B (Co, r, ), if starting from gg and following
the feedback motion plan 7, there exists a time ¢, in which the
vehicle’s configuration gy is in Cp. It is important to notice
that B (Co, r, w) does not show any time dependency. The
reason is that we consider an infinite time horizon. In other
words, we are not interested in the time necessary to reach
the target set; instead, we just want to know if the vehicle
will reach it or not.

What stated above can be summarized as follows:

B(C07 r, T[) = {‘]0 € Clat* € [0’ OO) s. t. Q(t*) € CO}
ey
A set of adjacent cells can be represented using only the
external borders, as illustrated in Fig. 4. A generic outer bor-
n
der is /;, while the set of all the outer bordersis L = | J /;. Itis
=1
possible to reformulate the definition for BRT by é)bserving
that Co is reachable from gy if the trajectory starting from

qo intersects L. Exploiting this observation, the BRT can be
defined as follows:

B(Co.r,m)={qo € C[3t. € [0,00) s.t. q (t.) eL=|_J L)
i=1

@

This second formulation allows for the representation of
Co, which is a 3-D subspace, with the union of the 2-D sets
l; x S' (coordinate and heading angles at the borders).
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V. GEOMETRIC ANALYSIS OF THE PROBLEM

This section summarizes the main geometric properties used
to derive the piece-wise functions utilized in our analysis.
Recalling that in a grid-map representation, the obstacle
region O can be characterized using only the outer borders
l;, we start by illustrating how to compute the boundaries of
the set containing every configuration ¢ = (x, y, ) of a cell
from which a specific border /; x S! is reached. We define
this set as Cellular Backward Reachable Tube B(l;, r,6.).
The boundaries of B(l;, r,6;) are given by the functions
Omin(x, y) and Onyax(x, y), where the dependency from r and
0. is omitted because they are both constant in a cell for a
given plan. From ®Onin(x, ¥) and Opax(x, y) it is possible to
fix one of the coordinates and obtain the functions ® i, (x)
and O« (x) that are specific for a border. For instance we
can consider the top border of a cell as the target border and
the left border as the starting border. In this case, the functions
©f (x)and ©] () delimit the range of heading angles for
each position along the left border from which the top border
is reachable. In other words, ®T (x) and @Tm (x) are the
boundaries of B(T, r, 6.) along the left border.

The opposite problem is the derivation of the functions

(x) and <I>T (x) that are used to compute the bound-
anes " of the Forward Reachable Tube F of the left border
in the top border. In this case, the objective is to compute
the set of configurations in the top border that are reached
by trajectories starting from the left border. It is important
to notice that the set delimited by CDZmin(x) and <I>{max(x) is
the forward mapping of the set delimited by @Zmin (x) and
®Zmax (.X)

In the method proposed in this paper, the safety analy-
sis of a feedback motion plan is performed by propagating
backward the intersection between backward and forward
reachable tubes in a border. For instance, for a border [,
we can find the intersection set Z between the set F(I;)
delimited by & I (x)/® . (x) and the set B(/;) delimited

by Ol* (x) /® l* (x) The elements of Z lie on trajectories
that start from l ‘and end in /;.

The intersection sets are propagated from one border
toward the neighboring borders starting from the outer bor-
ders of the obstacle region O. The sets being propagated
consist of configurations from which the obstacle region is
reachable. Once the algorithm converges, it labels cells of the
grid-map as safe if in every border the BRT is an empty set.
On the other hand, a cell is labeled as unsafe if any of the four
borders has at least one configuration from which the obstacle
region is reachable.

In the following subsections, we start by introducing the
geometric principles exploited to derive the functions ©
and ® mentioned above. For the sake of brevity, we illus-
trate these principles at a very high level. For the detailed
derivation of the functions, the reader can refer to [29] and
[30]. The analysis starts with the computation of the BRT
from a chosen border to all points internal to a single cell,
which then is used as a benchmark to compare with the
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FIGURE 5. Boundaries of backward reachable tube of top border.

well-established method based on the Hamilton-Jacobi for-
mulation. After the illustration and comparison of the BRT
for all points inside the cell, we simplify the problem con-
siderably by exploiting the fact that, by definition, there are
no safety concerns internal to a free cell. This allows us
to only consider the intersection of the reachable tubes at
the borders of the cells, allowing calculation of forward and
backward border-to-border mapping. Finally, we present the
core idea behind the proposed method, which consists in
finding and propagating the forward and backward border-
to-border intersections between cells throughout the entire
map.

A. CELLULAR BACKWARD REACHABILITY

In [29], a full description of the calculations and processes
required to calculate the BRT from a chosen exit border was
provided. These functions allow calculations of minimum and
maximum surfaces, Omnin(x, ¥, 6.) and Onax(x, y, 6.), which
bound the reachable tube. In Fig. 5, an example of the cellular
BRT computed for the top border is shown. The example
cell has a horizontal width of 1 in each direction and a
commanded heading angle of 6. = 7. The horizontal axes
of the figure correspond to the x and y coordinates, while
the vertical axis indicates a vehicle orientation, in radians,
wrapped so that —m < 6 < m. The green line indicates
the top border of the cell corresponding to the line y = 1
between 0 < x < 1. The two surfaces shown in the figure are
the functions ®pip and Omax. These surfaces span the entire
horizontal extent of the cell.

All the possible vehicle configurations between these two
surfaces, Omin < 0(x,y) < Onax, will inevitably exit the
top border. More strongly, the top border is reachable if and
only if the vehicle’s configuration is bound by the functions.
The same process is utilized to derive the BRT for the other
borders as well. It is based on the same geometric principles,
therefore we can exploit the same functions used for the top
border and apply proper transformations (i.e. rotation and
translation).
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(a) T — 2 '
(b)

(© (d)

FIGURE 6. An example of the evolution of the boundaries of the backward reachable set for the Bang-bang controller described in Section IV. Time
step of 0.02s, spatial resolution of 0.12m, angle resolution of 0.36°. The vehicle was traveling with a speed of 10m/s and a minimum turning radius of
5m. In (a) there is the cell with commanded angle of 0°. In this example the target set is the right border.

1) COMPARISON WITH HAMILTON-JACOBI FORMULATION
In section III, it was mentioned that one of the most popular
and rigorous methods for reachability analysis is based on
the use of the Hamilton-Jacobi formulation. This tool is very
powerful and general. It can compute reachable sets for non-
linear dynamic systems accounting also for disturbances. The
data illustrated in this subsection were obtained using the
implementation available in [31], which to the best of our
knowledge is the state of the art of Hamilton-Jacobi reach-
ability analysis. Even though this tool is very powerful, it is a
numerical method and as such, it is affected by discretization
error. More specifically, in this case, there are two sources
of error, the discretization of the configuration space and the
time step used to grow the boundaries of the reachable set.

In the example considered in this subsection, the target
set was the right border (Fig. 6a) and the objective was to
find the boundaries of B(R, r, 6.) for an infinite time hori-
zon. Fig. 6 illustrates the growth of the backward reachable
set using the tool available in [31]. In Fig. 7a, there is the
complete BRT obtained using the HJ analysis. In this case, the
boundaries are highlighted in orange. Instead, in Fig. 7b, there
are the boundaries of BRT computed using our analytical
formulation, which was derived in [29] and illustrated in
the previous section. Fig. 8 shows the error affecting the HJ
analysis. Fig. 8b illustrates the error for the upper boundary,
while Fig. 8a illustrates the error for the lower boundary.
In both figures, the error is color-coded. Red indicates an
underapproximation of the reachable tube, while green an
overapproximation.

This example shows that even the state of the art of numer-
ical reachability analysis can underestimate the backward
reachable tube in some regions. For the specific class of prob-
lems considered in this example, the advantages of deriving
closed-form solutions for the boundaries of the reachable tube
are two:

« constant computation complexity (i.e. for a given posi-
tion we can compute minimum and maximum in con-
stant time);

« no error due to time or space discretization (we cannot
eliminate the rounding error that affects every digital
system).
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B. BORDER-TO-BORDER BACKWARD MAPPING

As mentioned in the previous section, from the generic func-
tions for the boundaries of the BRT, it is possible to derive the
ones specific for each border by fixing one of the coordinates.
We define the set delimited by these functions as border-to-
border backward reachable tube. For instance ®§min (x,6¢,1)
and ®£max (x, ¢, r) delimit the BRT of the top border (T) in
the bottom border (B), which means that every configuration
of the bottom border that is in this set has a trajectory ending
in the top border.

C. BORDER-TO-BORDER FORWARD MAPPING

The border-to-border BRT allows us to determine the set
of entering heading angles required for a trajectory to enter
the cell at one border and exit another. The opposite prob-
lem finds the exit heading angles for trajectories entering
at another border. The solution to this problem is similar
to the solution for the BRT. We start considering circles
intersecting the corners of the starting border and any point
of the target border. Fig. 9 illustrates examples of forward
mapping from the bottom border to the top border. It is
important to notice that only trajectories that do not exit
the cell before reaching the top border must be considered.
Furthermore, as shown in Fig. 9b we have to account also for
cases in which multiple trajectories converge to the same end
configuration. Accounting for these constraints and using the
same geometric principles exploited for the backward reacha-
bility, it is possible to derive the analytic functions @imin and
CDﬁmax, which provide the boundaries of the FRT in a border
B for trajectories starting from a border A. Like the functions
for the backward reachability, the detailed derivation can be
found in [29], [30].

D. FORWARD AND INVERSE MAPPING

To better illustrate the relationship between forward and
backward reachable tubes, we refer to the example shown in
Fig. 10, where trajectories starting from the bottom border
and ending in the top border are considered. The forward
mapping from B to F is computed with the functions p(x, 6.)
and a(x, 6.), which provide the final location and orientation
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(b)
FIGURE 7. Boundaries of backward reachable tube obtained with
Hamilton-Jacobi Formulation (a) and using functions ©(x, y) (b).

Error on Minimum

40

6 error [°]

0 error [°]

(b)

FIGURE 8. Error in backward reachable tube obtained with
Hamilton-Jacobi analysis. Green indicates overapproximation, while red
indicates underapproximation.

respectively.! In this particular example, every trajectory
starting from the bottom border and ending in the top border

I'The minimum turning radius r and the cell size d are constant, therefore
they are not included in the parameters of the functions.

VOLUME 9, 2021

% ’ y
L t9’”1? elR left cs right ¢S
S path
paths paths

(@ (b)
&ut
© (d)

FIGURE 9. Examples of forward mapping from bottom to top border.

(a) Examples of minimum and maximum angles associated with right and
left turns starting from edges of the bottom border. (b) Examples of
trajectories ending in the same configuration of the top border.(c)
Example of right turn “limited” by the left border. (d) Example of left-turn
“limited” by right border.

consists in a right turn without a straight line portion. In this
case, with a right-handed coordinate system having center
in the bottom left corner, the forward mapping is performed
using the following functions:

p(x, 0) =x+rcos(9—%)

_Je_ (d—rsin (9— %))2 3)

a(x, 9) = arctan2 (d — rsin (0 - %),

~ - (d—rsin(@—%))z) —% @

The inverse functions that map configurations of the top
border backward to the bottom border can be written in a
similar fashion:

p_l(x, 0) = x 4+ rcos (9 — %)

2
2 (g—rsinlo-"
r (d r sin (9 2)) ©)
-1 _ (o=
a” (x,0) = arctan2 (d + rsin (9 2),

2 (d—rsin (0- %))2) +% ©6)

Fig. 10 illustrates how two generic subsets of the top border
are mapped backward to the bottom border using the inverse
mapping. It is clear that a configuration can be mapped
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FIGURE 10. Inverse mapping for right turns.

backward only if it is in the set F(B) whose boundaries are
computed using the function ®. On the other hand, the for-
ward mapping of a configuration of the bottom border is in the
top border only if it is part of the set 3(T"), whose boundaries
are computed with the function ®. In general, for a generic
set S in a border b;, only the intersection between S and the set
F(b;) can be mapped backward to the border b;. This property
is the essence of the method proposed in this manuscript.
In particular, starting from the borders of the obstacle region,
in which every configuration is considered part of the BRT
B(0), the method consists in mapping backward the intersec-
tions between B(0) and the forward reachable tubes of the
neighboring borders. The process continues until only empty
sets are being propagated, which means that the algorithm
converged to the solution.

E. INTERSECTIONS BETWEEN SETS
In the previous subsection, the inverse mapping of sets
entirely contained in the forward reachable tube was illus-
trated. Here, we consider the inverse mapping of the intersec-
tion between forward and backward reachable tubes, which is
the basic operation performed in our method to compute the
backward reachable tube 53(0O) for the borders of every cell in
the grid-map.

An internal border is shared between two cells; therefore,
it is possible to consider two directions. For instance, for a
horizontal border, it is possible to consider trajectories that
go from the bottom cell toward the top cell (upward direction)
or trajectories that go from the top cell toward the bottom one
(downward direction). Fig. 11 illustrates an example where
the upward direction is considered. On the left side, there
is the workspace, which consists of two free cells and one
occupied by the obstacle region. On the right side, there are
three sets for each figure. These sets are relative to the border
shared between the two free cells. The sets in Fig. 11a are
the backward reachable sets of the other three borders (i.e.
top, left, and right) of the upper cell. Instead, in Fig. 11b,
the sets are the forward reachable sets of the other three
borders of the bottom cell. Fig. 12 shows the overlapping of
the sets illustrated in Fig. 11a and Fig. 11b. Each intersection
represents all the trajectories starting from a specific border
of the bottom cell and ending in a specific border of the top
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FIGURE 11. (a) Backward reachable tube in the bottom border of the
upper cell. (b) Forward reachable tube in the top border of the bottom
cell.
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FIGURE 12. Intersections of forward and backward reachable tubes.

cell. For instance, the highlighted intersection set refers to all
the trajectories starting from the left border of the lower cell
and ending in the right border in the upper cell.

F. BACKWARD MAPPING OF INTERSECTIONS
The example in Fig. 12 shows that a 2-D set of a border
is associated to a group of trajectories (and therefore 3-D
configurations). Using a naive expression, we can say that a
2-D set in a border is a compressed representation of a 3-D
set of configurations that are inside the cell. This is the key
idea exploited in the safety analysis proposed in this paper.
According to Definition 1 a cell is labeled as safe if for
all of its configurations the corresponding trajectory does
not reach the obstacle region. Going back to the example
in Fig. 12, it is clear that we do not need to test every 3-D
configuration in the cell. Instead, we just need to test the
configurations at the borders. Therefore, we can rephrase the
definition of a safe cell as follows.
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FIGURE 13. Backward reachability in a corridor.

Definition 2: A cell is safe if in every border b; the back-
ward reachable tube of the obstacle region B(0)p, is an empty
set.

The meaning of this second definition is straightforward.
If B(O)y, is an empty set for all the four borders, there is no
configuration in that cell from which the obstacle region is
reachable. Consequentially, we can determine the safety of
the whole plan by computing the backward reachable tube of
the obstacle region only for the borders of the grid-map. This
computation is performed starting from the outer borders of
the obstacle region. For each border the intersections between
B(0)p; and F(b;) are mapped backward to the neighboring
border b;.

This process is illustrated using the example in Fig. 13,
where the top cell is part of the obstacle region. In this
scenario, the objective is to compute the backward reachable
tube of the red cell at the beginning of the corridor. Therefore,
we want to compute all the configurations in the bottom bor-
der of the lowest cell having a trajectory ending in the red cell.

At the border shared between cell 3 and cell 2, every
configuration is considered part of the BRT because this is
a border of the obstacle region. Therefore, for this border,
the BRT is B(O);jztop = [0,27] x [0, d]. The first step is
performed in cell 2 and it consists in finding the inverse map-
ping of every configuration of B(O)p,, = thatis reachable from
the bottom border by, ... Recalling that every configuration
of the top border is part of the BRT B(O)bzmp, it is clear
that in the bottom border of cell 2 we have B(O)bzbmmrn
B(O)Nb2yy, = B(O)p,,  » Which means that in this border
the subset of B(O) consists of all the trajectories that can reach
the top border. The second step consists in finding out which
configurations of B (O)b%onom can be reached from the bottom
border of cell 1. Therefore we must compute the forward
reachable tube F(D1yy40p) 10 b1y, = D2yom- Then we must
find the intersection set 7 = F(b1yg4e) N B(O)py,  —and
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FIGURE 14. 3-D view of backward reachability in a corridor.

FIGURE 15. Example of inverse mapping across multiple borders.

map its elements backward to the bottom border of cell 1,
obtaining the set we were looking for.

On the right side of Fig. 13, the top figure shows the
intersection between F(by,,,,,) (green and yellow curves)
and B(bzmp) (light and dark blue lines), while the bottom
figure shows the inverse mapping of Z. The configurations
inside the two sets are part of the trajectory shown on the left.

Fig. 14 provides a 3-D view of the example illustrated in
Fig. 13, where it is possible to see how the intersection set
maps backward. Furthermore, it is also possible to see the
evolution of the trajectory.

While Fig. 13 shows the propagation across just one bor-
der, Fig. 15 illustrates a more general example in which the
propagation of B(0) is performed across multiple borders.

VI. ITERATIVE INVERSE MAPPING

In the simple example depicted in Fig. 13, it was possible to
find a closed-form solution for the inverse mapping of the
intersection set Z. That was possible because with the given
commanded direction, for every configuration of Z, the tra-
jectory was a full turn without a straight line segment. In this
case, the mapping is bijective, which means that there exist
the inverse functions ! and p~! that we can use to perform
the inverse mapping of the intersection set Z. Nevertheless,
this is not always possible. In fact, for configurations reached
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FIGURE 16. Example of inverse mapping in presence of CS paths. In the
gray area there are configurations having trajectories consisting in C
paths (bijective mapping), while configurations in the yellow region have
CS paths (non bijective mapping).

by multiple CS paths, the mapping is not bijective. This is
clarified by Fig. 16, where it is possible to see that for CS
paths the inverse mapping of a line segment is a 2-D region.
In these cases, an algorithmic solution is necessary to find the
boundaries of the inverse mapping of 7.

Another challenge for the practical implementation of the
method formulated in this paper is that an effective approach
must be defined to keep track of all the subsets for each
border of the grid-map. For instance, a possible solution
could be to keep track of the actual functions along with the
intersection points. However, the scalability of this approach
is limited. A different method could be to keep track of
polygons that approximate the shapes of the sets. In this case,
the main challenge is to find the best approximation for the
boundaries of the sets. Another challenge is to define how
the propagation of the sets is performed. For instance, it is
possible to use a Depth First approach to propagate the sets.
However, it is necessary to define criteria for the termination
of the propagation that account for the presence of closed-
loop trajectories. These research questions are still open and
they are left for future work. In the following subsection,
we present a simple implementation that overcomes the
abovementioned challenges.

The purpose of the implementation described below is to
show the benefits of this approach, while effective solutions
for the aforementioned challenges are still being investigated.
This implementation consists in the iterative propagation of
sets discretized using grid-maps. Details about the effects
of the discretization error introduced by the use of grid-
maps are illustrated in [30]. Although this solution does not
fully exploit the benefits of the proposed method, it allows
us to prove via experimental analysis that this approach is
much more reliable than the simple Monte Carlo simulations.
In fact, this analysis can spot corner cases that are difficult to
detect with a probabilistic method.

A. THE ALGORITHM
In the current implementation of the method, a raster map
B; is used to represent the backward reachable tube of the
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FIGURE 17. Example of inverse mapping using raster maps.

FIGURE 18. 3-D view of the backward reachable tube and 2-D raster
maps. The vertical axis indicates the orientation angle and it is wrapped
between 0° and 360°.

\ |
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FIGURE 19. Considered scenario: The university of tulsa campus.

obstacle region in the border b;. A cell of B; can be either
1 or 0. In the first case, the configurations associated with
that cell are considered part of the backward reachable set
B(0). Algorithm 1 illustrates how the computation of 5(0)
is performed for every border of the grid-map. The main
task is the inverse mapping of the filled cells of B; toward
the neighboring borders from which they are reached. The
algorithm iterates until it converges to the final solution.
In each iteration, only borders in which a new configuration
was set to 1 are considered.

Fig. 17 illustrates an example of inverse mapping based on
raster maps. The mapping is performed in two steps. In the
first step, the BRT B(b;) is computed in b;. In the second
step, any configuration gx = (xx, 0) of b; that is contained
in B(b;) is tested. If the forward mapping of gi falls in an
occupied cell of b;, then the cell of b; corresponding to gy is
set to 1. In Fig. 17, the mapping of the yellow circle falls in
an occupied cell, therefore the corresponding cell is set to 1.
Instead, the mapping of the purple diamond falls in a free cell;
therefore, its corresponding cell remains empty.
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FIGURE 21. Results of Monte Carlo simulations using 10, 50, 100, and 1000 samples per cell.

Algorithm 1 Iterative Backward Propagation
Input: W,, grid-map GM
Output: Backward Reachable Tube B(W,)

1: while (new configuration is added to B(W,.)) do

2 for (Border B;,) do

3 if B;, # B;,_, then

4 for neighbor B; do

5: propagate sets of B;, to B;
6 end for

7 end if

g8:  end for
9: end while
10: return BRT

The space complexity can be evaluated by assuming that
the grid-map used to represent the workspace is a square
having n cells per side. Neglecting the borders at the margins
of the grid-map, the number of tables necessary to character-
ize the whole workspace is 2n(n — 1). Assuming that angle
and position at the border are discretized using m and 2m
cells, the number of bits necessary to represent B(W,) is
2m?(2n(n—1)). Instead, if the whole 3-D configuration space
was discretized, 2m>n? bits would be necessary. For instance
with n = 20 and m = 200, the number of required bits in this
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method is 1.52 - 107, while for a 3-D discretization would be
6.4-10°.

In Fig. 18, there is an example showing the 3-D view of
the BRT B(0) and the 2-D raster maps computed with the
algorithm illustrated here.

VIl. COMPARISON WITH MONTE CARLO SIMULATIONS
In this section, we compare the safety analysis performed
using the proposed algorithm with the analysis based on
Monte Carlo simulations. The plan was generated for the
scenario illustrated in Fig. 19 using the method described in
[32]-[34]. The motion plan was generated with an intentional
bad tuning to have a large unsafe region. In the figure, red
polygons are no-fly zones, whose purpose is to prevent UAV's
from flying over areas with a high density of people; the
yellow star is the goal location. The resolution of the grid-map
used in our comparison was 10m and the minimum turning
radius was assumed to be 18m.

Fig. 20 shows one of the corner cases. In this scenario,
there is an extremely small set of trajectories that oscillate
between turn directions and intersect the restricted airspace.
The plan which produces this behavior looks reasonable
given the obstacle set and goal location; however, the bang-
bang controller can lead to this type of trajectory when the
error in the heading angle is close to 7. We must point out that
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FIGURE 22. Unsafe region computed using the proposed geometric
method.

situations like the one presented here are nearly impossible
to predict by observation alone; and thus, automatic methods
to uncover them are essential. In particular, in Fig. 20, it is
possible to notice that all the trajectories start from a very
small set of states, having a heading angle range of just
3.5° and a position range of just 0.2m, which is very small
if compared with the resolution of the cells (10m) and the
minimum turning radius of the UAV (18m).

The example in Fig. 20 shows that, in the considered
region, the set of trajectories ending in the obstacle region is
very small, and that there is a “‘jump” in the distance between
trajectories and obstacle region. Therefore, it is clear that
finding those corner cases is extremely difficult. Cases like
these highlight the need for exhaustive verification due to the
difficulty of discovering them with Monte Carlo simulations.

An additional reason that urges us to find alternatives to
Monte Carlo analysis is that the error does not consistently
improve as the number of simulations is increased. This
phenomenon is visible in Fig. 21, where some unsafe cells
missed by the analysis with 1000 samples per cell were
instead spotted by the analysis with 100 samples per cell.

While Fig. 21 shows the unsafe regions computed using
Monte Carlo simulations with a various number of samples
per cell, Fig. 22 shows the results obtained with the algorithm
illustrated in Section IV. These results were obtained using a
resolution of 0.2 m for the position and 3.6° for the heading
angle. In Fig. 23, there is the overlapping between the results
obtained with the Monte Carlo simulations and the results
obtained with our algorithm. Furthermore, Fig. 23 shows one
trajectory for each unsafe cell missed by the Monte Carlo
analysis.

From Fig. 23 it is clear that the analysis performed using
Monte Carlo simulations misses important corner cases that
would cause unsafe states, while they were detected using our
method. This is possible (and expected) because the proposed
geometric method allows the testing of an infinite number
of configurations simultaneously. Furthermore, even in the
case of a simple implementation like the one presented in
Section IV, the error due to discretization is consistent. Which
in our case means that it is possible to set a threshold to
the used resolution, above which it is guaranteed to detect
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FIGURE 23. Overlapping of the results obtained with Monte Carlo
simulations (yellow) and our method (light blue).

specific unsafe resultant trajectories in a cell. As we have
shown above, this is certainly not true for a probabilistic
method.

VIil. CONCLUSION

In this paper, we presented a novel analytic method suitable
for the safety analysis of feedback motion plans based on
discrete vector fields. The analytic method is based on the
concept of reachability. However, rather than using a general
formulation such as Hamilton-Jacobi, specific functions are
derived exploiting geometric principles. The practical imple-
mentation of this analytic tool presented some challenges that
were overcome with a solution based on the iterative propaga-
tion of rasterized sets. With this type of analysis, it is possible
to find corner cases, which are difficult to detect using Monte
Carlo simulations. This was shown comparing the unsafe
region that was obtained using Monte Carlo simulations and
the region obtained with the iterative algorithm.

The research described in this paper sets the base for a
new approach for safety analysis in the autonomous guidance,
navigation, and control of fixed-wing aircraft (or, in gen-
eral, vehicles whose kinematics can be approximated with a
Dubin’s path). Future developments can have multiple direc-
tions. From the authors’ point of view, the areas that deserve
more focus are the followings:

1) A different implementation of the proposed analytic
tool should be derived. The new implementation should
propagate the boundaries of the sets instead of their
elements. Furthermore, an algorithmic solution must be
formulated for the cases in which there is no closed-
form solution in the inverse mapping.

2) The analytic formulation should be extended to other
cases involving other types of controllers, and therefore
various types of trajectories.
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