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ABSTRACT As the state-of-the-art technology of Bayesian inference, based on low-dimensional principal
components analysis (PCA) subspace inference methods can provide approximately accurate predictive
distribution and well calibrated uncertainty. However, the main problem of PCA method is that it is a linear
subspace feature extractor, and it cannot effectively represent the nonlinearly high-dimensional parameter
space of deep neural networks (DNNs). Firstly, in this paper, in order to solve the main problem of the
linear characteristics of PCA in high-dimensional space, we apply kernel PCA to extract higher-order
statistical information in parameter space of DNNs. Secondly, to improve the efficiency of subsequent
computation, we propose a strictly ordered incremental kernel PCA (InKPCA) subspace of parameter space
within stochastic gradient descent (SGD) trajectories. In the proposed InKPCA subspace, we employ two
approximation inference methods: elliptical slice sampling (ESS) and variational inference (VI). Finally,
to further improve the memory efficiency of computing the kernel matrix, we apply Nyström approximation
to determine the suitable size of subsets in the original datasets. The novelty of this paper is that it is the first
time to apply the proposed InKPCA subspace with Nyström approximation for Bayesian inference in DNNs,
and the results show that it can produce more accurate predictions and well-calibrated predictive uncertainty
in regression and classification tasks of deep learning.

INDEX TERMS Bayesian deep learning, incremental kernel PCA, elliptical slice sampling, variational
inference, Nyström approximation.

I. INTRODUCTION
In key fields where safety is at stake, such as medical diag-
noses and self-driving vehicles. Uncertainty estimates of deep
learning models are very important for decision making to
help to prevent dangerous accidents. However, deep learning
models are usually miscalibrated and overconfident in pre-
dictions [1], it is very useful to add a credible uncertainty
estimates to the predicted values [2].

Bayesian methods were regarded as gold standard, they
could provide probabilistic uncertainty estimates and were
once widely used for inference in machine learning mod-
els [3]–[5]. Unfortunately, Bayesian methods are inefficient
in millions of parameters and high-dimensional parame-
ter space, which are extensively existing in deep learning
domain with high-dimensional datasets and complex param-
eter space in neural network architectures. The characteristic
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of Bayesian approaches limits their wide application in deep
learning field.

In order to solve the problems mentioned above, the exist-
ing method adopts principal components analysis (PCA)
method to construct a low-dimensional subspace of param-
eter space for Bayesian inference [6]. In reality, there
are two most popular techniques for dimensionality reduc-
tion: PCA and Linear Discriminant Analysis (LDA, also
named as Fisher Discriminant Analysis-FDA) [7]. LDA’s
limitation is to search for those vectors in the underly-
ing space that can best discriminate among classes (rather
than those vectors that can best describe the data) [8],
whereas PCA achieves the data in its entirety for principal
components analysis without paying any particular atten-
tion to the underlying class structure. By comparing
the characteristics of PCA and LDA, PCA-based dimen-
sionality reduction technology meets the requirements
of constructing weight subspace from the weight in its
entirety.
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However, PCA is a linear subspace feature extractor
and has somewhat reached a performance barrier due
to linear assumptions of the underlying generative phe-
nomena, the subspace obtained by it is inadequate for
high-dimensional parameter space in deep learning mod-
els [9], and resulting in the inability to obtain more accurate
results. In this paper, in order to solve themain problem of lin-
ear PCA in extracting nonlinearly high-dimensional parame-
ter space features in deep learning models, we apply kernel
PCA(KPCA) to extract higher-order statistical information
from parameter space of deep neural networks (DNNs). Stud-
ies have shown that KPCA always obtain better performance
than PCA [10]. Although KPCA can extract non-linear fea-
tures in high-dimensional space, it increases the space and
time complexity compared to PCA, and the computation of
standard KPCA results in a space complexity of O(n2) and a
time complexity of O(n3).
In order to improve the computational efficiency

problem caused by the introduction of KPCA, there
are batch-based modeling method and the incremental
approach.

The first class is the batch-based modeling method, which
requires entire training data for estimating KPCA. For exam-
ple, kernel Hebbian algorithm (KHA) can compute KPCA
without storing the kernel matrix by kernelizing the gen-
eralized Hebbian algorithm and can deal with largescale
datasets with high dimensionality. However, KHA has a
scalar parameter which leads to slow convergence during
training phase [11].

The second class is the incremental approach. In incre-
mental version of KPCA (InKPCA), singular value decom-
position is utilized to update an eigen feature space for
incoming data, and it is time-consuming in processing high-
dimensional data [12], [13]. Furthermore, InKPCA can apply
rank one updates (ROU) algorithm to deal with the eigen-
decomposition of kernel matrix, but it needs to save entire
collected samples for evaluating on a new sample [14]. Mean-
while, Nyström method can approximate the eigendecompo-
sition of the Gram matrix and can further reduce the space
complexity toO(m2n) [15]. And in some cases, the traditional
InKPCA with ROU algorithm needs to be improved to adapt
to ordered samples.

The above is mainly to introduce how to effectively obtain
the subspace. However, where does the subspace exist?
Existing studies believe that the subspace lies in the tra-
jectories of the parameter optimization method stochastic
gradient descent (SGD) [6], [16]. As a standard deep neu-
ral networks (DNNs) training optimization algorithm, SGD
can escape local minima and converge to a better mini-
mum, even if the loss function of DNNs is not differen-
tiable everywhere [17]. More importantly, when PCA or
InKPCA method has successfully held the subspace of the
SGD trajectories, the obtained subspace contains different
high-performance models and can efficiently approximate
the posterior distribution over the weights of the neural
network.

Since performing Bayesian inference on DNNs requires
the posterior distribution p(θ |D), the posterior distribution for
DNNs cannot be calculated analytically or even efficiently
sampled from, so our goal is to approximate it over the param-
eter θ with dataset D in the obtained low-dimensional PCA
or InKPCA subspace. There are stochastic approximation
and deterministic approximation methods, which can be used
to verify the advantages and disadvantages of the generated
subspace.

Firstly, for stochastic approximation methods of p(θ |D),
existing methods such as Hamiltonian Monte Carlo (HMC)
makes Markov chain Monte Carlo (MCMC) once become
a gold standard for posterior inference with neural net-
works [18], however, a limitation of HMC methods is the
required intensive gradient computation when evaluating the
of log-posterior on the full data and HMC approaches are
not applicable to large datasets. So stochastic gradient HMC
(SGHMC) [19] is proposed to use stochastic estimates of
the gradient to avoid the costly fully gradient computation,
and SGHMC applies second-order Langevin dynamics with
a friction term to counteract the effects of the noisy gradient to
maintain the target distribution p(θ |D) as the invariant distri-
bution for posterior inference. Meanwhile, stochastic gradi-
ent Langevin dynamics (SGLD) applies first order Langevin
dynamics to the stochastic gradient framework [19], [20].
Although SGHMC and SGLD asymptotically sample from
the posterior along with step sizes infinitely tends to zero,
using finite learning rates schedule to train the neural net-
work, which leads to inaccurate approximate solutions [21].
Meanwhile, Elliptical Slice Sampling (ESS) as a newMCMC
algorithm for performing in models with multivariate Gaus-
sian priors. Its key properties are: 1) it has simple and generic
code applicable to many models, 2) it has no free parameters,
3) it works well for a variety of Gaussian process based
models [22]. In this paper, the constructed subspace exists
in the parameter space of DNNs model with relatively low
training loss, there are extensively reasonable priors exist
in the subspace, and the hypothesis with multivariate Gaus-
sian priors is a good choice for Bayesian inference, so we
choose ESS to perform posterior inference in the constructed
subspace.

Secondly, for deterministic approximation approaches of
p(θ |D), the purpose is to fit a Gaussian variational posterior
as a practical variational inference (VI) to approximate neural
network weights [23]. Alternatively, VI approaches can be
realized by reparameterization trick for training deep models
with latent variable [24], [25].

Next, we will perform the approximate posterior infer-
ence methods ESS and VI within the constructed InKPCA
subspace for predictive uncertainty estimates in regression
and classification tasks. Of course, there are many other
methods for uncertainty estimates, such as the existing
SGD-based studies include stochastic weight average (SWA)
and SWA-Gaussian (SWAG), these methods form an approx-
imate Gaussian posterior over weights [26], or subspaces
containing low-loss curves between independently trained
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FIGURE 1. The Frobenius norms between PCA subspace and the
proposed InKPCA subspace with rank = 20 and rank = 100 respectively.

solutions [27]. Alternatively, the application of a block Kro-
necker factored (KFAC) approximation to the Hessian matrix
for Laplace approximations [28].

In this paper, with the training of the DNNs, the deviation
vectors of weights are collected in strict order and the esti-
mation of KPCA does not require the entire deviation vectors
of weights. So it is different from the batch-based modeling
method, which requires entire training data for estimating
KPCA. And our purpose is to obtain the principal deviation
vectors of weights and then construct weights posterior.

So we propose an improved InKPCA subspace with ROU
algorithm with strictly ordered deviation vectors of weights,
and then Nyström approximation is adopted to further reduce
the space complexity. Finally, we perform approximate
Bayesian inference in the constructed InKPCA subspace of
the deep learning models [6], several steps are as follows.

Firstly, KPCA is applied to achieve higher-order statis-
tical information in parameter space of DNNs. Secondly,
to improve calculation efficiency of KPCA, strictly ordered
incremental method and Nyström approximation are adopted
to construct a low-dimensional InKPCA parameter subspace.
Finally, posterior inference over weights is performed in the
proposed InKPCA subspace and then Bayesian model aver-
aging can be implemented by sampling weight parameters
in InKPCA subspace to achieve the uncertainty estimates of
deep learning.

In Fig.1, we mainly compare the Frobenius norm between
the proposed InKPCA subspace and PCA subspace in a
regression task, which is realized in section IV-A. The results
show that Frobenius norm of the proposed InKPCA subspace
is improved at least 100 times than that of PCA subspace,
which means that the proposed InKPCA subspace is more
representative and accurate than PCA subspace for original
parameter space.

To summarize, our contributions are as follows:
1) We are the first to replace PCAwith KPCA in extracting

higher-order statistical information in parameter space
of DNNs.

2) We propose an improved InKPCA approach to solve the
computational efficiency problem. Firstly, the proposed

InKPCA applies incremental algorithm ROU to com-
pute the eigendecomposition of kernel matrix, which is
generated by the kernelization of strictly ordered devi-
ation vectors. Secondly, we use Nyström approxima-
tion to determine the suitable size of subsets to further
improve the memory efficiency.

3) The experimental results show that the proposed
InKPCA method can not only provide higher or com-
parable accuracy of the regression and classification
tasks, but also better calibrated uncertainty estimates for
DNNs.

The remainder of this paper is organized as follows.
Section II presents the definition of InKPCA, Bayesianmodel
averaging and approximate inference methods. Section III
describes the details of our approaches.

Section IV implements two approximate inference
approaches VI and ESS within the proposed InKPCA sub-
space on a regression task in the section IV-A, on several UCI
regression tasks in the section IV-B, and on CIFAR-10 and
CIFAR-100 image classification tasks in the section IV-C.
Section V is the conclusion.

II. BAYESIAN INFERENCE WIHTIN INKPCA SUBSPACE
In this section we introduce the definition of InKPCA
subspace in section II-A, Bayesian model averaging in
section II-B and approximation inference approaches in
section II-C.

A. DEFINITION OF INKPCA SUBSPACE
Assuming model M has weight parameters w ∈ Rd and a
likelihood function pM (D|w) with dataset D. We can imple-
ment Bayesian inference in a n-dimensional subspace S,
which can be defined as follows [6]:

S =
{
w|w = ŵ+ θ1v1 + · · · + θnvn

}
=
{
w|w = ŵ+ P ∗ θ

}
(1)

where projection matrix P = (v1, · · · , vn)T ∈ Rd×n, fixed
ŵ ∈ Rd , θ = (θ1, · · · , θn)T ∈ Rn, and ∗ represents the
multiplication of two elements.

According to the viewpoint of Izmailov et al. [6], the pro-
jection matrix P = (v1, · · · ,vn)T is generated by running
PCAbased on truncated randomized singular value decompo-
sition (SVD) [29] on the deviation matrix and using the first
n principal components v1, · · · ,vn to define the subspace P.
In this paper, however, the generation process of subspaceP is
defined as follows: after the model is trained in a new epoch,
a new deviation vTn+1 is generated and added to (v1, · · · ,vn)

T,
and then InKPCA is applied to the (n + 1) deviation vec-
tors (vT1 , · · · ,v

T
n , v

T
n+1) to produce n principal components

deviation vectors (v1, · · · ,vn)T,which are served as the new
projection matrix P.

And the new model M has the likelihood function:

p (D|θ) = pM (D|w = ŵ+ P ∗ θ ) (2)

Equation (2) is not a reparameterization of the primitive
model, θ serves as parameters of low-dimensional subspace
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P, the subspace model can be parameterized by θ to share
different functional properties with M , then we perform
Bayesian inference over subspace parameters θ .

B. BAYESIAN MODEL AVERAGING
In testing phase of deep learning, in order to implement
Bayesian model averaging on test dataset x, y, we can per-
form a Monte Carlo estimate of the integral as follows:

p(y|D, x) =
∫
pM (y|x,w = ŵ+ P ∗ θ )p(θ |D)dθ

≈
1
n

n∑
i=1

pM (y|x,w = ŵ+ P ∗ θi), θi ∼ p(θ |D)

(3)

where P represents the obtained projection matrix, w stands
for transforming sampled n samples θ into original space as
w = ŵ+ P ∗ θ . θi means posterior sampling from p(θ |D).

To overcome the posterior concentration in the subspace,
the temperature hyperparameter T is applied to scale the
likelihood. Our purpose is to maximize the log tempered
posterior respect to parameter θ described as follows [6]:

log p(θ |D) ∝
1
T
log p(D|θ )+ log p(θ )

By adjusting T = 1 we can get true posterior and as
T →∞ posterior approaches the prior p(θ ),which is viewed
as a regularizer in optimization.

In order to sample θi, we use deterministic approximation
approach VI and stochastic approximation method ESS to
estimate the integral for Bayesian model averaging in (3).

C. APPROXIMATE INFERENCE APPROACHES
Performing Bayesian inference on DNNs requires the pos-
terior distribution p(θ |D). However, the posterior for DNNs
cannot be calculated analytically or even efficiently sampled
from. As stated in the introduction section, deterministic
approximation approach VI and stochastic approximation
method ESS are adopted for approximating p(θ |D).
Firstly, VI addresses this problem by approximating p(θ |D)

with a more tractable distribution q(θ |α), the purpose of
VI is to find the parameter α of the distribution q(θ |α) on
the weights θ that can minimise the Kullback-Leibler (KL)
divergence with the true Bayesian posterior p(θ |D) on the
weights θ :

α∗ = argmin
α

KL [q(θ |α)||p (θ |D)]

= argmin
α

∫
q(θ |α) log

q(θ |α)
p (θ) p (D|θ)

= argmin
α

(
KL [q(θ |α)||p (θ)]− Eq(θ |α)

[
log p (D|θ)

])
(4)

The resulting cost function of (4) is known as the variational
free energy [3], [23], and the negative variational free energy
is also called Evidence Lower Bound (ELBO), which can be

expressed as:

F(D, α) = Eq(θ |α)
[
log p (D|θ)

]
− KL [q(θ |α)||p (θ)] (5)

According to (4) and (5), maximising the cost function
ELBOF(D, α) is equivalent tominimising the KL divergence
between the approximate distribution q(θ |α) and the true
posterior p(θ |D). In practice, not requiring a closed form of
KL divergence allows many combinations of prior p (θ) and
variational posterior. We can approximate the exact ELBO
F(D, α) as follows:

F(D, α) ≈ log p(D|θi)p(θi)−
n∑
i=1

log q(θi|α) (6)

where θi denotes the ith Monte Carlo sample drawn from the
variational posterior q(θi|α).
Secondly, ESS as a MCMC algorithm can perform infer-

ence in models with multivariate Gaussian priors, and it has
three key advantages:
1) simple and generic enough code applicable to abundant

models;
2) no free parameters;
3) especially work well for Gaussian Process based mod-

els, which is very matched for our algorithms.
Ultimately, these sampling methods can achieve mixtures

of Gaussian predictive distributions for regression tasks and
categorical distributions for classification tasks.

Finally, we summarize the Bayesian inference within the
proposed InKPCA subspace in Algorithm 1, which includes
four steps: (1) construct an InKPCA subspace; (2) rebuild
kernel matrix with Nyström approximation method; (3) per-
form posterior inference within InKPCA subspace; (4) form a
Bayesian model averaging. Adopting ESS and VI to approx-
imately sample parameters from subspace for posterior
inference.

Algorithm 1 InKPCA Subspace Inference With Nyström
Approximation
Input: data D; model M ;
1. Construct an Incremental Kernel PCA subspace, i.e.

using Algorithm 2 (section III-A).
2. Rebuild kernel matrix with Nyström approximation

method, i.e. using Algorithm 3 (section III-B).
3. Perform VI and ESS posterior inference within the

constructed InKPCA subspace (section III-C).
4. Form a Bayesian model averaging(section II-B).

III. INKPCA SUBSPACE CONSTRUCTION AND
APPROXIMATE INFERENCE WITHIN THE SUBSPACE
In section II we introduce the definition of InKPCA subspace
and Bayesian inference approaches in InKPCA subspace.
In this section we present how to construct the proposed
InKPCA subspace in section III-A and III-B, and how to
perform approximate inference methods VI and ESS within
the constructed InKPCA subspace in section III-C.
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A. INKPCA SUBSPACE WITHIN SGD TRAJECTORIES
Izmailov et al. [6] proposed to run SGD from a pre-trained
solution and capture wi of weights at end of each of T
epochs, wswa=(n∗wswa + wi)

/
(n+ 1) is obtained according

to a certain update frequency c, and then store deviations di =
wswa − wi for the last M epochs to form a deviation matrix
D, which is comprised of M vectors d1,. . . , dM , M (M = 20
in [6] ) is determined by the available amount of memory.
Izmailov et al. performed PCA based on randomized SVD
on the deviation matrix D and used the first n principal
componets (v1, · · · ,vn)T to define a PCA subspace.
Meanwhile, Schölkopfet al. [10] presented that KPCA

as a nonlinear subspace feature extractor can achieve the
higher-order statistical information. To improve the com-
putation efficiency of KPCA, strictly ordered incremental
method and Nyström approximation are adopted to construct
a low-dimensional InKPCA parameter subspace, we adopt
the proposed InKPCA to deal with the new deviation vector.

Assuming we have stored the deviation vector
di = wswa − wi and M is determined by the capacity
of memory. The proposed InKPCA is applied to decom-
pose the kernel matrix of D and generate LnysandUnys,
where LnysandUnys represent that the eigenvalues and
eigenvectors are approximated by Nyström method. The
construction process of InKPCA subspace is presented
in Algorithm 2.

Algorithm 2 Subspace Construction With InKPCA
Input: w0: pretrained weights; η: learning rate; T : number of
steps; c: moment update frequency; D:deviation matrix; M :
maximum number of columns in deviation matrix; r : rank of
InKPCA approximation; P: projection matrix for subspace.
Output: wswa , P

1. wswa←w0
2. for i←1, 2 , . . . T do
3. wi ← wi−1 − η∇w L(wi−1)
4. if MOD(i, c) = 0 then
5. n← i/

c
6. wswa ← (n ∗ wswa + wi)

/
(n+ 1)

7. If NUM_COLS(D) ≥ M then
8. REMOVE_COL(D, wi − wswa)
9. APPEND_COL(D, wi − wswa)
10. Lnys,Unys = InKPCA(D)
11. P = Unys ∗

√
Lnys

12. return ŵ = wswa , P

B. INKPCA BASED ON RANK ONE UPDATES AND
NYSTRÖM APPROXIMATION
Modern deep learning models are usually high-dimensional
parameter space, there are two main problems we should
handle in Bayesian inference:

1) how to extract more valuable non-linear information
from high-dimensional parameter space;

2) how to effectively handle a large number of parameters
obtained after multiple epochs training.

For the first problem, kernel method is a practical way
to handle non-linear information. For the second problem,
we can reduce the number of parameters and find several
representative parameters to stand for the entire parameter
space, such as PCA subspace method and so on. To further
improve the memory efficiency, there is usually a Nyström
approximation for incremental calculation in computing huge
kernel matrix [15]. This is because Nyström approximation
can efficiently evaluate and determine the suitable size of
subsets in the original datasets and resulting in further gains
in memory efficiency.

Although the kernel method can extract non-linear
information from high-dimensional space, it increases the dif-
ficulty of processing the kernelized high-dimensional param-
eter space. The incremental method of KPCA was firstly
introduced for singular value decomposition to update an
eigenfeature space, this method is time consuming when fac-
ing high-dimensional data [12], [13] . A novel based on ROU
algorithm for InKPCA is proposed to efficiently compute the
eigendecomposition of the kernel matrix [14].

The accuracy of Nyström approximation has been verified
through extensive experiments and research, including com-
parison with other approaches such as random Fourier fea-
tures, symmetric positive semi-definite Laplacian and kernel
matrices [30].

A simple incremental variant of Nyström kernel regular-
ized least squares controls the regularization and computation
at the same time, the Nyström approximation approach uses
Cholesky ROU formulas for kernel ridge regression [31].
Due to the main problem of kernel based predictors, such as
Gaussian processes and Support VectorMachines, is that they
are costly to find the solution scales as O(n3) [32].
However, Algorithm 3 is more generalized than their

method. Nyström computational regularization method has
been proven capable of achieving optimal bounds in the
large scale statistical learning setting and earned much better
time complexity on kernel classification and kernel ridge
regression.

In this paper, we suppose that the parameters have zero
mean in feature space, so the mean does not need to be
updated.

We adopt a trick to ensure that the currently processed
data is the latest deviation vector, so we need to keep
the arriving data in strict order (SO). Assuming XSOm+1 =
{x1, x2, ...,xm, xm+1}, where x1 ≺ x2· · · ≺xm ≺ xm+1, and
xm+1 is the latest data to be processed. Where ki,j = k(xi, xj)
denotes the value of radial basis kernel function(RBF)
between data xi and xj, K SO

m,m represents for kernel matrix of
the first m samples of XSOm .
Our purpose is to expand an additional column and row of

kernel matrix K SO
m,m to K SO

m+1,m+1,we follow [14]:

v1 = [AT
1
2
km+1,m+1 ]

T
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v2 = [AT
1
4
km+1,m+1 ]

T

σ = 4
/
km+1,m+1

So the identity equation is:

K SO
m+1,m+1 =

[
K SO
m,m A

AT km+1,m+1

]

=

K SO
m,m 0m

0Tm
1
4
km+1,m+1

+ σv1vT1 − σv2vT2
(7)

whereA = [k1,m+1k2,m+1 · · · km,m+1]T , 0m is a column vector
of zeros, v1vT1 is a Gram matrix, K SO

m+1,m+1 is a symmetric
positive definite matrix.

In Algorithm 3, we devise an improved ROU method with
strictly ordered dataset in two steps, without adjusting the
mean. And the improved ROU algorithm is not reshuffled
the order of the deviation vectors to ensure that the current
deviation vector is the object to be processed. The function
ROU(σ, v,LSO,USO) updates the eigenvalues LSO and eigen-
vectors USO with perturbation σvvT.
Assuming the kernel matrix Km,m has the eigenvalues

LSO and eigenvectors USO, the corresponding Nyström
approximation function NYS(LSO,USO) produces approxi-
mate eigenvalues Lnys and eigenvectors Unys described in (8)
as follows:

Lnys :=
n
m
LSO, Unys :=

√
m
n
Kn,mUSO(LSO)

−1
(8)

In Algorithm 3, each iteration adds an extra column of ker-
nel values to Kn,m corresponding to the new vector, and then
calculates the rescaling (8), we finally achieve the approxima-
tion of kernel matrix K̃ = UnysLnysUT

nys. The time complexity
in (8) is O(m2n).

Algorithm 3 Incremental Eigendecomposition of Kernel
Matrix With Nyström Approximation (InKPCA)

Input: vectors XSOm+1 = {x1, x2, ...xm, xm+1}; row vector of
eigenvalues LSO and matrix of eigenvectors USO of K SO

m,m;
kernel function k(•, •).
Output: Lnys, Unys of K SO

m+1,m+1

1. LSO← [LSOkm+1,m+1/4]

2. USO
←

[
USO 0m
0Tm km+1,m+1/4

]
3. σ←4

/
km+1,m+1

4. v1← [ k1,m+1k2,m+1· · · km+1,m+1
/
2 ]

5. v2← [ k1,m+1k2,m+1· · · km+1,m+1
/
4 ]

6. LSO,USO
← ROU (σ, v1,LSO,USO)

7. LSO,USO
← ROU (−σ, v2,LSO,USO)

8. Lnys,Unys← NYS(LSO,USO)

The selection of the kernel function is required to satisfy
Mercer’s theorem, that is the Gram matrix of the kernel
function in the data space is a semi-positive definite matrix.

In addition to RBF, the other commonly used kernel functions
include linear kernel function, polynomial kernel function,
Matérn kernel, exponential kernel and so on.

C. IMPLEMENTING APPROXIMATE INFERENCE METHODS
WITHIN INKPCA SUBSPACE
The section III-A and III-B introduce that InKPCA subspace
comes from SGD trajectories and we can apply ROU algo-
rithm and Nyström approximation to effectively extract more
representative subspaces. In this section we will present that
how to implement approximate inference methods VI and
ESS within the constructed InKPCA subspace.

For implementing Bayesian inference approach VI within
the InKPCA subspace, several steps should be followed.

First of all, we should achieve the parameter subspace
S of DNNs model, which is constructed with the fixed ŵ
and projection matrix P based on Algorithm 2. The weight
subspace S of DNNs model can be reconstructed as follows:

S = ŵ+ PT ∗ θ (9)

where PT represents the transposition of P and θ denotes the
projection parameter, which is obtained by sampling from
variational posterior distribution q(θ |µq, σq) = N (µq, σ 2

q Ir ),
and r signifies the rank of InKPCA approximation. A rea-
sonable choice of prior p(θ |µp, σp) is N (0,σ 2

p Ir ) [16], and
σp is prior standard deviation. Due to the shift parameter
ŵ in constructing the InKPCA subspace S in (9), the prior
p(θ |µp, σp) will revolve around a set of good solutions [6].

Secondly, when Bayesian inference approach VI is
performed within InKPCA subspace, we need to con-
sider an empirical cost function negative ELBO in (5),
which consists of two parts: KL divergence and negative
log-likelihood (NLL).

For item KL divergence in negative ELBO, we apply the
most common and fully factorized Gaussians for the prior and
variational posterior distributions. So we only need to calcu-
late the KL divergence between q(θ |µq, σq) and p(θ |µp, σp)
in one dimension, which is described as follows:

KL
[
q(θ |µq, σq) ‖ p(θ |µp, σp)

]
= KL

[
N (µq, σ 2

q ) ‖ N (0, σ 2
p )
]

=
1
n

n∑
i=1

(log
σp,i

σq,i
+
σ 2
q,i

2σ 2
p,i

+
µ2
q,i

2σ 2
p,i

−
1
2
) (10)

where n denotes the number of samples.
For item NLL in negative ELBO, θ can be sam-

pled from N (µq, σ 2
q Ir ), and then θ is assigned to (9) to

achieve the parameter weight of DNNs model, and finally
NLL = −Eq(θ |µq,σq)

[
logp (D|θ)

]
can be obtained.

At last, VI model with cost function negative ELBO can
be optimized as the same as DNNs models. The difference
between VI model and DNNs model is that VI model is
an optimized DNNs model, and the optimization objects of
VI model are mean µq and standard deviation σq of varia-
tional distribution q(θ |µq, σq) for Bayesian inference, which
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TABLE 1. Results of RMSE for inference methods on UCI regression datasets.

can be used for uncertainty estimates of DNNs model. How-
ever, original DNNsmodel is trained by optimizing its weight
parameters, which can be considered as a deterministic opti-
mization process.

As mentioned above, in order to sample a reasonable θ in
VI, assuming θ∼q(θ |µq, σq) = N (µq, σ 2

q Ir ). For stochastic
approximation method ESS, however, which is an easy and
efficient tool to obtain the sample θ .
The only inputs required by ESS method are initial state

θ0, a routine prior that can sample from N (0,σ 2
p Ir−1), and

log-likelihood function log L. And the outputs of ESSmethod
are to produce an updated θ and log L. However, function log
L can be described by negative loss function of DNNs model,
whose weight parameters in (9) are generated by θ .

IV. EXPERIMENTS
In this section we present the approximate Bayesian infer-
ence methods ESS and VI within the proposed InKPCA
subspace. The experiments in this paper are based on a sin-
gle Nvidia GTX 1080Ti GPU and PyTorch deep learning
platform.

In the section IV-A, the results show that the proposed
InKPCA subspace with Nyström approximation can pro-
duce good and variance sensitive predictive uncertainties on
regression tasks. In the section IV-B, we conduct a quan-
titative evaluation on 11 UCI regression datasets, which
include 6 large datasets keggdirected, keggundirected, ele-
vators, skillcraft, protein, pol, and 5 small datasets boston,
concrete, energy, naval and yacht. The number N and dimen-
sion D of these UCI datasets are described in Table 1.

In the section IV-C, we apply the proposed InKPCA sub-
space inference method to large-scale image classification on
CIFAR-10 and CIFAR-100 datasets. The CIFAR-10 dataset
consists of 60,000 32 × 32 color images in 10 classes, each
class has 6,000 images, including 50,000 training images and
10,000 test images. The CIFAR-100 dataset has 100 classes,
each class has 600 color images with a size of 32 × 32,
of which 500 images are used as the training set and
100 images are used as the test set. The results demonstrate
that Bayesian inference method ESS or VI in the proposed
InKPCA subspace outperforms the other advanced Bayesian
inference in DNNs.

A. VISUALIZATION REGRESSION UNCERTAINTY
Our purpose is to show that when we move away from
the data, the predicted uncertainty should increase, because
there are many possible functions can fit the data. However,
improving the accuracy of the model is equally important.

The experiment settings follows the settings of lit-
erature [6]. That the fully-connected architecture has
[200,50,50,50] neurons in hidden layers respectively. At the
beginning of the architecture has two inputs, x and x2, the last
layer of the architecture has a single real value output y =
f (x). The 400 training data points generated by the defined
architecture with random weights, and the training points
are uniformly sampled in intervals [−7.2,−4.8], [−1.2, 1.2],
[4.8, 7.2]. Gaussian noise is added to the outputs y = f (x)+
ε(x), which are trained with red circles in Fig.2.
We train the above defined neural network and achieve

a SWA solution [26], and construct three subspaces: a
100-dimensional InKPCA subspace, 100-dimensional PCA
subspace and a 2-dimensional curve subspace. Then we
implement VI and ESS inference methods in these represen-
tative subspaces. For VI model, we set the standard deviation
σp = 5 of prior p(θ |0,σp) and initialize the standard deviation
σq = 1 of variational distribution q(θ |0,σq). For ESS model,
we set the standard deviation σp = 5 of the routine prior
N (0,σ 2

p Ir−1).The predictive distribution and the uncertainty
in regression are showed in Fig.2, where red circles represent
for data, predictive mean is expressed by dark blue line and
shaded region stands for±3 standard deviations of predictive
mean.

In the top row of Fig.2, we view the predictive distributions
for VI approach applied in each of 3 subspaces. Compared
with PCA subspace and Curve subspace, InKPCA subspace
captures more concentrated and accurate predictive means
with dark blue line models. At the same time, when models
are far away from points in the second interval [−1.2, 1.2],
(a) has gained more predictive uncertainty than (b) and (c).
At the beginning of points in third interval [4.8, 7.2], there is
a convex which is explicitly showed in (a), which may denote
the predictive uncertainty of InKPCA subspace is more sen-
sitive than (b) and (c) between data and no data. At the end of
the third interval, the predictive uncertainty of PCA subspace
and Curve subspace expand faster than InKPCA subspace.
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FIGURE 2. Visualizing uncertainty of predictive distribution in regression. red circles for Data, dark blue line for predictive mean,
light blue lines for sampled posterior functions, shaded region for ±3 standard deviations about the mean.

For ESSmethod employed in the 3 subspaces, we can achieve
the same conclusion in (d),(e) and (f) of Fig.2. In additional
experiments, when changing a small variance value, InKPCA
subspace is more sensitive to predictive uncertainty than PCA
subspace and Curve subspace.

However, by comparing the Bayesian inference methods
VI and ESS, we find that ESS obtains more predictive uncer-
tainties than VI, the reason is that the VI method underesti-
mates the uncertainty of the model [33].

B. UCI REGRESSION
We next compare InKPCA-based subspace inference meth-
ods (i.e. ESS and VI) on UCI large and small regres-
sion datasets with other approximate Bayesian inference
approaches. And for VI model, we set the standard deviation
σp = 1 of prior p(θ |0,σp) and initialize the standard deviation
σq = 3 of variational distribution q(θ |0,σq). For ESS model,
we set the standard deviation σp = 1 of the routine prior
N (0,σ 2

p Ir−1).
For the 6 large UCI regression datasets, we follow the

experimental scheme in literature [34]. That is for the number
of training examples N > 6000, we apply a fully-connected
DNNs with a [D-1000-1000-500-50-2] architecture, where D
represents for the dimension of the datasets. And ReLU is
chosen as the activation function and two outputs include pre-
dictive meanµ(x,w) and predictive variance σ 2 (x,w, s).The
variance at x is σ 2 (x,w, s) = s2 + σ 2

w (x), where σ
2
w (x)

is the variance and comes from the last layer of network,
and s2 is the learned global noise variance. The learning rate
is 10−3,batch size is 400 and the training epochs are 200.
For N ≤ 6000, we employ a fully-connected DNNs with a

[D-1000-500-50-2] architecture, and only 100 epochs are
needed to train it and the learning rate is 5× 10−4. The learn-
ing rate is 10−4 for keggD dataset. In subspace we employ the
Normal distribution prior and the variance is 1.0. In order to
ensure the variance s and σ are positive, we apply softplus
parameterizations as a trick.

For the 5 small UCI regression datasets containing boston,
concrete, energy, naval and yacht, we adhere to literature [35]
and apply a fully-connected network, which has a single
hidden layer with 50 units. And we use neural network to
output a variance as heteroscedastic uncertainty. The learning
rate and weight decay are manually tuned and the batch
size is N

/
10,where N is the size of dataset. We employ

neural networks with a Bayesian final layer based on SGD
training in literature [36], and we compare InKPCA subspace
inference methods (i.e. ESS and VI) with other approaches,
such as PCA subspace inference methods, SGD, and SWAG
in Literature [6].

In this section, wemainly measure the quality of prediction
results of UCI regression tasks through RMSE and 95%
prediction confidence interval. In testing phase, when the
test data Xi is input to the trained neural network, we get
two outputs: predictive mean µi and predictive variance
σ 2
i . And assuming Yi is the target. One of the metrics is

RMSE =
√

1
n

∑i=n
i=1 (Yi − µi)

2.
The other metric is 95% prediction confidence inter-

val, which means that 95% of the sample means µ =

{µ1, · · · ,µn} will fall within 2 standard error range,
the mathematical formula is P(µ − 1.96 σ

√
n < Y <

µ + 1.96 σ
√
n ) = 0.95. Our goal is to figure out

if the predictive mean µi is in this interval, and the
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FIGURE 3. Coverage of 95% prediction interval on UCI regression dataset. In most cases, InKPCA subspace inference produces closer to 95% coverage
than models trained using PCA subspace inference or SGD or SWAG.

TABLE 2. Result of accuracy for inference on cifar-10 and cifar-100 classification datasets.

discriminant formula is calibi = {(Yi − µi)< 1.96∗σi} ∗
{(Yi − µi)> −1.96∗σi},which means that if µi is in the
interval, then calibi is True; else is False. So n predictive
means produce n bool values to form an array calib =
array(calib1, · · · ,calibn), and then calculate the average
value by the number of True values. The average value is the
desired calibration = number of True values

n , and then the mean
and variance of calibration is obtained through 3 independent
experiments with different seed.

Different datasets are well calibrated through the 95%
confidence interval, the coverage of the prediction interval
closer to 95% indicates that the better performance of the
model. We plot the coverage of 95% prediction intervals on
UCI regression datasets in Fig.3. In most cases, ESS or VI
in InKPCA subspace produces the closest results to 95%
coverage. For example, ESS in InKPCA subspace surpasses
SGD, SWAG, and PCA subspace in (a), (b), (h), and (k),
VI in InKPCA subspace outperforms SGD, SWAG, and PCA
subspace in (i) and (j). Meanwhile, InKPCA-based subspace
inference method VI is comparable to SGD method in (d),
and exceeding PCA in (d).

However, PCA-based subspace inference methods gener-
ate better results, which are closer to 95% than InKPCA
subspace in (c) and (f). Such as ESS in PCA subspace
produces better results than the other approaches in (e).
The conclusion is similar to RMSE in Table 1, and the
Bayesian inference may be related to the dimensional infor-
mation of the datasets, which provides a direction for future
research.

And we summarize the RMSE in Table 1 and find that
Bayesian inference in InKPCA subspace outperforms PCA
subspace in boston, concrete, keggD, keggU, protein, skill-
craft and pol datasets in RMSE (the lower is the better), and
is comparable to SGD, SWAG and PCA in naval datasets.
However, PCA subspace inference method achieves better
RMSE results than InKPCA subspace in energy, ychat, and
elevators datasets.

C. IMAGE CLASSIFICATION
In this section, we test the Bayesian inference approaches
ESS and VI in InKPCA subspace on different advanced con-
volutional neural networks (CNNs) models and benchmark
datasets. And for VI model, we set the standard deviation
σp = 1 of prior p(θ |0,σp) and initialize the standard devi-
ation σq = 1 of variational distribution q(θ |0,σq). For ESS
model, we set the standard deviation σp = 1 of the routine
prior N (0,σ 2

p Ir−1).We follow the experimental framework in
literature [26] and apply T = 5000 for temperature in the
image classification experiments.

We report the mean and standard deviation over 3 inde-
pendent runs of the inference methods ESS and VI in
InKPCA subspace on high-performance CNNs models, such
as VGG-16, PreResNet-164 (PRN-164), and WideResNet
28 × 10 (WRN 28 × 10), and the datasets are CIFAR-10,
and CIFAR-100. The results show that the InKPCA-based
subspace inference methods outperform PCA-based sub-
space inference approaches and other baselines including
SGD and SWAG. The results are presented in Table 2 and
bolded numbers represent the best result compared to other
methods.

V. CONCLUSION
Although Bayesian approaches can provide probabilistic
uncertainty estimates for machine learning models. Bayesian
methods are inefficient in deep learning domain with
high-dimensional parameter space. To overcome this chal-
lenge, the high-performance PCA-based subspace inference
method has been proposed and produced the state-of-the-art
practical results when comparing with other methods, such as
Curve subspace, SGD, SWAG and so on [6].

However, PCA method is a linear subspace feature
extractor and cannot extract nonlinear features from the
high-dimensional parameter space of DNNs. In this paper,
we propose to apply KPCA to extract higher-order statistical
information of parameter subspace within SGD trajectories.
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In order to improve the computational efficiency of the
kernel matrix, we present an improved InKPCA, which
applies rank one updates algorithm to carry out the strictly
ordered incremental eigendecomposition of kernel matrix,
and employ Nyström approximation to determine the suitable
size of subsets to further improve the memory efficiency.

Through extensive experiments, the experimental results
show that in most datasets, the inference method VI or ESS
in the constructed InKPCA subspace not only has higher
accuracy, but also is more effective and variance-sensitive to
express uncertainty.

Importantly, the proposed InKPCA subspace is flexible
to explore different subspaces and approximate inference
approaches. And there are many promising directions for
future research. For example, the construction of InKPCA
subspace can be based on Fast Geometric Ensembling
(FGE) [37], which can connect the optima of loss func-
tions by simple curves. One could apply Bayesian theory
to InKPCA for automatically choosing the dimensionality
of subspace [38]. InKPCA subspace inference approach can
also be applied to the problems of input dimensionality in
Bayesian optimization and probabilistic model-based rein-
forcement learning. In addition to the RBF kernel function
selected in this paper, one could try other kernel functions and
devise algorithms to find the optimal kernel parameters. Due
to kernel method is associated with every training vector and
not sparse, one could reduce the number of example vectors
by approximating the covariance matrix in feature space [39].

As an efficient nonlinear subspace feature extractor,
the proposed InKPCA subspace with Nyström approximation
is a low-dimensional, scalable and interpretable approach for
Bayesian deep learning.
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