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ABSTRACT Brain-computer interfaces (BCI) are a mechanism to record the electrical signals of the brain
and translate them into commands to operate an output device like a robotic system. This article presents the
development of a real-time locomotion system of a hexapod robot with bio-inspired movement dynamics
inspired in the stick insect and tele-operated by cognitive activities of motor imagination. Brain signals
are acquired using only four electrodes from a BCI device and sent to computer equipment for processing
and classification by the iQSA method based on quaternion algebra. A structure consisting of three main
stages are proposed: (1) signal acquisition, (2) data analysis and processing by the iQSA method, and
(3) bio-inspired locomotion system using a Spiking Neural Network (SNN) with twelve neurons. An off-
line training stage was carried out with data from 120 users to create the necessary decision rules for the
iQSA method, obtaining an average performance of 97.72%. Finally, the experiment was implemented in
real-time to evaluate the performance of the entire system. The recognition rate to achieve the corresponding
gait pattern is greater than 90% for BCI, and the time delay is approximately from 1 to 1.5 seconds. The
results show that all the subjects could generate their desired mental activities, and the robotic system could
replicate the gait pattern in line with a slight delay.

INDEX TERMS Bio-inspired robot, brain-computer interface (BCI), electroencephalography, hexapod
robot, iQSA method, motor imagery, spiking neural network, central pattern generator.

I. INTRODUCTION
Brain-Computer Interfaces (BCIs) are systems that provide a
communication and control channel between the human brain
and the outside world by means of electroencephalography
(EEG) [1]. Originally, BCIs are developed to help patients
suffering from severe motor impairments [2]–[4]. However,
several applications have emerged outside of the medical
field, like the integration of BCIs with other immersive tech-
nologies such as virtual reality (VR), augmented reality (AR),
and computer games [5]–[8]. Similarly, there are researches
related to integrating BCIs and external devices to robot
systems [9]. In this last case, researchers have used several
strategies to control a robot with a BCI such as Visual Evoked
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Potentials (VEPs) [10]–[13], Event-Related Potential (ERP)
[14]–[18], Slow Cortical Potentials (SCPs) [19]–[21] and
Sensorimotor Rhythm µ and β [22]–[24].

For instance, in [25], authors present a Steady State
Visually Evoked Potentials (SSVEP) based hierarchical
architecture for controlling a humanoid robot with mind.
This architecture is tested in a multi-task experiment to
drive the robot through obstacles and picking up a bal-
loon. Similarly, Zhao S. et al., in [26] describe the devel-
opment of a teleoperation control framework of multiple
coordinated mobile robots through a brain-machine inter-
face. The online BCI system uses SSVEP, analyzes the EEG
data using AdaBoost with the Support Vector Machines
(SVM) classifier, and motion commands are produced for
the teleoperated robot with an average recognition accuracy
of 85%.
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In their research, George et al. [27] present a BCI headset
controlling a service robot’s navigation using a SVM clas-
sifier while an operator performs motor imagery tasks. The
performance obtained is between 98% and 100% for classifi-
cation accuracy in predicting the desired direction. Bousseta,
Outset, et al. [28] propose a BCI system that controls a robot
arm based on the user’s thoughts. They used the Principal
Component Analysis (PCA) method combined with the Fast
Fourier Transform (FFT) spectrumwithin the frequency band
responsible for sensorimotor rhythms (8Hz to 22 Hz) and the
SVM classifier with the Radial Basis Function (RBF) ker-
nel, whose outputs were translated into commands to control
the robot arm.

Xu et al. [29] developed an EEG-based teleoperation robot
control system with motor imagery in their research. The
imagined movement’s EEG signals were translated into a
continuous two-dimensional control signal and transmitted to
the remote robotic arm using TCP/IP and then moved through
the control signal in real-time. Barbosa et al. [30] developed a
BCI to activate a 120lbmobile robot’s movements associating
four different mental tasks to robot commands. In one of
these implementations, a 91% average hit rate was obtained
with only 1.25% wrong commands after 400 attempts to
control the mobile robot. Qui et al. [31] present a teleoperated
robotic system based on visual feedback and a local adaptive
fuzzy controller to drive the exoskeleton tracking the intended
trajectories in the human operator’s mind, obtaining a recog-
nition accuracy of about 80%. Saduanov et al. [32] present
the design, evaluation, and control of a six-degree-of-freedom
robot manipulator by motor imagery-based BCI, allowing
users to perform reach-grasp-release activities in 3D space.
The experimental results tested on seven healthy individuals
have shown the feasibility of controlling the robot with an
accuracy range between 64% - 86%. Muller-Putz et al. [33]
performed an analysis of events related to synchronization
and desynchronization (ERD/ERS) of 160 EEG tests to gen-
erate motor imagination patterns for controlling an implanted
neuroprosthesis in a 42-year-old patient with spinal cord
injury. Cichock and Choi [34] implemented a Motor Imagery
based algorithm to control a wheelchair by mental instruc-
tions.

In all the researches mentioned above, the EEG signals
are analyzed and classified to get the mental command to
control the output device. During this process, the features
extracted by the BCI classifier are induced by the user as a
response to an external stimulus. Still, unlike event-related
brain activities, the µ rhythm can be voluntarily modulated.
For this, the user must produce mentioned brain activities
using some mental strategy such as Motor Imagination
(MI), which is the mental simulation of specific movements
[35], [36]. MI consciously triggers brain regions involved in
planning and executing similar actions when performed in a
real way.

Additionally, robotic systems based on neuromorphic
hardware have been recently studied [37]–[39], resulting that
legged robot locomotion may be achieved by plausible neural

mechanisms known as Central Pattern Generators (CPGs).
The CPGs are specialized neural networks that allow, among
other things, the locomotion of living beings through the
production of rhythmic patterns without the need of sen-
sory inputs (endogenously). These patterns allow us to con-
trol and coordinate repetitive activities, such as breathing,
chewing, walking, swimming, and running [40], [41]. Most
CPG implementations are built using neuron models with
a low biological plausibility, e.g., oscillators [42], [43], and
spiking neuron models with different levels of biological
plausibility [44]–[46].

In this regard, our work aims to control a bio-inspired
hexapod robot in real-time with the help of a BCI based
on motor imagery. To achieve locomotion in the hexapod
robot, we used Spiking Neural Networks (SNN) that mimic
a CPG behavior to reproduce and execute the orders received
by the BCI in real-time [47]. The EEG signals generated in
the BCI were classified using the improved Quaternion-
based Signal Analysis method (iQSA) [48], which bases
its operation on quaternions’ algebra, while evaluates the
rotations and orientations that the EEG signal performs over
time. Experimental results show how our approach generates
BCI commands performed by a hexapod robot in real-time.
This article is organized as follows: Section 2 introduces
the CPG system and the iQSA method; Section 3 includes
a description of the architecture developed in this work;
Section 4 presents the implementation and results; finally,
we conclude in Section 5.

II. MATERIALS AND METHODS
This article covers all aspects from the acquisition of EEG
signals to the execution of the cognitive commands and real-
time validation on legged robots. In this regard, we use the
iQSA method to classify the EEG signals and to design the
CPG with a SNN capable of reproducing a specific rhythmic
locomotion pattern (gait).

A. THE iQSA METHOD
The iQSA method is a technique used in this work for mod-
eling bioelectric signals through quaternion-based rotations
and orientations. Analyzing EEG signals and extracting their
characteristics in a complex number space, allows to consider
them as a single entity without leaving aside information that
may be relevant to the classification stage. In addition, with
this method, ambiguities in the data are avoided; it also per-
forms fewer calculations than other rotational techniques and
get a more accurate representation of the data. A quaternion
[49] is defined as a set of four constituents (one real compo-
nent and three imaginary) of the form: q = w+ ix + jy+ kz,
wherew, x, y, z ∈R and i, j, k are symbols of three imaginary
quantities known as imaginary units. So, a quaternion can be
described as q = (s+a), a = (x, y, z) where s and a are known
as the quaternion’s scalar and vector, respectively. Based on
the expanded Euler’s formula [50], the rotation for quaternion
around the axis a = [ax , ay, az] by a theta angle is defined as
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follows (See [48], [51] for further details):

q = cos
(
θ

2

)
+
(
ax · i+ ay · j+ az · k

)
sin
(
θ

2

)
(1)

Furthermore, the operation to be performed on a vector r to
produce a rotated vector r ′ is given by the equation (1), which
is an useful representation that makes easier the rotation of a
vector. We can see that r is the original vector, r ′ is the rotated
quaternion, and q is the quaternion that defines the rotation.

r ′ = qrq−1

replacing q and q−1 the equation is rewritten as follows:
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The iQSA method takes a set of four signals as input and
convert them in a pure quaternion to evaluate the orientations
and rotations made by the EEG signal in the time domain.
Table 1 shows the algorithm of the iQSA method towards
real-time applications, whose aims to calculate the rotation
and module of the signal and build an array of features with
the mean (µ), variance (σ2), contrast (Ct), and homogeneity
(H ). For this purpose, a feature matrix (M ) is defined from
the description of the quaternion q and a vector r , where each
of them corresponds to an array of 4 and 3 EEG channels,
respectively.

Algorithm 1 can be described as follows: the required
input data (quat) are the signals to be analyzed, and includes
signals from the four channels. Delta movements in time
(dt), ns represents a segment of the signals to be analyzed,
t_disp is a displacement in time t of samples, and pr is
a flag to indicate whether the sample is being used during
validation or training. Line 1 calculates the segments matrix
y(t) defined by the changes between classes defined in quat .
Line 2 dictates that for each segment (ns) in yi, q(ns) and
r(nr) are formed considering that q(ns) is an array with n
quaternions and r(ns) is an array with n pure quaternions
moved according to a dt value. After this, the rotation qrot (ns)
is calculated using quaternions, which produces an array of n
rotated quaternions. Similarly, it calculates the scalar array
qmod (ns) from the module qrot (ns), which contains n scalar
elements that will be used to form a matrix withMi,j features,
where index i corresponds to the analyzed segment and index
j is one of the m features to be analyzed using the equations
included in Table 2.

B. CENTRAL PATTERN GENERATOR
The principles of CPGs emerged a century ago when
Brown et al. [52] determined that the central nervous system
can generate stereotyped movements, whose main character-
istic is the alternation between the skeletal muscles known
as flexors and extensors. In 2012, Grabowska et al. [53]
presented a study on the coordination patterns of the
stick insect Carausius Morosus’s limbs (Figure 1a) when

TABLE 1. iQSA method.

walking freely along a straight path on a flat, horizon-
tal surface. Grabowska deciphers the rules and mecha-
nisms that control leg coordination in hexapods in that
investigation, identifying several patterns like the one in
Figure 1b.

The emulation of these biological motor activities has
inspired many researchers to adopt this locomotion mecha-
nism on robotic devices, mainly due to the insect’s ability of
easy navigation in uneven terrain. There are different types
of mathematical models developed to study biological CPG’s
[42]. One of the most recent is spiking neurons, considered
the third generation of artificial neural networks. Spiking
neurons are processing units described by differential equa-
tions that emulate the electrochemical processes occurred in
the brain [54]. An essential fact of these models, and the
main reason for their application in this work, is that using
a network of spiking neurons, we can generate periodic pat-
terns just like the insect mentioned above’s movements, see
Figure 1b.

To do this, we used the ‘‘Integrate-and-Fire’’ (IF) model,
the best-known example of a spiking neural model, capable
of reproducingmost of the neuronal dynamics observed in the
brain [55]. The IF model describes a neuron’s state in terms
of the membrane potential, determined by the synaptic inputs
and an injected current.

In this model, the neural dynamics can be represented as
spike trains. For this model, the membrane potential Vi and
the firing state Zi of the ith neuron at time k are given by the
follows equations:

Vi[k]=γVi[k−1](1−Zi[k−1])+
N∑
j=1

Wi,jZj[k−1]+I exti

(3)
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FIGURE 1. Stick insect. a)Arrangement of the limbs of the stick insect, b)Schematic drawing of
hexapod walking patterns. Arrangement of the limbs of the stick insect. The letters R and L refer to
the insect’s left and right legs. The green bars indicate the oscillation phase of each leg of the animal
(when the corresponding limb is resting on the ground).

and,

Zi[k] =

{
1 if V ≥ θ (firing)
0 otherwise

(4)

where γ ∈ (0, 1) defines the leak rate, Vi[k] represents the
membrane potential of the ith neuron at time k , Z represents
the firing state, N is the number of neurons (one per servo
motor), W is the matrix of synaptic weights, and I ext repre-
sents an external stimulus. Hence, when Vi[k] reaches a given
threshold θ , a spike occurs in Zi[k] and the neuron i is reset
by the term (1 − Zi[k]) in equation 3 (See [47] for further
details).

Eq. 3 estimates the membrane potential for a neural net-
work with N neurons, and Eq. 4 allows to generate the output
of the SNN basis this membrane potential.

In our case, N is equal to 12 for the hexapod robot (see
Fig. 4), since we have a one-to-one correspondence between
neurons and servomotors (or Degrees Of Freedom). The SNN
is described in the following section.

1) HARDWARE
We use the robotic platform MH2 of Lynxmotion, a hexapod
robot with 12 degrees of freedom (DOF) with each leg of
two DOF’s (see Figure 2). Each articulation is motioned by
a servomotor Hitec of high torque. The figure shows the red
ovals tagging each of the articulations (servos), giving them
the name of coxa and femur. Talking about the electronics,
the central part of the module is integrated by Opal Kelly
ZEM4310 (Figure 3a), based on a Field Programmable
Gate Arrays (FPGA) of family Cyclone IV of Altera, with
55,856 logic elements (LEs), 2,340 Kbits of embedded mem-
ory and 154 embedded 18 × 18 multipliers. The integration
module is formed by a USB 3.0 High transfer connection,
as the 128 MB of DDR2 integrated memory.

To control the servos in the robot a controller SSC-32
(Figure 3b) was used.
This module consists of 32 outputs to control servo motors

using Pulse Width Modulation (PWM) with a 1ms res-
olution and a serial input. This card acts like a bypass
between the internal communication system and the servo-
motors. Therefore, the system locomotion only needs a string
of characters coded in ASCII, sent by a serial controller

FIGURE 2. Hexapod robot structure. Tags C and F correspond to coxa and
femur, respectively, and the letters R and L correspond to right leg and
left leg.

FIGURE 3. Hardware. (a) FPGA ZEM4310 module. (b) SSC-32 servo
controller card.

FIGURE 4. Hexapod Robot: (a) Frontal view. (b) Lateral view.

protocol SSC-32 that generates the corresponding PWM
signals. The card allows the use of extended range servos.
A change in a unit produces a positional change of 1µs in the
PWM pulse width, according to this, the position resolution
is 0.09◦/unit . An HC-06 module was used for bluetooth
communication.

Figure 4 shows the hexapod robot integration with
the FPGA ZEM4310 and the SSC-32 servo controller
card.
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FIGURE 5. Communication architecture for iQSA-BCRI.

III. ARCHITECTURAL OVERVIEW
Figure 5 describes the software architecture implemented
to communicate the BCI and the hexapod robot through
EEG signals of motor imagery obtained from subjects.
The proposed system consists of three modules: (1) EEG
Signal Acquisition, (2) iQSA, and (3)Bioinspired Robot
Locomotion.

A. EEG SIGNAL ACQUISITION
In this research, we used the Emotiv Epoc headset to record
the EEG signals (Figure 6) during motor imagery activity.
The headset has a gyroscopic sensor and 14 EEG elec-
trodes distributed in the right and left hemispheres of
the brain, a sample rate of 128 Hz and wireless EEG
system. Although the headband provides 14 electrodes, the
proposed system only requires four sensors (F3, F4, FC5,
and FC6) to identify the imagined command. These four
electrodes were selected due to their location near the
lower parietal lobe and the premotor cortex, where a group
of neurons from the cortex called mirror neurons which are
activated during the execution or imagination of movement.
We implemented an experiment to acquire users’ EEG
signals, train the recognition algorithm, and build the
real-time experiment classifier (The details of the exper-
iment are mentioned in secion IV). After that, a multipro-
cessing system was implemented in Python 2.7 to manage
the EEG data acquired by the BCI device in real-time. In this
system, a process named producer registers readings EEG
signals every 1 second and stores the information in a FIFO
data structure (Firs-In, First-Out). Simultaneously, another
process (consumer) continuously checks if elements are wait-
ing to be analyzed. If so, the consumer process will remove
that element and send it to the iQSA module for analysis.

B. iQSA MODULE
The iQSA module aims to analyze, process, and classify the
acquired EEG signal blocks, identifying their most relevant
characteristics to determine the action imagined by the user.
According to Figure 7, EEG data block of 1s (128 samples)

FIGURE 6. Emotiv Epoc headset has a gyroscopic sensor and 14 EEG
electrodes distributed in the right and left hemispheres of the brain,
a sample rate of 128 Hz and wireless EEG system.

TABLE 2. Statistical characteristics adapted for implementation in the
iQSA method.

is analyzed with the iQSA module; for this, it was performed
an offset in the signal every 8ms (T_disp) to obtain small
data samples (wn) of 0.5s and form a new sample (wn+1).
Additionaly, this process performs an overlap sampling (win-
dowing), producing a greater amount of samples to reinforce
the learning stage of the algorithm.

Then, every time aWindow (wn) is formed, the queue struc-
ture waiting to be evaluated enters to calculate the rotation
of the vector qrot (t) using the quaternion q and the vector r ,
where q is an m-by-4 matrix containing m quaternions, and
r is an m-by-3 matrix containing m quaternions displaced
according to a dt value. Later, the modulus is applied to the
quaternion q resulting in the vector qmod . After that, the scalar
array qmod is calculated from the module qrot , which will be
used to form a matrix features Mi,j, where i corresponds to
the analyzed segment, and j is one of the four features to be
analyzed using the equations in Table 2.

In this study, we use a decision tree classifier for the
training and validation process. To train our model, we sep-
arate the initial data set considering 70% of data samples
for the training stage and the remaining 30% for the test
stage. Each sample (ns) was executed 20 times to obtain its
set’s performance and the decision rules in the training stage.
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FIGURE 7. EEG signal subsampling with window and window scrolling.

FIGURE 8. Topology of the pulsating neural network.

In the validation stage, the remaining 30% of the data set
was evaluated with the decision rules generated in the training
stage to obtain final recognition and the movement imagined
by the user. Finally, action imagined is sent to the locomotion
module for implementation.

C. BIO-INSPIRED ROBOT’ LOCOMOTION MODULE
We defined the locomotion mechanism for leg coordination
of the robot based on a spiking neural network, which acts as
a CPG. The CPG consists of a spiking neural network, which
produces rhythmic patterns known as locomotion gaits. For
this research, we defined three gait patterns: turn-left, turn-
right and walk forward, that topology can be seen in Figure 8.
Where each neuron is shown in a different color, synaptic
connections are represented by arrows of the color corre-
sponding to the presynaptic neuron and synaptic weights are
indicated with numerical values in black. In total, the network
has 13 synaptic connections (12 excitatory and 1 inhibitory).

With the aim of evaluating the design and performance of
the CPG, the simulation of the SNN in Matlab was made,
obtaining the simulation shown in Figure 9, where each neu-
ron is represented with the same color of the network topol-
ogy and the pattern generated by the simulation is identical
to the one to be replicated (See [47] for further details).

In order to generate the bio-inspired robot locomotion,
we defined a locomotion system block diagram (Figure 10)
designed from three modules: (1) a HC-05 Bluetooth module

that receives the data from the iQSA module and sends them
to the FGPA; (2) FGPAmodule consist of three sub-modules:
CPG, Bluetooth and RS-232; and (3) Robot Module with
three submodules: left servos, right servos and servos con-
troller card (SSC32).

In the block diagram, the HC-05 module communicates
with the FPGA module through the Bluetooth sub-module
in charge of receiving the iQSA module’s commands and
interpreting them, so the CPG submodule generates the corre-
sponding gait pattern. In this way, the FPGAmodule sends the
generated locomotion patterns to the SSC32 controller card to
activate synchronically the left and right servo-motors.

Figure 11 shows the electronic design at the registers trans-
fer level (RTL) of Quartus for the implementation of the
pulsating neural model, which receives as input the number
of neurons in the network (N ), the matrix of synaptic weights
(Wi,j) the initial values vector of membrane voltages (V0), the
initial values vector of the neuron state (Z0) and the threshold
θ . As output, the spiking activity Z and membrane voltages
V are obtained. For the implementation, the synthesizer used
four 16-bit 2 to 1 multiplexer, a 4-bit 12 to 1 multiplexer,
two 16-bit adders, two 16-bit registers, a MOD 12 counter,
a 16-bit comparator, and a block of memory for the synap-
tic weights of 12 16-bit memory locations, two inverters,
an AND gate, and an OR gate.

Regarding the RS-232 sub-module, it receives as input the
output vector Z generated by the CPG and it is responsible
for translating such outputs into instructions for the SSC32
servo controller. RS-232 is an asynchronous serial transmis-
sion protocol, where characters are transmitted in ASCII
code. In this case, the transmission speed used is 9600 baud.
The instruction format sent to the SSC32 module is as
follows:

#<ch>P<pwm> . . . #<ch>P<pwm>T<time><cr>
where
<ch> = channel, decimal number between 0 and 31.
<pwm>= Pulsewidth inmicroseconds, from 500 to 2500.
<time> = Time in milliseconds to complete a servo

movement.
<cr> = carriage return, character ASCII 13.
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FIGURE 9. Gait patterns: turn-left, turn-right, and walk forward. Raster plot generated in Matlab (pulsating neural network simulation).

FIGURE 10. Locomotion system block diagram.

The Bluetooth sub-module is also based on the RS-232
protocol; in this case, ASCII code instructions from the iQSA
module are used to indicate to the CPG submodule the pattern
which the robot must generate (turn left, turn right or stop).
The locomotion patterns, turn-left, and turn-right are shown
in Figure 9. These patterns are obtained by denying the exits
of neurons corresponding to the left and right coxa, respec-
tively, in the walk forward pattern.

IV. IMPLEMENTATION AND RESULTS
The implementation of the proposed system was carried out
in 2 phases: (1) Offline experiment for the generation of
decision rules and (2) Real-time experiment.

A. OFFLINE EXPERIMENT
This phase is essential to train the recognition algorithm.
It includes theMI training process to familiarize the user with
the imagined commands using visual stimulation, receive
feedback to speed up the learning, and improve the real-time
experiment’s performance.

1) EEG DATA ACQUISITION AND PROCESSING
For the EEG data acquisition, we recruited 120 healthy peo-
ple, 51 women and 69 men between 23 and 44 years of
age, who were instructed about the experiment and its

duration. After, subjects were asked to fill out a form to
collect information about the current state in which they
are presented to the test, such as insomnia, stress, fatigue,
headache, among others, which may influence informa-
tion processing. It is essential to mention the experiment
followed ethical guidelines obtaining the participants’
consent and guaranteeing their privacy.

We enabled a place to avoid distractions and eliminate
external audible or visual noise. The experimental protocol
was as follows: The Emotiv-Epoc headband was placed on
each participant (Figure 13), taking care of the electrodes’
correct placement with the scalp. After that, we asked each
subject to perform mentally three actions (turn-left, turn-
right, and stop) according to the visual stimulus displayed
on the screen randomly. The image of a red arrow sliding to
left and right corresponded to themental imagination turn-left
(TL) and turn-right (TR), respectively. The image of a fixed
cross in the center of the screen signal to the user a state of
rest (action mental: stop (S)).
Figure 12, shows the outline of the training session. In the

beginning, appears the visual stimulus ‘‘cross’’ for 3s to
indicate to the user the state of rest and waiting for the next
stimulus. Then, from the second t = 4s, one of the two
arrows was shown: TL or TRwith its respective displacement
for 5s. Each stimulus, indicated by the red arrow instructs
the subject to imagine movement in the specified direction
until the ‘‘cross’’ stimulus reappeared at time t = 9s. The
experimental process is randomly repeated for 5 minutes,
showing a total of 38 arrows (TL,TR) and 38 cross stimuli
(S), with 3 seconds of rest between them. Thus, we record
38,400 samples corresponding to each user’s experiment
time, and 4,608,000 samples from the 120 sessions carried
out.

Next, from the registered data, an analysis was conducted
using 64 samples in the iQSA module to obtain the quater-
nions and their rotations in each iteration. This process
reduced the matrix of original data to an array of quaternions
with 612,121 final samples. Here, statistical measurements
presented in Table 2 were carried out to obtain the array
of characteristics Mi,j, where we took 70-30% of the data
for the training and validation stage respectively. The data
was classified using a decision tree to obtain: decision rules,
recognition rates (RT ) and error (ET ). This process was
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FIGURE 11. Pulsating neuron design diagram.

FIGURE 12. Experiment performed on users for data acquisition to train
the classifier.

performed 20 times by selecting randomly the data for each
repetition. The obtained decision rules were coded in Python
and integrated into the iQSA online module for the real-time
validation stage.

2) BCI PERFORMANCE
The classification results of all users were averaged and are
shown in Table 3. These results were evaluated using the
confusion matrix output of the Decision Tree classifier. The
table shows the percentage of recognition obtained from the
three motor imagery activities, carried out by each participant
in the experiment.We can see that subject 33 got the precision
highest of 99.87%, while subject 11 had the lowest precision
of 46.21%. Finally, all participants’ average recognition rate
was 97.72% and an average error rate of 2.27%.

We use other assessment metrics such as sensitivity(S)
and specificity(Sp) (Table 4). The sensitivity metric shows
that the classifier can recognize samples from the relevant
class, and the specificity measures whether the classifier can
recognize samples that do not belong to the relevant class.
In this test, the sensitivity average for class 0(S0) associated
with the waiting time mental state was 99.12%, and the
sensitivity average for class 1(S1) and class 2(S2) associated

with turn-left and turn-right was 99.17% and 99.57% respec-
tively. Then, it is implied that the classifier had no problem
categorising classes. In turn, the specificity rate for class
0(Sp0) shows that 99.37% of the samples classified as neg-
ative were actually negative, while class 1(SP1) performed
at 99.35% and class 2(SP2) at 99.15%. The precision (P) of
each class was 96.48%, 95.73%, and 99.57% for classes 0, 1,
and 2 respectively.

Once the iQSA module’s decision rules were obtained,
they were codified and implemented in Python to evaluate
the functioning of the robot online.

3) COMPARISON WITH OTHER SYSTEMS
To evaluate the performance of our approach, we have carried
out a comparison with other BCI systems. Table 5 shows
performances reported under similar experimental conditions
using a left-right imagery engine. Li and Daeglau obtained
71.72% and 63% of accuracy controlling a humanoid robot.
Jiang and Barbosa controlled a mobile robot with motor
imagery, getting 95% and 90% of mean accuracy, and our
study shows a better accuracy to control a bio-inspired hexa-
pod robot. Besides, response times reported since the subject
initiates the command until it is executed by the robot are
around 1.6 and 2.6 seconds. With our method, the response
time is of 1.5 seconds, shorter than reported in other studies.

To analyze our results, we performed a significant sta-
tistical test making use of the STAC (Statistical Tests for
Algorithms Comparison) web platform [56]. Here, we chose
the Friedman test with a significance level of 0.05 to rank
the algorithms and check if the differences between them are
statistically significant.

Table 6 shows the Friedman test ranking results obtained
with the p-value approach. We can observe that our proposal
gets the lowest ranking; that is, the iQSA model has the best
accuracy among all the algorithms.

In order to compare whether the differences between iQSA
and the other methods are significant, a Li post hoc procedure
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TABLE 3. Accuracy obtained after apply the iQSA method (RT and ET refer to the recognition and error rates respectively).

TABLE 4. Assessment Metrics obtained after applying iQSA method.

was performed (Table 7). The differences are statistically
significant because the p-values are below 0.1.

B. REAL-TIME EXPERIMENT
To evaluate the real-time proposed system’s performance,
we experimented with three subjects who were instructed to
imagine all three states to control the hexapod robot: turn-left,
turn-right, and relax for actions TL, TR, and S, respectively.
Each time the user performs a motor imagination activity,
the developed system displays the command detected on
the screen as visual feedback of the imagined movements.
Simultaneously, the command is sent to the hexapod robot to
execute the corresponding locomotion pattern (Figure13).

An environment like the one in Figure 14 was used to
instruct the subjects to control the hexapod robot. The robot
must walk from one initial position until a target position on
a 3mx2m ground. It is essential to mention that the robot was
configured to execute the walk forward pattern gait, besides
it was included an ultrasound sensor to the robot to prevent
it from colliding with some obstacle. In this way, if the robot
found an obstacle, then it stops, waiting for instructions to
‘‘turn-left’’, ‘‘turn-right’’, or ‘‘stop’’.

FIGURE 13. User electrode placement and training stage.

FIGURE 14. Environment of the experiment of 3m × 2m area.

In the experiment, subjects were asked to complete four
cognitive tasks (two left and two right). Table 8 shows the
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TABLE 5. Comparative BCRI performances.

TABLE 6. Li Post Hoc adjusted p-value for the test error ranking.

TABLE 7. Li Post Hoc adjusted p-value for the test error ranking.

TABLE 8. Experimental result in real-time.

TABLE 9. Execution time of iQSA process.

number of mental actions performed, the percentage of pre-
cision obtained regarding recognized mental activities, and
the average time from intention to the command’s execution.
We can see each subject’s total time to complete the entire
established path in the table. Subject A and B managed to
complete four commands, but subject C found it quite chal-
lenging to complete the path; this might be due to a lack of
concentration or desperation to accomplish the task. Another
aspect to be consider is that motor imagination activities
require a lot of attention and training, so that the system needs
to be trained to adapt it to each individual in particular and
achieve better results.

A real-time system must have the ability to perform tasks
in a response time determined. We show the time required
for each of the functions performed by the iQSA algorithm
(Table 9): (1) quaternion (2) and classification. According to
the experiment, for offline classification (processes 1 and 2),
the processing time required was 0.34546 seconds. However,
the time online executed to recognize the motor imagery
activity generated by each subject was of 0.01 seconds, con-
sidering that the learning trees were already developed, even
when the processing phase was done in real-time.

Finally, the delay time since the iQSA module identifies
an action command until that is received and executed by the
robot is between 1 to 1.5s

V. CONCLUSION
The relationship between neuroscience and robotics has led
to various investigations related to living beings’ locomotion
and adapting them to robotic systems. This research com-
bines the following elements: BCI interface, iQSA method,
imagery engine, CPG’s systems, pulsating neural networks,
and a hexapod robot to establish a communication system
between them. That is, we developed a system to control a
bio-inspired hexapod robot in real-time with three cognitive
instructions given by the user: turn-left, turn-right, and stop.
We used spiking neural networks that mimic a CPG behav-
ior to reproduce and execute the orders received. The EEG
signals generated in the BCI were classified using the iQSA
method, which bases its operation on quaternions’ algebra.
The average accuracy rate obtained in tests performed offline
was 97.72%, with an average time of 0.34s since the EEG sig-
nals were acquired until their processing by the iQSAmethod.
Instead, the online time only requires 0.01s to capture the
order and execute the movement.

Performance results obtained in the real-time experiment
and offline processing times showed that the system devel-
oped effectively controls a bio-inspired hexapod robot based
on motor imagination activities. Furthermore, we can also
conclude that the iQSA method is ideal for controlling a
robotic system in real-time. So far, the system responds to
three cognitive activities. Still, it is intended as future work
to extend the number of commands and perform algorithm
processing in hardware without relying on a central computer.
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