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ABSTRACT Detecting vertex disjoint paths is one of the central issues in designing and evaluating an
interconnection network. It is naturally related to routing among nodes and fault tolerance of the network.
A path cover of a graph G is a spanning subgraph of G consisting of vertex disjoint paths, and a path cover
number ofG denoted by p(G) = min{|P| :P is a path cover ofG}. In this paper, we show that if the minimum
degree sum of an independent set with k + 1 vertices in a connected quasi-claw-free graph G of order n is
no less than n − k , then p(G) ≤ k − 1, where k ≥ 2. Examples illustrate that the degree sum condition in
our result is sharp.

INDEX TERMS Path cover number, quasi-claw-free graph, vertex disjoint path.

I. INTRODUCTION
It is well known that a multiprocessor system plays a crucial
role in parallel and distributed computing. Such a system has
an underlying topology, which is frequently represented as
a graph in which vertices and edges correspond to nodes
and links, respectively. Since a lot of mutually conflicting
requirements are inevitable in designing the topology of an
interconnection network, it is almost impossible to design
a network which is optimum from all aspects. In order to
design a suitable network satisfying the requirements and its
properties, it is necessary to study how well other networks
can be embedded into this network.

Linear arrays (i.e., paths) is a fundamental network for
parallel and distributed computing. Based on linear arrays,
many efficient algorithms are originally designed to solve
a variety of algebraic problems, graph problems and some
parallel applications, especially those in image and signal
processing [9]. Hence, it is important to detect an effective
path embedding in a network. Finding parallel paths among
nodes is one of the central issues concerned with efficient
data transmission. Since full utilization of network nodes is
important [14], parallel paths are usually studied in terms
of vertex disjoint paths in graphs. It has drawn considerable
research attention to its properties of vertex disjoint paths
embedding, see [3], [8] and [10].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

Let G = (V (G),E(G)) be a simple, undirected and finite
graph. For a vertex v ∈ V (G), NG(v) is the neighbors of v
and dG(v) = |NG(v)|. If S ⊆ V (G), then N (S) denotes the
neighbors of S and G[S] denotes the subgraph induced by S.
For a subgraphH ofG, letG−H := G[V (G)\V (H )]. When
H = {v}, we simplify G − {v} to G − v. For two vertices u
and v, the distance between u and v, denoted by dG(u, v), is the
number of edges in a shortest path joining u and v in G. For
S,T ⊆ V (G), E(S,T ) = {uv ∈ E(G) : u ∈ S, v ∈ T }.
For a graph G, let σk+1(G) = min{

∑
v∈S d(v) : S is an

independent set in a graphGwith |S| = k+1} ifα(G) ≥ k+1,
otherwise σk+1(G) = +∞, where α(G) is the independence
number ofG. A graphG is K1,r -free ifG contains no induced
K1,r subgraphs, and K1,3-free graphs is also called claw-free
graphs. For x, y ∈ V (G), let J (x, y) = {u : u ∈ N (x) ∩
N (y),N (u) ⊆ N [x] ∪ N [y]}. Ainouche [1] defined that a
graph G is quasi-claw-free if J (x, y) 6= ∅ for d(x, y) = 2.
Obviously, a claw-free graph is quasi-claw-free, but a quasi-
claw-free graph may not be claw-free (see Figure 1, given
in [1]).

A path cover of a graph G is a spanning subgraph of G
consisting of vertex disjoint paths, and let p(G) = min{|P| :
P is a path cover of a graph G} denote the path cover number
of G. A path cover P in G with |P| = p(G) is called a
minimum path cover of G. The disjoint path cover problem
finds applications in many areas such as software testing,
database design, and code optimization, see [2] and [11].

Clearly, the research on path cover number of a graph
is a generalization of determining whether a graph is
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FIGURE 1. This graph is a quasi-claw-free graph, but it is not claw-free.

hamiltonian or traceable. It is well known that it is NP-hard
to determine if a graph is hamiltonian or traceable. Thus
there are lots of results about the sufficient conditions such as
K1,r -free graphs and quasi-claw-free graphs to be hamilto-
nian or traceable, see [1], [5], [6], [13] and [16]. Ore [12]
showed that the path cover number is no more than n−σ2(G)
for a graph G of order n. Hartman [7] proposed that for a
graph G with connectivity k , if α(G) > k , then p(G) ≤
α(G) − k . The path cover number of regular graphs [15] are
also discussed. Recently, Chen et al. [4] gave the following
result.
Theorem 1 (see [4]): Let k be a positive integer with

k ≥ 2. If G is a quasi-claw-free graph of order n and
σk+1(G) ≥ n− k , then p(G) ≤ k .

The bound in Theorem 1 is not sharp for a connected
graph. It is natural to consider the same sufficient condition to
determine whether a connected graph has path cover number
less than k . In this paper, we improves Theorem 1 when G is
connected.
Theorem 2: Let k be a positive integer with k ≥ 2. If G is

a connected quasi-claw-free graph of order n and σk+1(G) ≥
n− k , then p(G) ≤ k − 1.
Remark 1: The bound in Theorem 2 is sharp. In Figure 2,

G is a connected quasi-claw-free graph of order n = a+b+c
with a, b, c ≥ 2. It is easy to show that σ3(G) = n − 3. But
p(G) = 2.

FIGURE 2. This graph is a connected quasi-claw-free graph of order
n = a+ b+ c with a,b, c ≥ 2 and σ3(G) = n− 3, but p(G) = 2.

II. PRELIMINARIES
Let C be a cycle/path with a given sense of traversal. For
u ∈ V (C), we use u+ to denote the successor of u and u−

its predecessor. If u, v ∈ V (C), we use C[u, v] (or uCv) and
C[v, u] (or vCu) to denote the subpath uu+ · · · v−v of C and
the same subpath in reverse order, respectively. Set C(u, v] =
C[u, v] \ {u} and C[u, v) = C[u, v] \ {v}, and consider them
as both paths and vertex sets for convenience.

Suppose that G is a connected graph with p(G) = t ≥ 2.
Let P = {P1,P2, · · · ,Pt } be the minimum path cover of G
with Pi = ui1ui2 · · · uili , where li = |V (Pi)|, 1 ≤ i ≤ t . By the
minimality of p(G), we can get the following two Lemmas.
Lemma 1: xy /∈ E(G) for x ∈ {ui1, uili}, y ∈ {uj1, ujlj} and

1 ≤ i 6= j ≤ t .
Proof: Suppose, on the contrary, that xy ∈ E(G) for

x ∈ {ui1, uili}, y ∈ {uj1, ujlj}. Then

P′ :=


uiliPiui1uj1Pjujlj , if (x, y) = (ui1, uj1);
ui1Piuiliuj1Pjujlj , if (x, y) = (uili , uj1);
uiliPiui1ujljPjuj1, if (x, y) = (ui1, ujlj );
ui1PiuiliujljPjuj1, if (x, y) = (uili , ujlj ).

Thus P ′ = (P \ {Pi,Pj}) ∪ {P′} is a path cover of G with
|P ′| < |P|, a contradiction to the minimum of |P|. �
Lemma 2: There exists some i, 1 ≤ i ≤ t such that

ui1uili /∈ E(G).
Proof: Suppose that ui1uili ∈ E(G) for all 1 ≤ i ≤ t .

Then Ci := ui1Piuiliui1 is a cycle. SinceG is connected, there
exist two distinct i, j such that E(Pi,Pj) 6= ∅, where 1 ≤ i 6=
j ≤ t . Let u ∈ V (Pi) and v ∈ V (Pj) with uv ∈ E(G). Then
P∗ := u+CiuvCjv− is a path with V (P∗) = V (Pi) ∪ V (Pj).
Thus P∗ = (P \ {Pi,Pj}) ∪ {P∗} is a path cover of G with
|P∗| < |P|, a contradiction. �
Zhang [16] proposed the definition of insertable vertex in

order to research longest cycles problems of non-hamiltonian
graphs. Motivated by this, Chen et al. [4] gave the follow-
ing definition of insertable vertex in the background of a
minimum path cover in G. For an edge uw ∈ E(Pj) (1 ≤
j ≤ t), if there exists a vertex v ∈ V (G) \ V (Pj) such that
uv,wv ∈ E(G), then v is called an insertable vertex, and a pair
of vertices {u,w} are called acceptor of v in Pj, otherwise, v is
called a non-insertable vertex. By the definition of insertable
vertex and the minimality of p(G), Chen et al. [4] gave the
following lemma.
Lemma 3 (see [4]): For each Pi ∈ P , Pi contains a

non-insertable vertex, where 1 ≤ i ≤ t .
By Lemma 3, let wi denote the first non-insertable vertex

in each Pi for 1 ≤ i ≤ t .
Lemma 4: (1) For any u ∈ Pi[ui1,wi], we have uuj1 /∈

E(G) and uujlj /∈ E(G) for 1 ≤ i 6= j ≤ t;
(2) For any u ∈ Pi[ui1,wi] and v ∈ Pj[uj1,wj] with 1 ≤

i 6= j ≤ t , we have uv /∈ E(G).
Proof: (1) If uuj1 ∈ E(G), then let P′ := uiliPiuuj1Pjujlj

andP ′ = (P \{Pi,Pj})∪{P′}. By Lemma 1, u 6= ui1 and thus,
Pi[ui1, u−] exists. Sincewi is the first non-insertable vertex in
each Pi, all vertices in Pi[ui1, u−] can be inserted into some
paths in P ′, and P ′ is a path cover consisting of t − 1 paths,
a contradiction. Thus uuj1 /∈ E(G). By a similar argument,
uujlj /∈ E(G).

VOLUME 9, 2021 37087



H. Liu et al.: On Path Cover Number of Connected Quasi-Claw-Free Graphs

(2) Suppose that uv ∈ E(G). Choose u = uip ∈ Pi[ui1,wi]
and v = ujq ∈ Pj[uj1,wj] with the minimum subscripts sum
p + q. By the choice of wi,wj, each vertex in Pi[ui1,wi) ∪
Pj[uj1,wj) is an insertable vertex.
Let P∗ = uiliPiuvPjujlj and P∗ = (P \ {Pi,Pj}) ∪ {P∗}.

By Lemma 4(1), u 6= ui1 and v 6= uj1. This implies two paths
Pi[ui1, u−] and Pj[uj1, v−] exist. By the choice of u and v,
E(Pi[ui1, u−],Pj[uj1, v−]) = ∅. Thus there is no vertex in
Pi[ui1, u−] inserted between acceptor {v−, v} in Pj and there
is no vertex in Pj[uj1, v−] inserted between acceptor {u−, u}
in Pi.

Next, we claim that, for any uia ∈ Pi[ui1, u−] and ujb ∈
Pj[uj1, v−], uia and ujb cannot be inserted between the same
acceptor in any path fromP\{Pi,Pj}. To the contrary, assume
that uia and ujb can be inserted between the same acceptor
{z,w} in some path Ps ∈ P \ {Pi,Pj} with the minimum sub-
scripts sum a+ b (see Figure 3). Let P∗∗i := uiliPiuiawPsusls ,
P∗∗j := ujljPjujbzPsus1 and P∗∗ = (P \ {Pi,Pj,Ps}) ∪
{P∗∗i ,P

∗∗
j }. By the minimality of subscript sum a + b, each

vertex in Pi[ui1, u
−

ia]∪Pj[uj1, u
−

jb] cannot be inserted between
the same acceptor in any path from P \ {Pi,Pj}. It follows
that all vertices in Pi[ui1, u

−

ia]∪ Pj[uj1, u
−

jb] can be inserted in
some paths in P∗∗ and we can get a path cover consisting of
t − 1 paths, a contradiction.

FIGURE 3. Illustration of Lemma 4(2).

Therefore, all vertices in Pi[ui1, u−] ∪ Pj[uj1, v−] can be
inserted into some paths of P∗, and P∗ is a path cover
consisting of t − 1 paths, a contradiction. �

III. PROOF OF THEOREM 2
Suppose that G satisfies the conditions of Theorem 2 with
p(G) = t ≥ k ≥ 2. Let P = {P1,P2, · · · ,Pt } is the
minimum path cover of G with Pi = ui1ui2 · · · uili , where
li = |V (Pi)|, 1 ≤ i ≤ t . By Lemma 2, we can choose
P = {P1,P2, . . . ,Pt } such that
(T1) u11u1l1 /∈ E(G).
(T2) |V (P1)| = l1 is as large as possible, subject to (T1).
Note that u11u1l1 /∈ E(G). Denote S

−
= {u1i : u11u1,i+1 ∈

E(G) and 1 ≤ i ≤ l1 − 2} and S+ = {u1j : u1,j−1u1l1 ∈
E(G) and 3 ≤ j ≤ l1}. Obviously, u11u12, u1,l1−1u1l1 ∈ E(G).
Then u11 ∈ S− and u1l1 ∈ S

+.
Claim 1: (1) G[P1] contains no hamiltonian cycle.
(2) For any vertex u1i ∈ S− with 1 ≤ i ≤ l1 − 2, N (u1i) ⊆

V (P1)\{u1l1}. Similarly,N (u1j) ⊆ V (P1)\{u11} for any vertex

u1j ∈ S+ with 3 ≤ j ≤ l1. Furthermore, N (u11) ∪ N (u1l1 ) ⊆
P1(u11, u1l1 ).

Proof: (1) To the contrary, suppose that G[P1] contains
a hamiltonian cycle C1. Since G is connected, there exists
some 2 ≤ j ≤ t such that E(C1,Pj) 6= ∅. Let x ∈ V (C1) and
z ∈ V (Pj) with xz ∈ E(C1,Pj) for some 2 ≤ j ≤ t . We claim
that z 6= ujlj and x

+uj1 /∈ E(G) (otherwise, let

P′ :=

{
x+C1xujljPjuj1, if z = ujlj;
ujljPjuj1x

+C1x, if x+uj1 ∈ E(G);

then P ′ = (P \ {P1,Pj}) ∪ {P′} is a path cover consisting
of t − 1 paths, a contradiction). Thus Pj[z+, ujlj ] exists. Let
P′′1 := x+C1xzPjuj1 and P′′i := z+Pjujlj . Then P ′′ = (P \
{P1,Pj}) ∪ {P′′1,P

′′
i } is a path cover of G with |P ′′| = |P|

and x+uj1 /∈ E(G). But |V (P′′1)| > |V (P1)|, a contradiction
to (T2).
(2) Since u1i ∈ S−, u11u1,i+1 ∈ E(G). If u1iu1l1 ∈ E(G),

then u11u1,i+1P1u1l1u1iP1u11 is a hamiltonian cycle inG[P1],
a contradiction to Claim 1(1). So u1iu1l1 /∈ E(G).
Now, it suffices to show that N (u1i) \ V (P1) = ∅. Sup-

pose that there exists z ∈ V (Pj) for some 2 ≤ j ≤ t
such that u1iz ∈ E(G). We claim that z 6= ujlj (otherwise,
P∗ := uj1Pjujlju1iP1u11u1,i+1P1u1l1 is a path with V (P∗) =
V (P1) ∪ V (Pj) and we can get a path cover consisting of
t − 1 paths, a contradiction). Then Pj[z+, ujlj ] exists. Let
P∗∗1 := uj1Pjzu1iP1u11u1,i+1P1u1l1 and P∗∗j := z+Pjujlj .
Then by Lemma 1, P∗∗ = (P \ {P1,Pj}) ∪ {P∗∗1 ,P

∗∗
j } is a

path cover of G with |P∗∗| = |P| and uj1u1l1 /∈ E(G). But
|V (P∗∗1 )| > |V (P1)|, a contradiction to (T2). Thus N (u1i) ⊆
V (P1) \ {u1l1}. �
By Lemma 3, letwi denote the first non-insertable vertex in

each Pi for 2 ≤ i ≤ t , and let I (P) = {u11, u1l1 ,w2, . . . ,wt }.
Claim 2: Let x, y ∈ I (P) with d(x, y) = 2, then {x, y} =
{u11, u1l1}.

Proof: First, we show that {x, y} 6= {wi,wj} for 2 ≤
i 6= j ≤ t . Suppose d(wi,wj) = 2 for some 2 ≤ i 6= j ≤ t .
Since G is quasi-claw-free, J (wi,wj) 6= ∅. Let v ∈ J (wi,wj).
By Lemma 4, v /∈ Ps[us1,ws] ∪ {usls} for any 2 ≤ s ≤ t .
Without loss of generality, assume v ∈ Ps(ws, usls ) for some
2 ≤ s ≤ t and s 6= j. If s 6= i, then N (v+) ∩ {wi,wj} =
∅ or N (v−) ∩ {wi,wj} = ∅ as wi,wj are non-insertable,
a contradiction to v ∈ J (wi,wj). Thus v ∈ Pi(wi, uili ) and
wiv+ ∈ E(G) as v+wj /∈ E(G) (see Figure 4(a)). Let P′′ :=
uiliPiv

+wiPivwjPjujlj and P ′′ = (P \ {Pi,Pj}) ∪ {P′′}. By a
similar argument to the proof of Lemma 4(2), we can insert all
vertices in Pi[ui1,wi)∪Pj[uj1,wj) into some paths in P ′′, and
P ′′ is a path cover consisting of t − 1 paths, a contradiction.
Next, we show that {x, y} 6= {u11,wj} and {x, y} 6=
{u1l1 ,wj}. To the contrary, suppose that d(u11,wj) = 2 for
some 2 ≤ j ≤ t . Let v′ ∈ J (u11,wj). Then by Claim 1(2),
v′ ∈ V (P1) and v′ 6= u1l1 . Denote v

′
:= u1i. Then wju1i ∈

E(G) (see Figure 4(b)). Since wj is a non-insertable vertex,
wju1,i+1 /∈ E(G). Thus u11u1,i+1 ∈ E(G) as u1i ∈ J (u11,wj),
which implies u1i ∈ S−. By Claim 1(2), N (u1i) ⊆ V (P1) \
{u1i}, a contradiction to wju1i ∈ E(G).

37088 VOLUME 9, 2021



H. Liu et al.: On Path Cover Number of Connected Quasi-Claw-Free Graphs

FIGURE 4. Illustration of Claim 2.

Note that u11u1l1 /∈ E(G). So {x, y} = {u11, u1l1}. �
Recall that I (P) = {u11, u1l1 ,w2, . . . ,wt }. By Lemma 4,

Claims 1 and 2, we have the following:
Claim 3: (1) I (P) is an independent set.
(2) For u ∈ Pi[ui1, uili ] with 2 ≤ i ≤ t , dI (P)(u) ≤ 1.
(3) For u ∈ P1(u11, u1l1 ), either N (u) ∩ I (P) ⊆ {u11, u1l1}

or N (u) ∩ I (P) ⊆ {wi} for some 2 ≤ i ≤ t .
For u ∈ P1(u11, u1l1 ), we write:
• X for the vertex set {u : |N (u) ∩ {u11, u1l1}| = 2};
• Y for the vertex set {u : |N (u) ∩ {u11, u1l1}| = 1};
• Z for the vertex set {u : |N (u) ∩ {w2, . . . ,wt }| = 1};
• U for the vertex set {u : N (u) ∩ I (P) = ∅}.
By Claim 3(3), {X ,Y ,Z ,U} is a partition of all vertices

in P1(u11, u1l1 ). Note that X is the vertex set of common
neighbors of u11 and u1l1 on P1. If X 6= ∅, let X =

{u1i1 , u1i2 , . . . , u1ir }, where 2 ≤ i1 < i2 < · · · < ir ≤
l1 − 1 and r ≥ 1. Let U0 = U ∩ P1(u11, u1i1 ) and
Ur = U ∩ P1(u1ir , u1l1 ). Recall that S

−
= {u1i : u11u1,i+1 ∈

E(G) and 1 ≤ i ≤ l1 − 2} and S+ = {u1j : u1,j−1u1l1 ∈
E(G) and 3 ≤ j ≤ l1}.
Claim 4: If U0 = ∅, then P1[u11, u1i1 ) ⊆ S−. Similarly,

if Ur = ∅, then P1(u1ir , u1l1 ] ⊆ S+.
Proof: To the contrary, suppose that P1[u11, u1i1 ) * S−.

Then P1[u12, u1i1 ] * N (u11). Note that {u12, u1i1} ⊆ N (u11).
Thus there exists some j (3 ≤ j ≤ i1 − 1) such that
u11u1j /∈ E(G) with the maximum j. By the maximality of
j, P1[u1,j+1, u1i1 ] ⊆ N (u11). Thus P1[u1j, u1i1 ) ⊆ S−, and
then u1j ∈ S−. By Claim 1(2), N (u1j) ⊆ V (P1) \ {u1l1}. This
together with u11u1j /∈ E(G), we have N (u1j) ∩ I (P) = ∅.
It follows that u1j ∈ U0, a contradiction to the assumption
U0 = ∅. �
Claim 5: |U | ≥ |X |.
Proof: Obviously, the conclusion holds when X = ∅.

Now, assume that X 6= ∅. By way of contradiction, |U | ≤
|X | − 1 = r − 1. Since G is connected, there exists j ∈ [2, t]
such that E(P1,Pj) 6= ∅. Let x ∈ V (P1) and z ∈ V (Pj) with
xz ∈ E(P1,Pj).
If r = 1, then U = ∅. By Claim 4, P1[u11, u1i1 ) ⊆ S− and

P1(u1i1 , u1l1 ] ⊆ S+, which implies P1−u1i1 ⊆ S−∪S+. This
together with xz ∈ E(P1,Pj) and Claim 1(2), x = u1i1 and
u11z /∈ E(G). Then u11u1i1 , zu1i1 ∈ E(G). Thus d(u11, z) = 2.

Since G is quasi-claw-free, J (u11, z) 6= ∅. Let v ∈ J (u11, z).
Then u11v, zv ∈ E(G). Note that P1 − u1i1 ⊆ S− ∪ S+. This
together with zv ∈ E(G) and Claim 1(2), v = u1i1 and hence,
u1i1 ∈ J (u11, z). By Claim 4, P1(u1i1 , u1l1 ] ⊆ S+, and then
u1,i1+1 ∈ S+. By Claim 1(2), N (u1,i1+1) ⊆ V (P1) \ {u11},
which implies u1,i1+1u11 /∈ E(G) and u1,i1+1z /∈ E(G),
a contradiction to u1i1 ∈ J (u11, z).
In the following, we always assume r ≥ 2. Recall that X =
{u1i1 , u1i2 , . . . , u1ir } and X is the vertex set of common neigh-
bors of u11 and u1l1 on P1. By Claim 1(1), G[P1] contains no
hamiltonian cycle. Then u1isu1is+1 /∈ E(P1) for 1 ≤ s ≤ r−1.
Thus P1(u1is , u1is+1 ) 6= ∅. Let Us = U ∩ P1(u1is , u1is+1 ) for
1 ≤ s ≤ r − 1.
Fact 1: |Us| = 1 for 1 ≤ s ≤ r − 1 and U0 = Ur = ∅.
Proof: Note that u1l1u1is ∈ E(G) for each 1 ≤ s ≤

r − 1. Then, by Claim 1(1), u11u1,is+1 /∈ E(G). This implies
P1[u1,is+1, u1is+1 ] * N (u11). Since u1is+1 ∈ X , we have
u1is+1 ∈ N (u11). Thus there exists some j (is + 1 ≤ j ≤
is+1 − 1) such that u11u1j /∈ E(G) with the maximum j.
By the maximality of j, P1[u1,j+1, u1is+1 ] ⊆ N (u11). Thus
P1[u1j, u1is+1 ) ⊆ S−, and then u1j ∈ S−. By Claim 1(2),
N (u1j) ⊆ V (P1) \ {u1l1}. This together with u11u1j /∈ E(G),
we have N (u1j) ∩ I (P) = ∅. It follows that u1j ∈ Us, and
then |Us| ≥ 1 for each 1 ≤ s ≤ r − 1. This implies
|U | =

∑r
s=0 |Us| ≥

∑r−1
s=1 |Us| ≥ r − 1. By assumption,

|U | ≤ r − 1. Thus |Us| = 1 for 1 ≤ s ≤ r − 1 and
U0 = Ur = ∅. �
By Fact 1, assume that Us = {u1qs} for 1 ≤ s ≤ r − 1.
Fact 2: P1[u11, u1i1 ) ∪ P1[u1qs , u1is+1 ) ⊆ S− for 1 ≤ s ≤

r − 1. Similarly, P1(u1ir , u1l1 ] ∪ P1(u1is , u1qs ] ⊆ S+ for 1 ≤
s ≤ r − 1. Furthermore, P1 − X ⊆ S− ∪ S+.

Proof: By Fact 1 and Claim 4,P1[u11, u1i1 ) ⊆ S−. Next,
it suffices to show that P1[u1qs , u1is+1 ) ⊆ S− for 1 ≤ s ≤
r − 1. Clearly, P1[u1qs , u1is+1 ) ⊆ S−, if P1[u1qs , u1is+1 ) = ∅.
Now, assume P1[u1qs , u1is+1 ) 6= ∅. To the contrary, suppose
P1[u1qs , u1is+1 ) * S− for some 1 ≤ s ≤ r − 1. Then
P1[u1,qs+1, u1is+1 ] * N (u11). Note that u11u1is+1 ∈ E(G).
Thus there exists some j (qs + 1 ≤ j ≤ is+1 − 1) such that
u11u1j /∈ E(G) with the maximum j. By the maximality of j,
P1[u1,j+1, u1is+1 ] ⊆ N (u11). Thus P1[u1j, u1is+1 ) ⊆ S−, and
then u1j ∈ S−. By Claim 1(2), N (u1j) ⊆ V (P1) \ {u1l1}. This
together with u11u1j /∈ E(G), we have N (u1j) ∩ I (P) = ∅.
It follows that u1j ∈ Us. Since j ≥ qs+1, we have u1j 6= u1qs .
Thus |Us| ≥ 2, a contradiction to Fact 1. �

Recall that xz ∈ E(P1,Pj). By Fact 2, P1 − X ⊆ S− ∪ S+.
This together with xz ∈ E(P1,Pj) and Claim 1(2), x ∈ X and
u11z /∈ E(G). Note that X ⊆ N (u11) and xz ∈ E(G). Thus
d(u11, z) = 2. Since G is quasi-claw-free, J (u11, z) 6= ∅. Let
v′ ∈ J (u11, z). Then u11v′, zv′ ∈ E(G). Note that P1 − X ⊆
S− ∪ S+. This together with v′z ∈ E(G) and Claim 1(2), v′ ∈
X . Denote v′ := u1is for some 1 ≤ s ≤ r , and thus u1is ∈
J (u11, z). By Fact 2, P1(u1is , u1qs ] ⊆ S+, and then u1,is+1 ∈
S+. By Claim 1(2),N (u1,is+1) ⊆ V (P1)\{u11}, which implies
u1,is+1u11 /∈ E(G) and u1,is+1z /∈ E(G), a contradiction to
u1is ∈ J (u11, z). �
Claim 6: d(u11)+ d(u1l1 ) ≤ l1 − 2− |Z |.
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Proof: By Claim 1(2),N (u11)∪N (u1l1 ) ⊆ P1(u11, u1l1 ).
Recall that {X ,Y ,Z ,U} is a partition of all vertices in
P1(u11, u1l1 ). Thus |X |+|Y |+|Z |+|U | = l1−2. Combining
this with Claim 5, d(u11) + d(u1l1 ) = 2|X | + |Y | ≤ |X | +
|Y | + |U | = l1 − 2− |Z |. �

Now, we complete the proof of Theorem 2.
Clearly, d(I (P)) =

∑
u∈I (P) d(u) = d(u11) + d(u1l1 ) +∑t

i=2 d(wi). By Claims 3 and 6, d(I (P)) ≤ (l1 − 2− |Z |)+
(
∑t

i=2(li − 1) + |Z |) = n − (t + 1). Recall that I (P) is
an independent set with t + 1 vertices, and d(I (P)) is the
degree sum of t + 1 vertices in I (P). This together with the
assumption t ≥ k , we have σk+1 ≤ σt+1 ≤ d(I (P)) ≤
n − (t + 1) < n − k, a contradiction to the condition of
Theorem 2.
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