
Received February 5, 2021, accepted February 21, 2021, date of publication February 26, 2021, date of current version March 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3062375

Path Planning and Obstacle Avoiding of the USV
Based on Improved ACO-APF Hybrid
Algorithm With Adaptive Early-Warning
YANLI CHEN 1, GUIQIANG BAI 1, YIN ZHAN1, XINYU HU1,
AND JUN LIU2,3, (Student Member, IEEE)
1Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022,
China
2School of Computer Science and Technology, Jilin University, Changchun 130022, China
3School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

Corresponding authors: Guiqiang Bai (baigq19@jlu.edu.cn) and Yin Zhan (1064280920@qq.com)

This work was supported in part by the Jilin Province Key Science and Technology Research and Development Project under Grant
20180201040GX, in part by the Aeronautical Science Foundation of China under Grant 2019ZA0R4001, in part by the National Natural
Science Foundation of China under Grant 51505174, in part by the Scientific and Technological Development Program of Jilin Province of
China under Grant 20170101206JC, in part by the Foundation of Education Bureau of Jilin Province under Grant JJKH20170789KJ,
in part by the Doctoral Program of Higher Education of China under Grant 20130061120038, and in part by the National Key Research and
Development Program of China under Grant 2017YFC0602002.

ABSTRACT Path planning is important to the efficiency and navigation safety of USV autonomous
operation offshore. To improve path planning, this study proposes the improved ant colony optimization-
artificial potential field (ACO-APF) algorithm, which is based on a grid map for both local and global path
planning of USVs in dynamic environments. The improved ant colony optimization (ACO) mechanism is
utilized to search for a globally optimal path from the starting point to the endpoint for a USV in a grid
environment, and the improved artificial potential field (APF) algorithm is subsequently employed to avoid
unknown obstacles during USV navigation. The primary contributions of this article are as follows: (1) this
article proposes a new heuristic function, pheromone update rule, and dynamic pheromone volatilization
factor to improve convergence and mitigate finding local optima with the traditional ant colony algorithm;
(2) we propose an equipotential line outer tangent circle and redefine potential functions to eliminate goals
unreachable by nearby obstacles (GNRONs) and local minimum problems, respectively; (3) to adapt the
USV to a complex environment, this article proposes a dynamic early-warning step-size adjustment strategy
in which the moving distance and safe obstacle avoidance range in each step are adjusted based on the
complexity of the surrounding environment; (4) the improved ant colony optimization algorithm and artificial
potential field algorithm are effectively combined to form the algorithm proposed in this article, which
is verified as an effective solution for USV local and global path planning using a series of simulations.
Finally, in contrast to most papers, we successfully perform field experiments to verify the feasibility and
effectiveness of the proposed algorithm.

INDEX TERMS Unmanned surface vehicles (USVs), path planning, improved ant colony optimization-
artificial potential filed (ACO-APF) algorithm, unknown obstacle avoidance, field experiment.

I. INTRODUCTION
Interest in the path-planning and collision-avoidance prob-
lems of unmanned ground vehicles (UGVs), unmanned sur-
face vehicles (USVs), and unmanned aerial vehicles (UAVs)
has grown over the past decade [1], [2]. USVs can be defined
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as unmanned vehicles that can navigate on water with auto-
matic algorithms or remote control measures. With the devel-
opment of artificial intelligence and sensor technology, USVs
applications have become increasingly diverse and now
include scientific research, oceanographic surveys, marine
salvage, military use, andmilitary use [3]–[6]. These tasks are
related to target recognition, path planning, control technol-
ogy, positioning and navigation technology, communication
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technology [7]. The limited energy capacity of USVs and
the complex surface environments they face with regard to
navigation paths and arrival times make path planning and
obstacle avoidance critical to USVs, which requires a certain
level of intelligence in USVs [8].

Path planning aims to calculate the shortest collision-free
path from the start to the endpoint by avoiding static and
dynamic obstacles under the constraints of safety, energy
consumption, and/or time. Path planning is typically divided
into global and local path planning based on what type of
environmental information is known [9]. A known environ-
ment indicates that all information about obstacles and targets
is known prior to launching a USV, and the vehicle plans
its path navigation based on this prior knowledge, which
primarily includes the visual graph method, cell decompo-
sition, the A∗ algorithm, and the grid method [10]–[13].
Conversely, in unknown environments, vehicles know noth-
ing or only some information about their environment prior
to launch, and local path planning is primarily performed
by artificial potential field methods, genetic algorithms and
simulated annealing [14]–[16]. However, in the path planning
of USVs, all these algorithms have strengths and weaknesses.
For example, the A∗ algorithm is easy to use but not suitable
for dynamic path planning [17]; the grid algorithm is easy
to understand but strongly affected by the environment and
inflexible [18]; and the genetic algorithm cannot solve multi-
ple obstacles [12]. In recent years, path planning techniques
based on simultaneous localization and mapping (SLAM)
have gradually become market-based [19]–[21]. The con-
struction of the SLAM technology environment map relies
on precise localization, which in turn depends on the accu-
rate environment map [20]. Due to the influence of ocean
background light and suspended turbidity particles, SLAM
technology has a short detection distance and poor real-time
performance. SLAM technology thus remains a long way
from being applied in practical application of ocean path
planning [23], [24]. In a marine environment, particularly on
the surface, where unmanned vessels operate, GPS has the
advantage of high positioning accuracy, and RTK can achieve
a positioning accuracy of a few centimeters. GPS is less
affected by the marine environment and can thus determine
the absolute position of the USV. Because the USV working
environment is known, the absolute position of obstacles can
be shown on a map. Therefore, a USV can determine its
absolute position on the map at all times via GPS, in which
the sample frequency is typically 2∼5Hz, which is faster than
SLAM; thus, GPS is used in this study.

Relative to autonomous underwater vehicles (AUVs),
USVs can easily take advantage of existing navigation charts.
However, due to the limitations of sensors and commu-
nication conditions, USVs cannot rely solely on existing
charts to fully access global information when faced with
complex marine environments and navigation conditions,
which leads to their inability to perform safe path plan-
ning; thus, the validity and reliability of path planning is a
great challenge. Therefore, a realistic scheme for USV path

planning is to use local sensor information to plan a path
based on global path planning [25]. In recent years, many
researchers have presented several comprehensive planning
methods with complementary advantages based on the fea-
tures of global and local path planning, and several impor-
tant results have been achieved. Sgorbissa and Zaccaria [26]
proposed a hybrid path-planning approach that integrates
prior knowledge with local sensor information to achieve
specific goals.When a USV is running in a partially unknown
environment, the algorithm can ensure that the robot will not
fall into a deadlock; however, the system relies heavily on
local awareness and navigation strategies. Lazarowska [27]
proposed the discrete artificial potential field (DAPF) algo-
rithm so that a USV can effectively avoid static and dynamic
obstacles during path planning. Thus, Montiel et al. [28]
constructed an APF algorithm unified with the bacterial evo-
lutionary algorithm, which improves the planning flexibility
and has a good verification effect compared to the traditional
potential field method. Zhao [29] proposed a path-planning
algorithm that combines cooptimization of the multiobjective
Cauchy mutation cat swarm optimization (MOCMCSO) and
artificial potential field (APF) to quickly search globally
and describe optimal path planning while modifying APF
parameters to adapt to different environments and dynamic
obstacles. Shuang et al. [30] combined the pheromone updat-
ing rules of the ACO algorithm with the searching mecha-
nism of the particle swarm algorithm to achieve a balance
between exploration and development and improve search
efficiency. Tsou [31] used the ACO algorithm, automatic
identification system information, and obstacle avoidance
rules for USV dynamic path planning. This algorithm uses
local static obstacles and a dynamic programming model
to equilibrate the preponderance of global and local path
planning. Zhang and Chen [32] combined the ACO algo-
rithm and artificial potential field method to construct local-
inspired pheromones based on the value and direction of
the potential field force that ants were subjected to in the
environment. Additionally, Zhao and Yi [33] introduced the
influence coefficient of potential field force-inspired infor-
mation to improve the quality of the solution. However,
the convergence speed of this algorithm is affected by the
fact that the constructed local pheromones have no internal
relationship with the global pheromones, and the smoothness
is poor. Tsou noted that if the ACO algorithm can increase the
convergence speedwith largemaps, large-scale obstacle path-
planning problems could be solved more accurately [31].
Therefore, many researchers have proposed an improved ant
colony algorithm [17], [34]–[36] to improve the convergence
speed and the ability to search for an optimal path. For
example, Che and Han et al. APF is relatively simple mathe-
matically, easy to understand, and highly efficiency, and can
play a critical role in USV dynamic obstacle avoidance [18].
Although APF is insufficient in the case of multiple obstacles
and complex movements, this theory can still be improved
and applied to practical problems [14]. To the best of our
knowledge, collision-free large-scale outdoor sea trials about
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USV path planning have not been reported in the literature to
date.

II. PROBLEM STATEMENT
Motivated by the facts and challenges stated above, we pro-
pose an improved ACO-APF hybrid algorithm that can
describe the shortest time path planning for USVs in an
unknown environment without collisions. On the path-
planning level, a USV is considered a point-mass system, and
the dynamic model of the USV is a single integrator. This
article primarily provides the following three contributions:

a) To use USV global path planning, an improved ACO
algorithm is proposed to improve the heuristic function,
pheromone updating mode, and pheromone volatile factor of
the traditional algorithm to improve the efficiency and quality
of path searching and convergence.

b) We propose the improved APF algorithm. First,
we reconstruct the repulsion potential field function to solve
the GNRON problem. Second, we propose the "equipotential
line tangent circle escape"method to solve the local minimum
and dynamic obstacle problems successfully. Due to the com-
plexity of the environment, this article proposes a dynamic
step size adjustment strategy to allow the USV to adapt to a
complex environment.

c) To describe USV autonomous path planning based on
the USV’s maneuvering capability and the radar sensitive
range, a dynamic early-warning mechanism is designed,
a reasonable path planning step size is chosen in terms of
the density of obstacles, and the dynamic search path is
smoothed. The organic integration of global path planning
and local dynamic obstacle avoidance is also achieved.

This article is organized as follows. In Section II, the envi-
ronment and USV model as well as the basic formulae of the
traditional ACO algorithm and APF method are introduced.
The primary research contents and results are provided in
Section III. In Section IV, the proposed algorithms are simu-
lated to verify their effectiveness and feasibility. Experiments
are performed on a real USV platform in Section V. Finally,
conclusions are drawn in Section VI.

III. ENVIRONMENTAL MODEL AND BASIC ALGORITHM
A. ENVIRONMENTAL MODELING
In this article, we assume that a USV is working and mov-
ing in a general two-dimensional [Please note that the font
changes here. Please consider using a consistent font type
and size throughout the manuscript.](2-D) plane workspace.
In terms of path planning, a grid diagram is frequently used
to build a static environment [37]. Grids are numbered from
top to bottom, left to right, where starting and target points
are the top left corner S point and the bottom right corner G
point. The black grid represents obstacles, such as islands,
rocks, floatage, and ships; and counts obstacles that are one
grid away as too close for the safety. The white space rep-
resents the navigable area, and each grid length is set as
a unit of distance. Considering the USV’s size, speed, and

FIGURE 1. Environmental model (a) Grid diagram (b) The experimental
area grid.

maneuverability, the grid scale is shown in Equation 1:

Lg = ςLUSV + V̄USV · tg (1)

where LUSV is the characteristic length of USVs, V̄ is the
average speed of the USV, tg is the sailing time of the USV
in one grid, and ζ is the coefficient of the Fujii obstacle
avoidance model [38]. The grid coding method of the raster
graph is the coordinate, and the encoding and coordinates
(x, y) in the graph correspond as shown in equation 2.

x = mod(c, n)− 0.5
if x = −0.5, x = 19.5
y = n+ 0.5− ceil(c/n)

(2)

where c and n are the coded value of the grid and the number
of grids in each row, respectively, and ceil is the rounding
operation.

The USV is viewed as a mass point that can move in eight
directions from its current position to eight adjacent grids,
as shown in Figure 1(a). Figure 1(b) shows a binary raster
diagram of the experimental water area developed by the
grid method. The raster diagram cannot show the outline of
obstacles in detail but reduces the difficulty of dynamic path
planning. Before beginning navigation, the chart modeled by
the raster method is input into the USV controller, after which
global path planning is performed. The USV uses GPS to
obtain its position information during navigation..

B. THE USV MODEL
Different from UGVs and UAVs, USVs have low mobility
and require a large safety obstacle avoidance distance. The
altitude of a USV will fluctuate due to wave action; however,
this motion is negligible compared to the USV’s in-plane
motion and can thus be ignored. We thus only consider
motion in a two-dimensional plane. For USV navigation,
inner and outer ring structures can be used to describe the
navigation of USVs if the path is only related to the USV’s
position [39], [40]. In this configuration, the outer ring is used
to drive the USV toward the desired position, while the inner
ring can be used to control the attitude. This article primarily
provides the location information required for the outer ring
control of the USV. At the path-planning level, the USV can
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be considered to be a point. The detailed relationship model
between USVs and obstacles is shown in Section III.

C. TRADITIONAL ANT COLONY AND APF ALGORITHM
1) TRADITIONAL ANT COLONY ALGORITHM
The principle of the ACO algorithm is to treat each USV as
an ant. In the basic ACO algorithm, the feasibility of ant k
from the current grid i to the next j at the moment t is given
in Equation (3):

pkij(t)=


ταij (t)η

β
ij (t)/

 ∑
s∈allowedk

ταis (t)η
β
is(t)

 j ∈ allowedk

0 others
(3)

where allowedk indicates the free grid that the ant can choose
next, τij(t) indicates the pheromone content between the grid
i and j at t-moment, α is the pheromone heuristic factor, and
β is the expected heuristic factor, and ηij(t) is the expected
heuristic function from the grid i to j at t-moment, which can
be expressed as follows.

ηij(t) = 1
/∥∥pi − pj∥∥ (4)

where ‖•‖ is the Euler distance of grids i and j, and pi and pj
are mean the coordinates of the grid.

While searching for an optimal path, ants leave new
pheromones along each path they take, which changes with
the passage of time and the number of ants. The rules that
govern these changes are shown in Equations (5):

τ ij(t + 1) = (1− ρ)τ ij(t)+1τ ij(t)

1τ ij(t) =
m∑
k=1

1τ kij (t)
(5)

where ρ represents the pheromone volatilization factor,
whose value range is (0,1), and (1 − ρ) indicates the
pheromone residual factor, and 1τ kij (t) is the pheromone
increment left by the kth ant at time t between grids i and
j after this search, and equals 0 initially.

2) TRADITIONAL APF ALGORITHM
The APF algorithm is an abstract description of both target
and obstacle points in the water. The algorithm constructs
gravitational and repulsive potential field functions to repre-
sent the impact of obstacles and targets in circumstances of
USV. The potential field of any point in the environment is
the superposition of the gravitational and repulsive potential
fields. The force acting on this point is the vector sum of the
negative gradients of the gravitational and repulsive potential
fields. The USV plans a noncollision path and moves to
the target point by searching for the direction in which the
potential field function decreases. The attractive potential
field functions Uatt and repulsion potential field functions
Urep are defined as follows.{

Uatt (q) = 0.5katt
∥∥q− qg∥∥2

Urep(q) = 0.5krep(1/ ‖q− qo‖ − 1/d0)2
(6)

FIGURE 2. The resultant force F(q) schematic diagram.

where katt and krep are the gain coefficients of the attractive
and repulsion field functions, respectively; q is the coordinate
of the USV; qg is the target coordinate; and d0 is the influence
range of the obstacles.

The resultant potential field function U (q) is defined as
the sum of the gravitational and the repulsion potential field
functions, and the resultant force F(q) to USV is defined as
follows. The resultant force F(q) schematic diagram is shown
in Figure 2.

F(q) = Fatt (q)+ Frep(q) = −∇Urep(q)−∇Uatt (q)

= −∇U (q) (7)

where Fatt (q) and Frep(q) are the attractive and repulsion
forces, respectively.

Based on these description of the traditional ACO algo-
rithm and APF algorithm, the traditional ACO algorithm
converges more slowly and tends to become stuck at local
optima, which may make the target unreachable. Therefore,
this article combines two algorithms to perform USV path
planning while focusing on these problems.

IV. ALGORITHM ANALYSIS AND MAIN RESULTS
A. IMPROVED ACO ALGORITHM
1) IMPROVING OF THE HEURISTIC FUNCTION
In the traditional ACO algorithm, the heuristic function only
consider the current node i and the next node j, and does
not take a full account to the initial point S and the target
point G, which may cause the algorithm to deadlock when
selecting the next node, resulting in the algorithm stagnation.
The heuristic function is improved as in Equation (8) :

ηij(t) = dSj
/(
dij + djG

)
(8)

where dSj represents the distance between the initial point S
and the next node j, and djG is the distance between the node
j and the target point G.

Based on Equation (8), the farther from the point S and
the closer to the point G, the larger the dSj value and the
smaller the djG value will be, resulting in a greater probability
that node j will be selected. The improved heuristic function
moves the ant away from the initial point and closes to the
target when selecting the next node to prevent the algorithm
from getting stuck in a deadlock.

2) IMPROVED PHEROMONE UPDATE RULES
In the initial phase of searching, the conventional ACO
algorithm will search for certain suboptimal paths. If the
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pheromones of these paths are updated every time, it will
mislead subsequent ants and slow down the convergence of
the optimal path or even lead to nonconvergence..

After these improvements, the pheromone update rule
becomes ‘‘reduce the pheromone content along the poor path
in the later phase of the algorithm exploration so that the ants
do not choose this path’’, which increases the convergence
speed of the algorithm. The pheromone update rule changed
to Equation (9):

1τ kij (t) =

{
Q/Lk Nc < A
Q/ (Lmid − Lk) Nc ≥ A

(9)

where Q represents the pheromone concentration; Lk signi-
fies the total length of the path traversed by the kth ant after
completing the cycle; Lmid is the average of the total search
path length of all ants after one iteration; Nc is the number
of iterations; and A is a constant related to the number of
iterations.

3) IMPROVING THE PHEROMONE VOLATILIZATION FACTOR
In the ACO algorithm, the pheromone volatilization factor
is an important parameter. If it is too large, the residual
pheromones on the path will volatilize too quickly and thus
cannot embody the positive feedback of the ACO algorithm
and hinders convergence. Conversely, pheromones will be
kept on the path for a long time, resulting in the algorithm
finding a local optima. Therefore, this article proposes the
dynamic pheromone volatilization factor. In the initial phase
of the algorithm, a large pheromone volatilization factor is
used to advance the search scope of ants to improve the search
efficiency. In the later stage, a small pheromone volatilization
factor is used to accelerate the convergence rate of the algo-
rithm. The pheromone volatile factor decreases with increas-
ing iterations and is updated based on Equation (10):

ρ = ρmax − N (ρmax − ρmin)
/
Nmax (10)

where ρmax and ρmin respectively indicate the max and min
values of pheromone volatilization factors, respectively; and
N and Nmax respectively indicate the current and maximum
number of iterations, respectively.

Based on these three measures, the disadvantages of the
traditional ACO algorithm are effectively solved, and the
search efficiency and success rate are improved.

B. IMPROVED APF METHOD
1) DYNAMIC EARLY-WARNING OBSTACLE
AVOIDANCE MODEL
During USV navigation, uncharted obstacles, such as
floatage and ships, may be encountered and will affect nav-
igation safety. Therefore, local path planning must be per-
formed. Local path planning based on sensor information can
be performed in real time and is highly practicable. After
a sensor detects an uncharted obstacle, the relative position
of the obstacle related to the USV is added to the global
map for obstacle avoidance. The relative position relationship

FIGURE 3. The location with the USV and obstacles.

between the obstacle and the global coordinate system is
shown below:

Pobstacle =
[
Xobstacle
Yobstacle

]
=

[
XUSV
YUSV

]
+

[
cos θ − sin θ
sin θ cos θ

]
×

[
Px−obstacle
Py−obstacle

]
(11)

where Pobstacle and PUsV are the positions of obstacles and
USVs in the global coordinate system, respectively. θ is the
heading Angle of the USV; and Py-obstacle and Px-obstacle
are the positions of the obstacle in USV coordinates. In the
selection of the USV obstacle avoidance range, emphasis
should be placed on factors that include inertia and waves.
We define the USV’s obstacle avoidance area and obstacle
influence range as C and D respectively, where C is a circle
with the center of mass of the USV as the center of the circle,
S is its the radius, and D is a circle with the obstacle as the
center and the radius as Q:{

S = d − δLUSV /µ
Q = ξLobstacle

(12)

where d is the detection range of the sensor, LUSV and Lobstacle
are respectively the USV and obstacle characteristic length,
respectively; δ and ξ are the coefficients related to USV and
obstacle velocity respectively with a value range of (1, 3);
and µ is a coefficient related to sea conditions that depends
on the roll angle and pitch angle fluctuations during the USV
navigation with a value range of (0, 1). The relationship
between USV and obstacles should follow Equation 13, and
the relationship between the USV and the location of obsta-
cles is shown in Figure 3:

‖Pusv − Pobstable‖ ≥ S + Q (13)

During navigation, an inner ring PID controller,
as described in [41], [42], is used to control the USV so that
it can maintain the desired trajectory while also maintaining
a safe distance from obstacles. USVs use different avoidance
courses when encountering obstacles in different directions.
Additionally, to ensure that the USV is controllable, the max-
imum USV rotation angle αmax shall meet the following
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FIGURE 4. GNRON position relation.

FIGURE 5. The USV Potential energy of traditional APF.

requirements:

αmax = π/2− arccos
(
(S + Q)

/
Rmin

)
(14)

2) IMPROVING THE POTENTIAL FIELD
FUNCTION FOR GNRON
In the traditional algorithm, as a USV approaches the target
point, gravity decreases. When the target point is within the
coverage of the obstacle, the repulsive force of the obstacle
will be greater than the attraction force of the target on the
USV, making the USV fail to reach the target. Based on
these assumptions, Figure 4 shows that the positions of the
USV, target point and obstacle are (x, 0), (0, 0), and (0.5,
0), respectively. The combined potential energy formed by
gravitational Faat and repulsive Frep is shown in Figure 5,
which shows that the resultant potential energy of the USV at
x = x is zero, and the sign of the resultant potential energy
only indicates the direction of the resultant potential energy.
Therefore, the resultant potential energy of other positions is
greater than this point; thus, the USV oscillates at x = x0 and
cannot move to the target point.

Because the repulsion force of obstacles near the target
point is not zero, the USV will fail to reach the target pre-
cisely. To solve the GNRON problem, the function of the
repulsion potential field is improved to make the attraction
and repulsion forces at the target position zero so that theUSV
will move to the target position. The improved Equation (15)
is as follows:

Urep(q) =


1
2
krep(1/ ‖q− qo‖ − 1/d0)2dn(q, qg)

‖q− qo‖ < d0and
∥∥q− qg∥∥ < ‖q− qo‖

0 ‖q− qo‖ > d0
(15)

FIGURE 6. The improved force of USV.

TABLE 1. The value of improved repulsion field function.

The repulsion force generated by the improved function of
the repulsion potential field is expressed as Equation (16):

EFrep(q) = −∇Urep(q)

=


EFrep1(q)+ EFrep2(q)
‖q− qo‖ < d0and

∥∥q− qg∥∥ < ‖q− qo‖
0 ‖q− qo‖ > d0

(16)

where Frep1(q) and Frep2(q) are the forces contained in the
improved repulsion potential field function. Equations (17)
and (18) will introduce the calculation formula of these two
forces:

EFrep1(q) = krep(
1

‖qo − q‖
−

1
d0

)
1

‖qo − q‖2
∥∥qg − q∥∥n

×
∂ ‖qo − q‖

∂x
(17)

whereFrep1(q) is the component of the repulsion force, whose
direction is from the obstacle to the USV, and:

EFrep2(q) = −
nkrep
2

(
1

‖qo − q‖
−

1
d0

)2
∥∥(qg − q)∥∥(n−1)

×
∂
∥∥(qg − q)∥∥
∂x

(18)

where Frep2(q) is the second component of the repulsion
force, whose direction is that the USV points to the tar-
get point, The improved USV is shown in Figure 6, and a
comparison of Figures 2 and 6 show that the USV force is
significantly improved.

Based on Equations (16)∼ (18), when theUSV approaches

the target point, that is, lim
∥∥qg − q∥∥→ 0, the

→

Frep(q) value
is closely related to n, as shown in the following Table 1.

By analyzing the value of parameter n, it shown that when n
is greater than 1, as the USV approaches the target point, both
the gravitational and repulsive forces it receives tend toward
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FIGURE 7. The USV Potential energy with the improved APF.

FIGURE 8. Local minimum.

zero, thus solving the problem that the potential energy at the
target point is not minimized. The improved potential energy
function is used to solve the potential energy received by the
USV in Figure 5, and the result is shown in Figure 7, which
indicates that the improved function solves the problem of the
unapproachable target.

3) THE PROBLEM OF LOCAL MINIMUM
The point at which the USV is subjected to the same gravity
and repulsion force and opposite direction in space is the
local minimum point, and the resultant force received by
the USV at this point is zero, resulting in the USV being
unable to reach the target point. There are two types of local
minima: a local minimum caused by a single obstacle, as
shown in Figure 8.a; and a local minima caused by multiple
obstacles, as shown in Figure 8.b. In the first case, mature
methods, such as the virtual target point method, could be
used. However, the second case is rarely studied; thus, this
article analyzes the second case but is equally important.

To solve this problem, we present the "equipotential line
tangent circle escape algorithm". If the USV enters the range
of influence of an obstacle (i.e., d(q, q0) < d0), then a circle
is drawn with the obstacle as the center and the distance
from the USV to the obstacle as the radius, with the circle
being tangent to the USV. Then, the small arc between the
USV’s current point position and the tangent point is used
as the trajectory of the USV. If the USV is within the range
of influence of multiple obstacles, the nearest obstacle to the
USV is considered to be the center of the circle, and then
the tangent point is determined. Assuming that the slope of
the tangent line is k , the equation of the circle and the tangent
line in the point-slope form are as follows:

y− yg = k(x − xg) (19)

FIGURE 9. Diagram of the proposed algorithm.

(x − xo)2 + (y− yo)2 = r2 (20)

where (xo, yo) are the coordinates of the obstacle; (xg, yg) are
the target coordinates; and r is the distance from the obstacle
to the USV.

Based on Equations (19) and (20), the coordinates of the
pointcut can be described by follows: xc =

(
xgk2 + (yo − yg)k + xo

)/(
1+ k2

)
yc =

(
yok2 + (xo − xg)k + yg

)/(
1+ k2

) (21)

The distance from the center of the circle to the tangent
line is the radius, and the radius equation can be listed by
the formula of the distance from the point to the straight line,
as shown in Equation (22):(∣∣kxo − yo + yg − kxg

∣∣ )/(√1+ k2
)
= r (22)

Equation (22) can be rearranged to obtain Equation (23),
as shown at the bottom of the next page.

By substituting Equation (23) into (21), two pointcut coor-
dinates can be obtained, and the pointcut that can form a small
arc with the USV’s position is selected as the USV’s path;
thus, pointcut 2 in Figure 7 is the node of the next movement
of the USV.

In Figure 9, the resultant force on the USV is zero and
encounters a local minima. Using the algorithm in this article,
the USV can escape from the local minimum by moving
toward tangent point 2 along the red arc in the figure.

After the undiscovered static obstacles in the environment
are detected by the USV sensors, the equipotential line outer
tangent circle escape method proposed in this article can be
used to avoid them. For dynamic obstacles, if the next moving
node is the same as the tangent point of the "equipoten-
tial line outer tangent circle escape method", the USV will
collide with the moving obstacle. Therefore, in the case of
dynamic obstacles, the next moving node of the USV is the
tangential point that deviates from the movement direction
of the obstacle, thus avoiding a collision between the USV
and the dynamic obstacles that can be described. Compared
to the method reported in [43], the path length planned by the
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algorithm in this article is shorter and saves more energy for
USVs.

4) STEP SIZE DYNAMIC ADJUSTMENT
Step size is an important parameter of the APF method,
and its value is fixed in the proposed method. If the step
size is too small, algorithm performance decreases, and
the probability of defects in the APF method increases.
Conversely, the probability of collision between the USV and
obstacle increase. To adapt the USV to a complex environ-
ment, this article proposes a dynamic step size adjustment
strategy.

After obstacle information is detected by the USV sensor,
the USV evaluates the environmental complexity based on the
obstacle location information and sets the step size based on
the distance between the USV and obstructions. It is assumed
that the distance between USV and each obstruction is set
D = {p1, p2 . . . , pn}; then, the step size is set as follows:
(1) if set D is an empty set (i.e., there is no obstacle near the
USV), then, the step size value is set to 1; (2) If set D is not an
empty set and the minimum value is greater than 1, the step
size is set to 1/2 of the minimum value is set D; (3) if set
D is not an empty set, and the minimum value is below 1
(i.e., the USV enters the range of influence of obstacles), then
the USV avoids obstacles based on the "equal-potential line
tangent circle escape algorithm".

C. IMPROVED ACO-APF HYBRID ALGORITHM
Path planning can be split into local and global path planning
based on whether environmental information is the acquain-
tance. There may be an uncharted obstruction in the back-
ground, and local path planning is also required when the
USV performs global path planning. Therefore, the improved
ACO-APF hybrid algorithm is naturally proposed, which is
separated into three processes for path planning.

First, global path planning is used to obtain the initial path
using the improved ACO algorithm.

Second, the initial path is optimized, as shown in
Figure 11 in an example. The initial path planned by the
improved ACO algorithm is shown in the red solid line in
Figure 8, and the inflection point coordinates from p1 to p8
are recorded. The path is then simplified, and the process is as
shown below: each inflection point of the path is represented
by P1,P2,. . . ,Pn, and connects P1 to P3. If the line does not
pass through the obstacle (i.e., the USV will not collide
with the obstacle when moving) then P1 and P4 are further
connected, and so on, until p1 and Pm (m = 3, 4, . . .) through
the obstacle when connecting, then connect P1 to Pm−1,
and the redundant inflection points between P1 and Pm−1are
removed. These steps are then repeated with the inflection

FIGURE 10. Improved ACO-APF hybrid algorithm global path planning.

Algorithm 1 The Improved Ant Colony Optimization -
Artificial Potential Field Algorithm
1. Initialize input the parameters and environmental informa-
tion such as target point, initial point into the USV.
2. Solve the initial path.
3. Simplify the initial path obtained by Step2
4. Applying the improved APF method for local path plan-
ning.
5. Determine whether the subhead punctuation is
reached or not. If not reached, return to Step4; If so,
enter Step6.
6. Determine whether the subhead punctuation is the final
target point. If so, enter Step7; if not, select the next inflection
point as subhead punctuation and return to Step4.
7. Complete path planning
8. End of the algorithm

point Pm−1 as the initial point until there are no redundant
inflection points. The simplified path is displayed in the
blue dotted line in Figure 10, and the number of simplified
inflection points decreases from 8 to 5, which makes the path
smoother while reducing the path length.

The third step for local path planning is to use the first
inflection point P4 as an initial point, the second inflection
point P5 as the improved APF method of local path planning
of punctuation, when arrived at the second turning point,
then P6 as the next subtitle punctuation to continue the path
planning until the USV reach the final point. Then, the loop
ends. The algorithm flow is shown below and in Figure 11.

k =
xoyo + xgyg − xgyo − xoyg ± r

√
(−2yoyg − 2xoxg + y2g + y2o + x2o − r2 + x2g )

−r2 + x2 − 2xoyg + x2g
(23)
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FIGURE 11. Improved ACO-APF algorithm flow chart.

TABLE 2. Parameter setting.

V. SIMULATION ANALYSIS
A. IMPROVED ACO ALGORITHM SIMULATION
1) 10× 10 GRID MAP
A grid-scale is selected based on Equation 1. Based on the
USV studied in this article, the selected LUSV is 1.5 m, V̄ is
3.5 m/s, tg is 3s, and ζ is 7. Simulation experiment 1 was
carried out on a 10 × 10 grid map, with the initial point
coordinate S (0.5, 9.5) and the target point coordinate G
(9.5, 0.5). Because [36] describes a recent improved ACO
algorithm that is indicative of those in the literature and is
cited 116 times, so we conduct a simulation experiment by
comparing this algorithm with the algorithm proposed in this
study. The simulation parameters used in this experiment are
shown in Table 2:

Figure 12 shows the optimal path planning curve solved by
the three algorithms, and Figure 13 shows the convergence
curve. The optimal paths of the three algorithms are shown
to be identical; however, the proposed algorithm achieves the
fastest convergence speed.

2) 20× 20 GRID MAP
Simulation test 2 was performed on a 20 × 20 grid map
with the initial and target point coordinates of (0.5,19.5) and

FIGURE 12. Optimal path of the USV solved by three algorithms.

FIGURE 13. Convergence curves of the three algorithms.

TABLE 3. Parameter setting.

(19.5,0.5), respectively. The parameter settings used in the
simulation are shown in Table 3:

Figure 14 shows the optimal path obtained by the three
algorithms, and themeaning of these curves is consistent with
Figure 13. The path calculated by the proposed algorithm is
identical to that calculated by the algorithm in [36] and is
better than that of the basic ACO algorithm.

Table 4 compares the results of the three algorithms. The
proposed algorithm yields shorter path lengths, fewer itera-
tions, and fewer inflection points, and can effectively search
for a globally optimal path.
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FIGURE 14. Optimal path of the USV solved by three algorithms.

TABLE 4. Simulation results of three algorithms.

TABLE 5. Parameter setting.

3) 30× 30 GRID MAP
Simulation experiment 3 was conducted on a more complex
30 × 30 raster map, with the initial point coordinate S (0.5,
29.5). The settings of the parameters used in the simulation
are shown in Table 5.

Figure 15 shows the optimal path, as determined by the
three algorithms, and the meaning of the curve is consistent
with Figure 13. From the figure that, the number of inflection
points planned by the basic ACO algorithm, the algorithm
in [36], and the proposed paper are 33, 20, and 11, respec-
tively. The path curve planned by the proposed algorithm is
thus better than the previous two.

Figure 16 shows the convergence curves of the three algo-
rithms. In a complex environment, the convergence speed
and path calculated by this algorithm are better than those
of the other two algorithms. Table 6 shows that in a complex
environment, the path length calculated by the algorithm in
this article is 10% and 31% below those calculated by the
algorithm in [36] and the basic ACO algorithm.

FIGURE 15. Optimal path of the USV solved by three algorithms.

FIGURE 16. Convergence curves of the three algorithms.

TABLE 6. Simulation related parameter setting.

The simulation results demonstrate that the global path
planning capability of the improved ACO algorithm is better
than the algorithm in [36] and the basic ACO algorithm.
Because there are undiscovered areas in the working environ-
ment of USVs, and the ACO algorithm cannot perform local
path planning, an improved APF method is proposed in this
article to manage of uncharted obstacles.

B. IMPROVED APF ALGORITHM SIMULATION
1) SIMULATION RESULTS OF GNRON AND LOCAL MINIMUM
POINT PROBLEM
To demonstrate the effect of the improved method of the APF
method on the local minimum and the GNRON problem,
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FIGURE 17. Simulation of GNRON and local minimum point.

TABLE 7. Contrast test.

the following simulation is performed. The initial point coor-
dinates of the USV are (0,6); the coordinates of the three
obstacles are (3.6,5.4), (6.3,4.5), and (6.5,6.5); and the target
point coordinate is (9.7,5). The path planning results deter-
mined by the improved APF method are shown in Figure 17.
The improved APF method can plan a path through the
narrow channel between the two obstacles, enabling the USV
to avoid the obstacles and reach the target successfully, thus
solving the GNRON and the problem of the local minimum.

To verify the advanced nature of the algorithm proposed in
this article, we compare the effect of this algorithm in solving
GNRON with other algorithms. We compared the solution of
the CNRON problem with the improved artificial potential
field method proposed in [44]–[46]. Single obstacles were
compared to those in [44]–[46], and multiple obstacles were
compared to those in [47]. To increase the credibility of this
comparison, the simulation environment was the same as
the simulation environment mentioned in these references.
Comparison results are shown in Table 7.

2) THE SIMULATION OF DYNAMIC STEP SIZE
A set of comparative simulation experiments are per-
formed to demonstrate the effectiveness of dynamic step
size adjustment. The simulation environment parameters are
shown in Table 8, and the simulation results are shown in
Figures 18 and 19.

Figures 18 and 19 show that the planned path of experiment
1 is 30 steps and that of experiment 2 is 16 steps. Dynamically

TABLE 8. System parameters.

FIGURE 18. Path planned with a fixed step size.

FIGURE 19. Path planned with a dynamic step size.

adjusting the step size can decrease computation time and
produce a path that is smoother. Because the chosen path
points are not interpolated or postprocessed using edge trim-
ming or spline smoothing, they describe the true length of the
path better. Thus, the path is not sufficiently smooth. In the
future, we plan to choose a radius of the tangent circle that is
based on a dynamics model of the USV’s motion to make the
path smoother.

C. SIMULATION OF IMPROVED ACO-APF
HYBRID ALGORITHM
This article combines the improved ACO algorithm with
the improved APF method to form the improved ant colony
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FIGURE 20. Simulation results of the proposed algorithm.

optimization-artificial potential field hybrid algorithm and
performs a simulation test to establish the effectiveness of
the algorithm in an uncharted environment. The simulation
results are shown in Figure 20, in which the coordinates of
the uncharted stationary obstacle are (8.5,1), the initial point
of the moving obstacle O is (4,5.5), the initial point of the
USV is (9.5,0.5), and the target point is (0.5,9.5). When the
USV moves to point N, obstacle O begins to move vertically
downward. In the figure, the solid lines in red and blue are
global path planning and local path planning of the improved
ACO-APF hybrid algorithm, respectively.

As shown in Figure 20, when using P3 as the subhead
punctuation local path planning, after the USV moves to
point N, obstacle O begins to move vertically downward.
Then, the USV reduces the step size, avoids obstacle O,
and moves to subhead punctuation P3. When considering the
local path planning of subhead punctuation P5, the uncharted
obstacleM appears in the USV’s forward path, and the USV
successfully avoids the uncharted obstacle M from arriv-
ing at the target through local path planning. Based on the
simulation results, the improved ACO-APF hybrid algorithm
local path planning can remain away from the undiscovered
static and dynamic obstruction, and smooth the USV’s path
concurrently.

Programming the algorithm in C++ and implanting it into
the USV controller for field testing to further demonstrate the
proposed algorithm’s reliability in a real environment.

VI. LAKE TEST
The proposed algorithm is used in the portable USV that
is shown in Figure 21(a), which was developed by this
study group. The hardware architecture of the USV is shown
in Figure 21(b), and the primary parameters of the USV
are shown in Table 9. The wireless bridge provides com-
munication between the USV and workstations. With the
thruster powered by 24 V DC, the speed of the USV is
2.08 kn. LiDAR is installed on the USV to detect uncharted

TABLE 9. Primary parameters of the USV.

FIGURE 21. Test platform.

obstacles, and median filtering is used to process the
data.

In practical experiments, the influence ofwater flow cannot
be ignored. For the water flow, the velocity synthesis method
proposed in [48] is used to enable the USV to overcome
the influence of water flow disturbance. The USV’s anti-
interference calculations are managed by its dynamic control
unit, which is not the focus of this article.

Before the test, a map of the test water area was pre-
treated using the raster method. In the field tests, the USV
first follows the prior global path of the algorithm method.
When the LiDAR finds an uncharted obstacle, the coordi-
nates of the obstacle are calculated based on the relative
position of the USV and the obstacle, and obstacle avoidance
is planned using the local path. After obstacle avoidance,
the USV still sails based on the global path. During the
field tests, the USV track is drawn, and the GPS points
obtained are shown in Figures 22 and 23; Figure 24 shows
the distance error between the two paths; and the field test
is shown in Figure 25. By comparing the ideal data with
the real data of the experimental data, errors are shown
to reach 10 m, and large errors occur during turning and
local obstacle avoidance. However, considering the maneu-
verability of the USV and the effects of environmental fac-
tors, particularly the wind, the results are acceptable. The
ideal length for planning the USV road force is 350 meters,
and the total experimental path length is 322.5 meters,
indicating an error of 27.5 meters or 4%. The position-
ing error of the USV during navigation is primarily caused
by GPS, which has an error of 3 meters. Videos of the
experiment can be found at https://v.youku.com/v_show/id_
XNDgyODI0NDg0OA==.html?firsttime=68. The simula-
tion and field test indicate that this algorithm can effectively
plan the USV’s global path and avoid obstacle.
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FIGURE 22. Map of real-world testing at the Qipanshan reservoir.

FIGURE 23. GPS points during the experiment.

FIGURE 24. Distance error.

FIGURE 25. Results of the field test.

VII. CONCLUSION
USV path planning and obstacle avoidance based on an
improved ACO-APF hybrid algorithm with adaptive early
warning is presented for use in a complex environment.
USV path planning is divided into three aspects: environ-
mental modeling; path search and optimization; and obsta-
cle avoidance. This article uses the grid method to model
the environment. The improved ACO algorithm is used for

global path planning and proposes a new heuristic function,
the pheromone update rule, and the dynamic pheromone
volatilization factor. Simulation results show that in the
30∗30 grid, the optimal path length is 51.6% of the tra-
ditional ACO algorithm, and the number of iterations is
43.3%. To solve the problem that global path planning
cannot avoid undiscovered obstacles, we use the improved
APF algorithm to perform local path planning and solve
the problem of undiscovered targets and local minima in
the classical algorithm, and the step length is optimized
with a dynamic warning mechanism. This article combined
two improved algorithms to form the improved ACO-APF
hybrid algorithm. Simulation results demonstrate that the pro-
posed method can efficiently find the optimal path and effec-
tively avoid uncharted static and dynamic obstacles. Finally,
a USV surface path planning experiment is performed, and
the results indicate that the proposed algorithm can calculate
path planning efficiently and accurately in a complex surface
environment.
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