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ABSTRACT Brain is the controlling center of our body. With the advent of time, newer and newer brain
diseases are being discovered. Thus, because of the variability of brain diseases, existing diagnosis or
detection systems are becoming challenging and are still an open problem for research. Detection of brain
diseases at an early stage can make a huge difference in attempting to cure them. In recent years, the use of
artificial intelligence (Al) is surging through all spheres of science, and no doubt, it is revolutionizing the
field of neurology. Application of Al in medical science has made brain disease prediction and detection
more accurate and precise. In this study, we present a review on recent machine learning and deep learning
approaches in detecting four brain diseases such as Alzheimer’s disease (AD), brain tumor, epilepsy, and
Parkinson’s disease. 147 recent articles on four brain diseases are reviewed considering diverse machine
learning and deep learning approaches, modalities, datasets etc. Twenty-two datasets are discussed which
are used most frequently in the reviewed articles as a primary source of brain disease data. Moreover, a brief
overview of different feature extraction techniques that are used in diagnosing brain diseases is provided.
Finally, key findings from the reviewed articles are summarized and a number of major issues related to
machine learning/deep learning-based brain disease diagnostic approaches are discussed. Through this study,
we aim at finding the most accurate technique for detecting different brain diseases which can be employed
for future betterment.

INDEX TERMS Alzheimer’s disease, brain tumor, deep learning, epilepsy, Parkinson’s disease, machine

learning.

NOMENCLATURE
The most commonly used abbreviations in this survey are
summarized in Table 1.

I. INTRODUCTION

Over the most recent couple of decades, brain-computer
interface (BCI) turned into one of the most favorite fields
of research due to its unlimited possible applications such as
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brain fingerprinting, detection and prevention of neurological
diseases, adaptive e-learning, fatigue, stress, and depression
monitoring and so on [1]. BCI establishes an effective com-
munication link between a brain and a device by capturing the
most relevant feature required for the establishment. Among
the applications of BCI given above, detection of neurolog-
ical diseases has turned into an acute research field due to
its growing importance which need not be mentioned. Due
to the complex structure of the brain that varies with age
and pathological history, it has always been very hard to
detect neuro-degenerative diseases. It is very much important

VOLUME 9, 2021


https://orcid.org/0000-0002-7139-5965
https://orcid.org/0000-0003-2968-9561
https://orcid.org/0000-0002-3362-4800
https://orcid.org/0000-0002-9559-4352
https://orcid.org/0000-0003-4176-0236

P. Khan et al.: Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis

IEEE Access

TABLE 1. List of frequently used abbreviations.

| Abbreviation Full form ITSFLI Independent test set from local institution
18F Fluorine 18 JADBIO Just add data bio
3D DenseNet = 3D densely connected convolutional networks KMC K-means clustering
AD Alzheimer's disease KNN K-nearest neighbors
ADAS-Cog Alzheimer’s disease assessment scale LBRP Local brain regions patches
scores cognitive scores LDA Linear discriminant analysis
ADC Apparent diffusion coefficient LMCI Late cognitive mild impairment
ADNI Alzheimer's disease neuroimaging initiative LGG Low-grade glimoa
Australian imaging biomarker and lifestyle LR Logistic regression
AIBL flagship study of ageing mAUC Multiclass AUC
ANFIS Adaptive neuro fuzzy inference system MB Medulloblastoma
ANN Artificial neural network MCC Matthews correlation coefficient
APF Adjacency positional features. MCI Mild cognitive impairment
APOE Apolipoprotein E Minimal interval resonance imaging in
APOe4 Apolipoprotein MIRIAD Alzheimer's disease
AUC Area under the curve ML Machine learning
AutoML Automated machine learning MLP Multi-layer perceptron neural network
BAC Balanced accuracy MMSE Mini-mental state examination
BEMT Beijing easy monitor technology MRI Magnetic resonance imaging
BiLSTM Bidirectional long short term memory miRNA Micro ribonucleic acid
BLP Bootstrapped Latin partition mRNA Messenger RNA
BraTs Brain tumor segmentation MSBI Multiple spectral band information
BSVM Brain structural volumetric measurements mTLE Mesial temporal lobe epilepsy
CAE Convolutional autoencoder NACC National Alzheimer’s coordinating center
CCD Correlation coefficient data NB Naive Bayes
CDR Clinical dementia rating score NC Normal control
CERF Cluster evolutionary random forest, OASIS Open access series of imaging studies
CFS Correlation-based feature selection, PA Pilocytic astrocytoma
CHB-MIT Children’s hospital Boston-MIT PCA Principal component analysis
CHCC Chettinad health city, Chennai. PCANet PCA network
¢-MCI converting MCI PET Positron emission tomography
CNN Convolutional neural network PD Parkinson’s disease
conv-ELM ELM-boosted convolutional learning method pMCI Progressive state of mild cognitive impairment
CRT Clinical relevant text PPMI Parkinson’s progression markers initiative
CSF Cerebrospinal fluid PreAnalytiX PAXgene blood RNA tubes
CVD Cardiovascular disease PSO Particle swarm optimization
DBN Deep belief network QDA Quadratic discriminant analysis
DCDT Digital clock drawing test RBF Radial basis function
Discriminative contractive slab and spike RCPF Regional connectivity positional features
DCssCDBM  convolutional deep Boltzmann machine recur-ELM  ELM-boosted recurrent learning method
DenseNet Dense CNN RF Random forest
Downsized kernel principal component R-fMRI Resting-state functional MRI
DKCPA analysis RFE Recursive feature elimination
Department of nuclear medicine in the medical RLL Ridge logistic regression
DNM, GMU  University of Gdansk (Poland). MEG Magnetoencephalography
DL Deep learning RNN Recurrent neural network
DNN Deep neural network ROC Receiver operating characteristic
DT Decision trees ROI Regions of interest
DTI Diffusion tensor imaging RROI Rough ROI
DWI Diffusion weighted imaging RTS R-fMRI time series
EEG Electroencephalogram SAMPLE Serial Alzheimer disease and MCI prospective
ELM Extreme learning machine longitudinal evaluation
EM Ensemble methods SCNN Siamese convolutional neural network
EMCI Early mild cognitive impairment SCD Subjective cognitive decline
EP Ependymoma SMC Significant memory concern
FAQ Frequently asked questions sMCI Stable state of mild cognitive impairment
FCM Fuzzy c-means sMRI Structural MRI
FCN Fully convolutional network SNP Single nucleotide polymorphism
FDG Fluorodeoxyglucose SPECT Single photon emission computed tomography
FHS Framingham heart study SSA Supervised switching autoencoders
fMRI Functional MRI SSD Single shot multi-box detector
Fully stacked bidirectional long short-term ST Shearlet transform
FSBi-LSTM  memory SvC Support vector machine classifier
GBM Glioblastoma multiform SVM Support vector machine
GBT Gradient boosted trees TOP Three orthogonal panels
GEO Gene expression omnibus TPOT Tree-based pipeline optimization tool
GMV Grey-matter volumes UCI University of California, Irvine
GNB Gaussian naive Bayes UMMC University of Malaya medical Centre.
H-FCN Hierarchical fully convolutional network UPDRS Unified Parkinson’s disease rating scale
HABS Harvard aging brain study UniProt Universal Protein
HMM Hidden Markov model VITAS Vienna Trans-Danube aging study
HGG High-grade glimoa WM White matter
HMSD Harvard medical school dataset YOLO You only look once
HNN Hierarchical neural network
ISLES Ischemic stroke lesion segmentation

to diagnose these diseases in early stages. Computer-aided
mechanisms play a better role than conventional manual prac-
tices in detection of different brain diseases [2]. However,

the main focus of this study is to provide a brief review on
recent ML and DL approaches to detect four different most
common types of brain diseases such as Alzheimer’s [3],
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brain tumor [4], epilepsy [5], and Parkinson’s [6]. In the fol-
lowing section, a brief discussion on ML and DL is provided.

A. BACKGROUND KNOWLEDGE ON ML AND DL

ML is a process of training a computer to apply its past experi-
ence to solve a problem given to it. The concept of application
of ML in different fields to solve problems faster than human
has gained significant interest due to the current availability
of cheaper computing power and inexpensive memory. This
makes it possible to process and analyze a very large amount
of data to discover insights and correlations amongst the
data which are not so obvious to human eye. Its intelligent
behavior is based on different algorithms which enables the
machine to make abstractions based on experience, in order
to produce salient judgments. On the other hand, DL is
a sub-field of ML, however, a more advanced approach
which enables computers to automatically extract, analyze
and understand the useful information from the raw data by
imitating how humans think and learn [7]. Precisely, deep
learning is a group of techniques that is neural data driven
and based on automatic feature engineering processes. The
automatic learning of features from inputs is what makes it so
accurate and of excellent performance [7]. A quick overview
of the difference between artificial intelligence (Al), ML, and
DL is provided in Fig. 1. Success in making the right decision
in ML and DL relies on the classification algorithm. There
are different classification algorithms available in ML which
are specially designed for classification purposes and the
performance is quite decent. Even though performance of ML
is quite up to rank, it is currently being replaced by DL in most
classification applications. The principle difference between
ML and DL is in the technique of extracting the features
on which the classifier works on. Extracted features of DL
from several non-linear hidden layers makes its classification
performance far better than ML’s classification which relies
on handcrafted feature. In order to understand the difference
between ML and DL, let us refer to Fig. 2.

B. CLASSIFIERS

Data to be examined under ML/DL must go through a bunch
of preprocessing steps in order to transform the raw data into
machine readable data and to prepare it to undergo feature
extraction. Analysis of data that has been collected is done
based on certain characteristics called features. The features
being considered must have the ability to discriminate and
must be non-redundant. This way the training time and over-
fitting issues are decreased. There are different methods of
extracting features. A brief overview of the feature extrac-
tion methods that are most commonly used in brain disease
detection is provided in Section IV. After the extraction of
features, the data can be labeled. The method by which the
machine takes decisions of labeling data is called a classifier.
In other words, a machine uses different classifier algorithms
to classify data. Some of the most frequently used classifiers
are SVM, RF, LR, DT, NB, KNN, and so on. On the contrary,
instead of the step-by-step process like ML, DL forms an
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ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING

L, Itisanalgorithm that
is used to mimic
human cognition and
behaviour

Itis a subset of Al and uses
statistical methods to au-
tomatically learn and im-
prove based on experi-
ence

Itis a subset of ma-
chine learning that
uses complex algo-
rithms and neural net-
works to train a model

FIGURE 1. Difference between Al, ML and DL.
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FIGURE 2. Difference between ML and DL.

entire network inspired by a biological neural network in
order to perform the entire process of ML. It uses several
layers of nonlinear processing units. The output of a unit
is fed as input to the next unit. Throughout the hierarchical
structure of data movement, each level transforms the data it
receives into more abstract data to be fed to the next level.
DL employs different kinds of classifiers including RNN,
CNN, Boltzmann machine, autoencoders, and DBN. Consid-
ering the literature surveyed in this work, the ML and DL
classifiers to detect brain diseases can be classified as shown
in Fig. 3.

C. SEARCH STRATEGY

We searched articles related to ML and DL approaches on
above- mentioned 4 brain diseases till October 2020 mainly
from IEEE Xplore (https://ieeexplore.ieee.org/), Sciencedi-
rect (https://www.sciencedirect.com/) and Google Scholar
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FIGURE 3. Classifications of ML and DL techniques to detect brain diseases.

(https://scholar.google.com/). 147 papers are selected in total
for review considering different criteria such as diverse
ML/DL approaches, different modalities of data for clas-
sifying diseases, source of datasets etc. Articles related to
AD are selected from the period 2018 to 2020, whereas
articles related to brain tumors, epilepsy, and PD are chosen
only from 2020.

D. PERFORMANCE METRICS

Evaluation of ML/DL detection systems in order to shape
the likelihood of correctly classifying AD, MCI, and
NC is based on some performance parameters including
accuracy (Acy), sensitivity (Spy) /recall, specificity (Spy), pre-
cision (Pr,), AUC, and F1 score. Different performance met-
rics imply different conclusions for a detection model. While
a model may give outstanding results in terms of accuracy,
it may give very poor results in terms of specificity. Based
on the rationale, we summarize the papers in tabular form
including the performance metrics stated. The elementary
evaluation metric of any classification system is accuracy. Itis
as simple as the number of accurate predictions to the total
number of predictions being made. Mathematically, it can be
defined as

T+ N
L+ Fr+ v+ Fn

Acy = ey
where tp and 1y are true positive and true negative
respectively, which refer to correctly labeling positive as
positive and negative as negative. Labeling negative as pos-
itive and vice versa results in false positive (Fp) and false
negative (Fp), respectively. While accuracy deals with both
positive and negative results, the performance of a spe-
cific model in terms of detecting either positive or negative
is evaluated using sensitivity/recall and specificity, respec-
tively. Therefore, mathematically sensitivity and specificity
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are defined respectively as

Spy = — @)
Y+ Py

N
Spy = —mM8. 3
Yy + Fp )

These are also known as true positive rate and true negative
rate, respectively.

The formula of sensitivity implied that it is a measure of the
successful diagnosis of diseased patients. On the other hand,
precision measures the actuality of the diagnosis i.e., the
proportion of the patients diagnosed by a system, who were
actually affected by the disease. Mathematically, it can be
defined as

p

Pp=——7.
m ‘[P—i—fP

“)
On the other hand, the harmonic mean of sensitivity and
precision is called the F1 score of that model which is defined

as
Spy X P
Fl =2 x <M> (5)
sny + Py

Moreover, the plot of true positive rate vs. false positive
rate is widely used for the assessment of the diagnostic
ability of a binary classification system and is referred to
as receiver operating characteristic curve (ROC). The area
under the ROC curve (AUC) defines the ability of the model
to distinguish between the binary choices under diverse dis-
crimination threshold. Furthermore, MCC is defined as the
ratio of specificity and sensitivity. Mathematically, it can be
represented as

S
MCC = S—Py (6)
ny
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.6. Contributions
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challenge  2.22. HMSD

FIGURE 4. Paper organization.

Another evaluation metric is known as Jaccard similarity
index (JSI) which can be calculated mathematically as

JSI = i )
o o+ Fy + Fp ’

E. IMAGE MODALITY AND OTHER DATA

One of the most prominent factor is the source of data to
detect different types of brain diseases. These data can be
in the form of MRI images, PET, SPECT, speech, blood,
protein, saliva, sensors data related to gait patterns, and so
on. In Section V, image modality and other data that are
used most commonly to detect four different types of brain
diseases (e.g., AD, brain tumors, epilepsy, and PD) are sum-
marized.

F. CONTRIBUTIONS
The main contributions of this survey are summarized as
follows:

o We have brought together recent researches on four
brain diseases (e.g., AD, brain tumor, epilepsy, and PD)
exploiting ML and DL with the goal of searching for the
most accurate technique of detection.

« A brief overview on each of the twenty-two brain disease
databases that are used most frequently in the reviewed
articles is provided.

o Abrief overview on most commonly used feature extrac-
tion methods in diagnosis of brain diseases is provided.
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3. Contemporary ML and DL
approaches in brain disease diagnosis

5. Discussions and future l
research directions 6. Concluding remarks

4. Feature extraction techniques in
brain diseTe diagnosis

References

5.1. Research findings
5.2. Open issues and future
directions
5.2.1. Explainable diagnosis
and clinical practice

4.1. Multiscale geometric analysis
4.2. Wavelet based feature extraction
4.3. Component analysis

4.4. Sparse inverse covariance estimation 5.2.2. Quality of training

and data availability
5.2.3. Interoperability and
collaboration
5.2.4. Security and privacy
5.2.5. Resource efficient
methods
5.2.6. Emerging concepts

4.5. Gaussian mixture model

4.6. Non-negative matrix factorization
4.7. Shearlet transform

4.8. Pearson correlation analysis

4.9. K-skip-n-gram

3.1. Alzheimer's disease (AD)
3.1.1 ML-based approaches in AD diagnosis
3.1.2 DL-based approaches in AD diagnosis

3.2. Brain tumor
3.2.1 ML-based approaches in Brain Tumor diagnosis
3.2.2 DL-based approaches in Brain Tumor diagnosis

3.3. Epilepsy
3.3.1 ML-based approaches in Epilepsy diagnosis
3.3.2 DL-based approaches in Epilepsy diagnosis

3.4. Parkinson’s disease (PD)

3.4.1 ML-based approaches in PD diagnosis
3.4.2 DL-based approaches in AD diagnosis

« Finally, the key finding from the reviewed articles are
summarized. Moreover, various open issues and future
research directions are provided.

G. PAPER ORGANIZATION

The rest of the paper is organized as follows. In Section II,
the different brain disease databases are described. Litera-
ture review on four different brain diseases is provided in
Section III. Section IV demonstrates commonly used feature
extraction methods. Key findings from the reviewed articles
are provided in Section V; the section also discusses a number
of open research issues and possible future directions. Finally,
the paper is concluded in Section VI. To look at a glance,
the organization of this article is demonstrated in Fig. 4.

Il. DATABASES RELATED TO BRAIN DISEASE

A. ADNI [8]

AD is assumed to be a slow process and discernible in older
people. The symptoms are not visible for years and are hard
to detect. But detection of AD in the early stages is essential
before starting any clinical procedures. MCI is an initial
stage of AD and might convert to AD. So identification of
MCI is of great significance. Neuroimaging and biomarkers
are the preeminent sources of information in these detection
processes. ADNI is an association of medical centers and
universities located in the USA and Canada. Its main aim is to
provide open-source data sets to discover biomarkers and to
identify and track AD accurately. It developed to become an
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ideal source of longitudinal, multisite MRI and PET images
of patients with AD, MCI, NC, and elderly controls. The
data sets formed to make the detection system powerful by
providing baseline information regarding changes in brain
structure and metabolism and also through clinical, cognitive,
and biochemical data. The study of ADNI has been taking
place for about 17 years from 2004 in four phases — ADNI-1
(5 years), ADNI-GO (2 years), ADNI-2 (5 years), and
ADNI-3 (5 years).

1) ADNI-T

ADNII started its journey in 2004 that continued for five
years. It aimed to look for more precise biomarkers that
can examine for early-stage AD detection and tracking of
the disease. It included 200 elderly controls, 400 MCI, and
200 AD subjects and also accumulated and studied a lot of
brain scans, genetic profiles, and blood and cerebrospinal
fluid biomarkers. They used structural MRI and PET (both
FDG-PET and amyloid PET) as imaging modalities.

2) ADNI-GO

ADNI-GO began in 2009 and continued for two years.
Its objective was to detect AD at earlier stages. Along with
ADNI-1, it added 200 new EMCI subjects. It precisely
analyzed biomarkers at the pre-stages of AD and adjusted
MR protocols accordingly.

3) ADNI-2

ADNI-2 was established in 2011 and lasted for five years.
It aimed to find biomarkers to predict and analyze Cognitive
impairment. Along with existing ADNI-1 and ADNI-GO,
itincluded 150 elderly controls, 100 early MCI, 150 late MCI,
and 150 AD subjects. SMC was added as a new cohort in
ADNI2 to precisely identify the difference between healthy
controls and MCI; They added 107 SMC participants. More-
over, a vital contribution of ADNI2 was the incorporation of
amyloid PET with Florbetapir at all ADNI2 sites and on all
ADNI2 and ADNI GO participants’ data.

4) ADNI-3

ADNI3 started in 2016 and set on a journey in exploring
the interrelations between the clinical, cognitive, imaging,
genetic, and biochemical biomarker characteristics of AD.
ADNI3 incorporated the identification of tau protein tangles
(tau PET) in brain scans. This section additionally continues
the invention, improvement, affirmation, and authentication
of test measures and biomarkers utilized in AD analysis.
ADNI3 encompasses 59 research centers. Along with previ-
ous data, they added 133 elderly controls, 151 MCI, 87 AD
participant’s data.

B. NACC [9]

NACC was founded in 1999 and provided standardized data
to around 32 ADCs. Now they are providing longitudinal
and standardized data regarding neuroimaging and biofluids.
Image modalities include MRI, PET, and CSF. NACC is
one of the largest, longitudinal, and multicenter databases on
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Alzheimer’s disease. It provides a total of 4924 scans and
26287 APOE genotype data. This data set is available to
all researchers who need to give a brief description of their
research to access it.

C. OASIS [10]

The dataset is an open-source data set of MRI images that
can be used by anyone. Initially, it consisted of 416 patients’
data, all of them being right-handed and aged 18 to 96 years.
Both male and female patients were present. One hundred
of them aged above 60 were diagnosed with very mild to
moderate AD. For each MRI, three to four T1 weighted scans
with high contrast to noise ratio. Here, the total volume of the
brain and the estimation of the intracranial volume used for
analyzing normal aging and Alzheimer’s disease. The data
set also provides data on 20 dementia patients.

D. AIBL [11]

AIBL is a cohort of Neurodegenerative diseases like AD,
MCI, SMC, or SCD. The dataset comprised of the info of over
2000 individuals. Different questionnaires and clinical pro-
cesses were used to collect data. All information is being col-
lected over a protracted amount of ten years and enriched with
142 AD, 220 with MCI, and 582 normal patients information.
Moreover, the baseline cohort enclosed the info of 211 with
AD, 133 with MCI, and 786 healthy individuals. Alternative
data includes age gender recruitment periods.

E. MILAN [12]

This dataset is a revised form of the National Institute of
Neurological and Communicative Disorders and Stroke and
the Alzheimer’s disease and related disorders association
criteria of 1984. The revised version would be versatile
enough to be utilized by each general healthcare provider
and researcher. They present criteria for all-cause dementia
and AD dementia. The general framework of probable AD
dementia from 1984 remains the same. On the premise of the
past twenty-seven years of expertise, they tend to create many
changes within the clinical criteria for diagnosing. They pre-
serve the term possible AD dementia. However, redefined it
in a manner additional targeted than before. Bio-marker proof
was additionally integrated into the diagnostic formulations
for probable and possible AD dementia to use in analysis
settings. The core clinical criteria for AD dementia are still
the cornerstone of the diagnosis in clinical apply. However,
biomarker proof boosts the pathophysiological specificity of
the diagnosing of AD dementia.

F. MIRIAD [13]

The dataset includes longitudinal volumetric T1 mag-
netic resonance imaging scans of forty-six mild-moderate
Alzheimer’s subjects and twenty-three controls. It consists
of 708 scans from baseline and conjointly other info like
gender, age, and MMSE score. Details and results are pub-
lically out there as a resource for researchers to develop,
validate, and compare techniques, significantly for a measure
of longitudinal volume modification in MR.
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G. FHS [14]

FHS aims to spot the relevant factors that contribute to CVD.
It followed CVD development over an extended amount of
time in 3 generations of participants. It began in 1948 with an
original Cohort of 5,209 men and women between the ages
of thirty and sixty-two who had not nonetheless developed
open symptoms of a disorder or suffered a heart attack or
stroke. Later, it associated Offspring Cohort (1971), the Omni
Cohort (1994), a 3rd Generation Cohort (2002), a new Off-
spring Spouse Cohort (2003), and a Second Generation Omni
Cohort (2003). It successfully identified vital CVD risk fac-
tors and their effects such as blood pressure, blood triglyc-
eride and cholesterol levels, age, gender, and psychosocial
problems. Moreover, there is ongoing research on the risk
factors of dementia. Also, the relationships between physical
characteristics and genetic patterns within the region unit are
studied.

H. UniProt [15]

UniProt is an open-source database of protein sequence and
annotation data and contains useful info on proteins derived
from genome sequencing projects. UniProt is an association
that includes the European Bioinformatics Institute (EBI),
Swiss Institute of Bioinformatics (SIB), and the Protein Infor-
mation Resource (PIR). UniProt aims to supply researchers
with an absolute, high-quality, and open-source repository of
protein sequence and practical info. More than one hundred
people are concerned through different tasks like info gath-
ering, organizing, software system development, and sup-
port. Each consortium member mostly focuses on the upkeep
of protein information and annotation. Recently, EBI and
SIB along created the Swiss-Prot and TrEMBL databases,
whereas PIR created the protein Sequence information (PIR-
PSD). As a whole, UniProt contributes four core databases:
UniProtKB (with sub-parts Swiss-Prot and TrEMBL), Uni-
Parc, and UniRef.

I. DementiaBank [16]

DementiaBank is one of the imperative datasets of sponta-
neous speech with and without dementia. During this Lon-
gitudinal neuropsychological analysis program, they made
an enrolment of 397 people. Of them, 208 were diagnosed
with dementia, 104 were normal elderly control subjects,
and eighty-five were unknown diagnosis cases. Data was
collected longitudinally and registered yearly basis. Mainly
transcripts and audio files were provided and administered by
the Alzheimer’s and Related Dementias Study at the Univer-
sity of Pittsburgh School of Medicine. The database contents
include cookies, fluency, recall, and Sentence Construction
task data.

J. GEO [17]

GEO is an open-source repository that provides microar-
ray, next-generation sequencing, well-annotated data, and
different functional genomics data submitted by the research
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community. The GEO provides submitter-supplied records
and curated DataSets. Curated DataSets offer advanced
data display and analysis options. Various tools are present
that helps in distinguishing variations in gene expression
levels and cluster heatmaps. At present, there are about
4348 datasets. Here, people can effortlessly find, analyze, and
download data.

K. BraTS CHALLENGE [18]

BraTS’20 consists of 3T multimodal MRI scans of HGG
and LGG tumors for training, validation, and testing. More-
over, certified ground truth labels provided here are all
given by experienced neurologists. BraTS 2020 has come to
its present form by accomplishing many successful events
namely, BraTS 2012 (Nice, France), BraTS 2013 (Nagoya,
Japan), BraTS 2014 (Boston, USA), BraTS 2015 (Munich,
Germany), BraTS 2016 (Athens, Greece), BraTS 2017 (Que-
bec City, Canada), BraTS 2018 (Granada, Spain), BraTS
2019 (Shenzhen, China). Data provided in BraTS’17-’20 is
different from the previous versions, the only similarities
being the images and annotations, which carried over from
BraTS’12-13. Until that time, they were manually anno-
tated. Also, it’s mentionable that the data of BraTS’14-
’16 are all rejected due to some fusion issues in the data.
In BraTS’17, expert neuroradiologists have collected and
categorized (TCGA-GBM, n = 262) and (TCGA-LGG,
n = 199) data to pre-operative or post-operative scans. After-
ward, the pre-operative scans (135 GBM and 108 LGG) were
further annotated to subregions and added to the BraTS’20
dataset.

1) SimBraTS

SimBrats is a dataset of MR intensities used in the detec-
tion of brain tumors. The data is manually segmented and
classified to background, edema, or tumor core. The modal-
ities of image data used here are T1, T1C, T2, and FLAIR.
Annotations are done based on protocols given by qualified
doctors.

L. FIGSHARE [19]

Figshare consists of a total of 3064 2D T1-weighted MRI
images of the brain tumor. It consists of three kinds
of brain tumor images (1426 gliomas, 708 meningiomas,
and 930 pituitary tumors). The images were taken from
233 patients. All these images were taken by expert radiol-
ogists and were publicly shared.

M. KAGGLE REPOSITORY [20]

Kaggle is a repository containing over 50,000 publicly avail-
able datasets. Among them, 'Brain MRI Images for Brain
Tumor Detection’ is a dataset that contains MRI images for
brain tumor analysis. It consists of a total of 253 MRI images.
Out of which, 155 are labeled as yes and the rest as no. The
’yes’ and 'no’ labels respectively indicate the presence and
absence of tumors.

VOLUME 9, 2021



P. Khan et al.: Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis

IEEE Access

N. UCI ML REPOSITORY [21]

UCIT comprises databases, domain theories, and data genera-
tors for analysis of different ML algorithms. The repository
consists of 559 datasets. It is considered a prime source of ML
and has an immense impact in this field. It has been cited over
1000 times which makes it one of the best 100 repositories of
computer science.

O. ISLES CHALLENGE [22]

ISLES incorporates imaging data of acute stroke patients.
The patients were presented within 8 hours of stroke onset
and underwent stroke MRI DWI data within 3 hours after
computed tomography perfusion. The brain lesions eval-
uation of some patients covers the data of two slabs.
Also, for easy analysis of data, the training and mapping
names are presented. This training data set comprises data
of 63 subjects and encompasses diffusion and perfusion map
information.

P. CHB-MIT [23]

CHB-MIT contains EEG signal recordings of 22 pediatric
refractory seizure patients. These records were taken by
observing the patients for several days after the withdrawal of
anti-seizure medication for characterizing their seizures and
also to determine if they require further surgical intervention.
The data contains.edf files. Also, there is a SUBJECT-INFO
file that holds information regarding the gender and age
of each patient. But to protect the privacy of the patients,
the data is replaced with surrogate info. The digitalized
EEG signals are about one, two, four, or even 10 hours
of long data. And these are longer than other available
occasional seizure data. But due to hardware restrictions,
each case contains between 9 and 42.edf files with a gap
of 10 seconds or less. Overall, there are 664.edf files in the
dataset.

Q. BERN-BARCELONA EEG [24]

Bern-Barcelona EEG data set is an open-source dataset that
contains 7500 pairs of EEG signals of five patients. Here,
the EEG signals are quantized by 20 seconds duration. The
frequency range used is 521 Hz. It has signals of about
80 hours and is divided into two groups namely, focal and
non-focal. Each group containing 3750 pairs of EEG signals
and are independent of each other.

R. UNIVERSITY OF BONN EPILEPSY [25]

The European Epilepsy Database is the largest and most
extensive database for human surface and intracranial EEG
data. This database consists of annotated EEG datasets of
over 2500 seizures from more than 250 patients and gives
about 45,000 hrs of EEG at a sample rate from 250 Hz up to
2500 Hz. It also provides additional information on clinical
patients and MR imaging data. This database has the highest
quality of data as it is fully annotated by EEG experts and
contains supplementary metadata.
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S. PPMI [26]

PPMI presents datasets containing advanced imaging, bio-
logical and clinical data to estimate the progression of PD.
These data help to discover progression biomarkers of the
disease. Its aim is to form a repository of clinical data and
biospecimens to help the scientific community in biomarkers
identification research. Biospecimens contain urine, plasma,
serum, CSF, DNA, and RNA data of patients. It is playing a
great role in the research of PD and is currently available in
different clinical sites in the United States, Europe, Israel, and
Australia.

T. PC-GITA [27]

The PC-GITA database contains speech recordings of Span-
ish people having PD and their respective controls matched
by gender and age. In total, it accommodates the speech
of 50 PD patients and 50 healthy controls. It’s the first dataset
that provides recordings in Spanish. All the recordings are
taken in noise controlled environment and using professional
instruments. Also, the protocols are designed under the super-
vision of experts. Variation of the pitch and the stability of
the phonation can be extracted and used for the analysis
of phonation, articulation, prosody, and intelligibility of the
patients.

U. HABS [28]

HABS provides baseline data on neuropsychological, clini-
cal, and imaging. Spreadsheets on Pittsburgh compound B
(PiB)-PET and ROI of sMRI provided here. Also, the number
of neuropsychological tests, clinical assessments, and demo-
graphic information is available. The dataset is accessible
only to the researchers. The dataset is available by filling
out a simple form online. Previously only baseline data were
available. Now they are planning to provide longitudinal data
as well.

V. HMSD [29]

Harvard medical school dataset is an online base database that
is available to all. It contains data on different cerebrovas-
cular, neoplastic, degenerative, and inflammatory diseases of
the brain. Among those AD, gliomas, and stroke are note-
worthy. It also has images of a normal brain. The images are
visible in the browser with some medical terms. Modalities
of images include CT, MRI, and SPECT/PET.

IlIl. CONTEMPORARY ML AND DL APPROACHES IN
BRAIN DISEASE DIAGNOSIS

In this section, we provide a review on recent developments
related to ML and DL approaches to detect four different
most common types of brain diseases such as Alzheimer’s,
Parkinson’s, brain tumor, and epilepsy.

A. ALZHEIMER's DISEASE (AD)
AD is the most serious yet common neurodegenerative
disease that initially destroys cells of the part of the brain
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responsible for language and memory resulting in memory
loss of the patient and also the ability to perform regular
tasks. As the disease progresses, it makes the affected person
lose his/her control over bodily function which one day leads
to death [3]. To diagnose the progression of different stages
of AD, manual detection systems were performed before
by Radiologists. However, these manual systems may lead
to errors which can be serious for the patients. The recent
approaches based on ML and DL can perform automatic
detection of early stages of AD [30]. Such attempts were
made in the following works. It should be mentioned that the
performance results in this survey are shown mainly for AD
vs NC/HC class for simplicity of the presentation. For further
details, it is recommended to check the corresponding article.

1) ML-BASED APPROACHES IN AD DIAGNOSIS

Here, we present recent works related to ML approaches to
identify patients with AD. Note the summary of the presented
works for a quick overview is provided in Table 2.

To predict AD early, a computational method exploiting
SVM-based ML approach was investigated in [31], where
gene-protein sequence was used as a source of possible
information. On the basis of obtained classification per-
formance, it was suggested that ML based strategy can a
promising approach to predict AD by exploiting the sequence
information of gene-coding proteins. In [32], an ML model
was proposed to diagnose AD early, where various linguis-
tic features were extracted through speech processing. The
extracted linguistic features (syntactic, semantic, and prag-
matic) from 242 affected and 242 non-affected subjects with
AD were further processed with different feature selection
techniques. The selected features are then fed to the ML clas-
sifier. The proposed ML model achieves the highest precision
of 79% using KNN feature selection with SVM classifier
in distinguishing AD patients from NC. The authors in [33]
investigated an ML prediction model for early AD detec-
tion based on neuropathological changes of patients. Here,
post-mortem neuropathological lesions were considered to
be more explicit and certain than clinical symptoms. How-
ever, considering the obtained accuracy of 77%, the authors
suggested that the proposed model might not fit for clinical
application but it can be a step towards precision medicine
in AD. In [34], ML was applied in order to differentiate
among age-matched 48 AD, 75 EMCI, 39 LMCI patients,
and 51 NC. Six types of multi-regional WM metrics, prepro-
cessed from DTI scans, were jointly used as discriminative
features. SVM and logistic regression (LR) ML classifiers
were applied to categorize the four classes (AD, EMCI,
LMCI, HC) where SVM outperforms LR with an average
accuracy of 92% using combined metrics. Permutation test,
ROC curves, and AUC were further performed to validate
the robustness and stability of the classification methods.
The proposed WM-based ML binary classification method
can also be used as an alternative way to perceive persons
with Alzheimer’s. A novel switching-delayed PSO based
optimized SVM (SDPSO-SVM) approach was investigated
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in [35] to classify the patients with AD from NC and MCIL.
For the experiment, a total of 361 subjects was selected from
the four different groups such as AD, stable MCI (sMCI),
progressive MCI (pMCI), and NC having 92, 82, 95, and
92 subjects, respectively. It was shown that the proposed
scheme obtained excellent classification accuracy as com-
pared to several conventional ML approaches.

In [36], an ML framework is proposed with a precise
feature selection algorithm and hierarchical grouping method
for multiway categorization of AD and MCI subtypes.
T1 weighted MRI data of four classes namely, AD, cMCI
(converted to MCI), MCI (do not convert to MCI), and
NC, 100 subjects from each class, are obtained for training
and testing. The hierarchical grouping process converts the
4-way classification into 5-way binary classification prob-
lems. The proposed feature selection algorithm selects fea-
tures based on relative importance which results in simpler
feature space for each classifier compared to conventional
methods. Further employment of revised classifiers resulted
in even better performance in terms of classifying. In [37],
a methodology based on EEG to diagnose AD and MCI
through applying frequency and time domain analyses on
EEG rhythms was proposed. Brain anomalies associated with
AD and MCI are characterized through the extraction of
spectral and non-linear features from the EEG recordings
acquired from 37 AD, 37 MCI patients, and 37 NC subjects.
A fast-correlation filter based automatic feature selection
technique is adopted which avoids redundancy in features.
Three different ML classification methods are trained using
these features in order to classify AD, MCI, and NC. In terms
of the features considered, MLP outperforms other classifiers
in diagnosing both healthy and AD subjects. Considering the
effectiveness of treatment at an early stage of AD, a study
based on standard neuropsychological tests and simple cog-
nitive task was proposed in [38]. Numerous cognitive fea-
tures were collected from 28 mild AD or mild cognitive
impairment patients and 50 cognitively normal (CN) older
adults via the neuropsychological tests and the cognitive task.
Three self-generated datasets were formed using data from
neuropsychological tests and cognitive task separately and
jointly. These datasets in their original forms, after principal
component analysis (PCA) feature extraction and feature
selection were classified as AD and NC using four supervised
ML algorithms. RF performed better for the dataset from
neuropsychological tests while for the combined dataset,
SVM outperformed other classifiers. Instead of brain images,
self-generated patient’s speech signals were used in [39] to
identify patients with mild AD from MCI and NC. It was
observed that combining both acoustic and linguistic features
can provide better classification accuracy than an individual
feature. Moreover, it was expected that full automation in
speech signal processing can be the basis for the automatic
identification of patients with AD in the future. In [40],
the proposed model distinguishes among AD, MCI, and NC
through the extraction of 2D textures from T1 weighted
MRI images of 189 AD, 165 convert to MCI, 231 MCI-non
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TABLE 2. A comparative study on recent works to detect AD using ML approaches.

SN# | Ref. | Year Image Database Extracted Feature | Classifier/Detector Performance ement Others
Modality/other (Single/Multi-stage) | Acy Sy Spy | AUC | Pn F1
data ) | (%) | (B) | B | o) | (%)
1 [31] | 2018 Gene protein UniProt 400-dimension SVM 85.65 | 85.70 | -- | 85.70 | 85.70 | 85.60 AD vs NC
vector
2 | [32] ] 2018 Speech DementiaBank Linguistic ANN - - -- 69 - AD vs NC
SVM 79 (KNN based
DT 71 feature selection)
3 | [33]] 2018 sMRI VITAS Neuropathological RF 77.40 | 91 50 -- -- -- Prediction of AD
neuropathological
change vs No
Change
4 [34] | 2018 DTI ADNI ‘White matter SVM 89.90 - -- 95 - - AD vs NC
LR 89.90 98
5 | [35] ] 2018 MRI ADNI Gray matter tissue SVM 54.55 -- - -- -- -- pMCI vs AD
volume as voxel (SDPSO)
features 57.14 pMCI vs AD
(SDPSO-PCA)
6 | [36] | 2018 sMRI(T1), ADNI Morphometric, SVM-RBF, 5438 | -- - - - - AD vs NC vs
Demographic demographic, and XGBoost MCI
information clinical
7 | [37] | 2018 EEG Self-generated Spectral and LDA 74.51 | 70.59 | 76.47 | -- -- -- AD vs all
nonlinear QDA 74.51 | 64.71 | 79.41
MLP 76.47 | 70.59 | 79.41
8 | [38] | 2019 | Neuropsychological Dataset 1 Test scores AdaBoost 85.83 | 78.57 | 90 - - - AD vs NC
tests (Feature selection)
RF 89.67 | 75 98
(Original features)
Cognitive task Dataset 2 SVM 752513929 | 96
(Original features)
Both Dataset 3 SVM 91.08 | 85.71 94
(Dataset 1 + (Feature selection)
Dataset 2)
9 |[39] | 2019 Speech “"Hungarian | Acoustic, linguistic Linear SVM 80 88 | 85.70 75.90 | 81.50 | Mild AD vs MCI
MCI-mAD
10 | [40] | 2019 SMRI (TT) ADNI Textures RF 87.39 | 85.42 | 88.81 | -- - - AD vs. NC
Linear SVM 82.61 | 78.13 | 85.82 (RROexture
KNN 87.39 [ 89.58 [ 85.82 GM+WM, Fisher)
11 | [41] | 2019 CSF Amsterdam APB42, tau, and DT 86 86 87 - - - AD vs NC
Dementia Ptau-181
Cohort
12 | [42] | 2019 | sMRI(T1/T2), R- ADNI ROIs (temporal or SVM 95.80 - - - - - AD vs NC
fMRI, field cingulate cortex)
mapping
13 | [43] | 2019 SPECT Study at ROIs (Parietal, ANN - 193.80| 100 97 - - AD vs NC
DNM, GMU Ventricular and
Thalamus)
14 | [44] | 2019 sMRI, Cognitive ADNI ADAS-Cog scores KNN 97.70 | 99.34 | 95.93 - - - AD vs NC
tests + Cortical models LDA 97.16 | 100 | 93.88
NB 97.92 | 97.93 | 97.90
SVM 97.38 | 100 | 94.41
ADAS-Cog scores KNN 98.91 | 98.34 | 99.52
+ Cortical metrics LDA 98.67 | 98.86 | 98.47
NB 98.81 | 99.23 | 98.36
SVM 100 100 100
15 | [45] | 2019 Gene protein UniProt Feature vectors RF 85.50 | 85.50 | 85.50 | -- -- -- AD vs NC
16 | [46] | 2019 sMRI(T1) OASIS Feature vectors Multi kernel SVM | 92.50 | 88 95 - - - Moderate AD vs
Regular SVM 9111 | 85 | 9 mild AD vs very
mild AD vs NC
17 | [47] | 2019 sMRI (T2) umMmcC Entropy KNN 94.54 1 96.30 | 93.64 | - |88.30[92.17| ADvsNC (171
features with ST)
HMSD 98.48 1 96.97 | 100 100 | 98.46 AD vs NC (5
features with ST)
18 | [48] | 2019 Blood SAMPLE, Circulating miRNA Gradient boosted - - - 87.60 - - AD vs NC
PreAnalytiX trees
19 | [49] | 2019 sMRI ADNI BSVM, Multi-Stage 96.31 | 91.27 | 89.90 - 96.05 - AD vs MCI vs
CT GNB (1* stage) & NC
SVM, KNN
(2™ stage)
20 | [50] | 2019 Saliva Data collected Raman spectra ANN-BLP 99.14 | 98.56 | 99.29 - - - Average (NC,
from AD, MCI)
volunteers
21 | [51] ] 2020 sMRI (T1) ADNI Volume of SVM 63.78 - - - - - AD prediction
hippocampal
structure
Subcortical volume 55.96
Cortical 56.79
volume
CT 56.37
Cortical surface 51.44
area
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TABLE 2. (Continued.) A comparative study on recent works to detect AD using ML approaches.

22 | [52] | 2020 sMRI (T1) OASIS Feature scores Ensemble or hybrid 98 |98.05| 98 |99.10 - - Weighted average
(CDR, MMSE, modeling (NB, ANN, (nondemented and
Visit) INN, SVM) demented)
23 | [53]] 2020 Blood plasma ADNI Non-amyloid SVM -- 85 75 89 - - AD vs NC
proteins
24 | [54] | 2020 SMRI (T1) ADNI ROI (CT) Non-linecar SYM (RBF | 75 | 75 | 77 | 76 - 72 AD vs NC vs
kernel) early MCI vs late
MCI
25 | [55] | 2020 fMRI, SNP ADNI Fusion features CERF+SVM 86.20 -- - - - - AD vs NC
26 | [56] | 2020 | Features obtained | Data collected 350 features ANN 91.42 -- - - -- -- AD versus non-
from the dCDT at Rowan MCI
University and
Drexel
University
27 | [57] | 2020 DWI ADNI Graph metrics SVM 72 69 75 81 - - AD vs NC
RF 74 71 77 82
ANN 75 80 76 83
28 | [58] | 2020 | sMRI(T1), age, ADNI Volume LR 93 90 97 - - - AD vs NC
gender information of the KNN 98 98 97
hippocampus SVM 93 90 97
DT 91 98 82
RF 93 94 92
GNB 94 92 97
29 | [59] | 2020 EEG An available Graph theory SVM 95 95 96 97 - - AD vs NC
database with parameters
no specific
name
30 | [60] | 2020 sMRI (T1) OASIS Correlation matrix RF 86.84 | 80 - - | 94.11 | 87.22 AD vs NC
of features
31 | [61] | 2020 Speech VBSD Spectrogram Logistic 83.30 [ 86.90 | -- -- 86.90 | 86.90 AD vs NC
Dem@Care RegressionCV 84.40 | 87.50 91.30 | 89.40
32 | [62] | 2020 fMRI ADNI Functional features Linear SVM 89 -- - -- -- -- AD vs MCI vs
of 5 brain regions NC
33 | [63] | 2020 | DNA methylation GEO Methylated sites SVM -- -- -- | 75.80 -- -- AD vs NC
expression data DT 89.60
RF 92.70
34 | [64] | 2020 Blood BioDataome, miRNA SVM -- -- - 197.50 - - AD vs NC
Metabolomics mRNA RF 84.60
Workbench, Proteins RLL 92.10
GEO
35 | [65] | 2020 Blood plasma Data collected | Positive or negative QDA 80 85 75 - - - AD vs NC
from peaks in difference
volunteers spectra

*It should be mentioned that only mean or average value is shown for performance metrics.

“This database was recorded at the Memory Clinic at the Department of Psychiatry of the University of Szeged, Hungary.

Self-generated dataset

converters, and 227 NC subjects. Rough ROI (RROI) tech-
nique was applied to extract features from the specified
ROIs which are further generalized with high dimensional
feature selection techniques and then classified patients via
ML approaches in different classes. Among the different
feature selection techniques, it was identified that Fisher
performs better.

A DT based ML model was proposed in [41], where CSF
biomarkers were mainly utilized to distinguish among AD,
MCI, and NC using the collected data from 1004 proba-
ble AD and 442 NC patients. The decision tree algorithm
was based on classification and regression tree analysis.
A joint human connectome project multi-modal parcellation
(HCPMMP) model linked with network-based analysis was
proposed in [42] which performs binary classification among
AD, EMCI, LMCI patients, and NC subjects. Numerous net-
work features were considered in the connectivity network as
the candidate features and filter & wrapper feature selection
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methods are sequentially applied leading to ML classifica-
tion. The joint HCPMMP (J-HCPMMP) basically outlined
the cortical architecture, function, and connectivity features
related to AD and different stages of MCI and achieved
the highest accuracy with SVM classifier for each group of
subjects. In [43], the authors applied a three layer (input,
hidden, and output) ANN to illustrate its effectiveness in
AD diagnosis. The diagnosis was based on SPECT brain
images of cerebral blood flow of 132 subjects with 72 AD
patients and 60 NC. A total of 36 numerical values from
12 areas of Parietal, Ventricular, and Thalamus brain profiles
were taken into consideration. The performance of ANN was
also compared with discriminant analysis (standard statistics
method) where ANN was found to be more sensitive and
specific than discriminant analysis in identifying AD patients
from NC. In [44], a computer-aided-diagnosis (CAD) system
was proposed based on the fractal dimensions of cortical
surfaces and Alzheimer’s disease assessment scale cognitive
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scores (ADAS-Cog scores) collected from 70 subjects of
ADNI database. The sMRI data of 35 mild AD patients and
35 healthy controls were utilized to acquire cortical mod-
els with fractal dimensions of cortical ribbon, pial surface,
gray/white surface, and cortical metrics with fractal dimen-
sions of cortical thickness and gyrification index. The cortical
measures and ADAS-cog score were considered separately
and jointly using several ML classifiers to discriminate AD
subjects from healthy controls. The performance with cortical
metrics was found to be better than with cortical models for all
classifiers and of all the cases cortical metrics combined with
ADAS-cog scores showed the best performance for SVM
algorithm. Instead of MRI data, gene protein information was
used in [45] to classify the patients with AD from non-AD
by exploiting an RF classifier with the k-skip-n-gram feature
extraction method.

By exploiting DKPCA as a feature extraction and dimen-
sionality reduction technique, an ML approach was proposed
in [46] for the diagnosis of different stages towards the pro-
gression of AD. The superiority of the proposed method as
compared to the conventional techniques was proved via dif-
ferent performance metrics. A computer aided diagnostic sys-
tem to determine the sign of AD was proposed in [47], where
seven different types of feature extraction techniques were
used to study the performance of the system. Among the dif-
ferent feature extraction techniques, it was identified that the
ST technique outperformed the others when the same num-
ber of features were considered. Moreover, Student’s t-test
technique was used for feature selection. A prediction model
for AD detection by analyzing miRNA was proposed in [48],
where gradient boosted trees from the LightGBM framework
(version 2.1.0) was used as the ML classification model. The
suggested method in [49] can effectively diagnose AD, where
multi-stage classifiers comprising of the three state-of-the-art
classifiers such as GNB, SVM, and KNN are used. Moreover,
FreeSurfer was used to extract the features and PSO was
used as a feature selection technique. A novel AD detection
scheme using ML was proposed in [50], where saliva samples
collected from 39 volunteers at the local community was
analyzed by Raman hyperspectroscopy. By exploiting the
different ROIs from brain MRI images, an SVM-based clas-
sification approach for the diagnosis of AD was proposed and
performance was studied in terms of accuracy in [51]. In [52],
three different experiments were performed to predict AD
early exploiting four state-of-the-art ML classifiers such as
SVM, ANN, INN, and NB. Among the classifier, ANN and
NB score higher rating respectively in manual and automatic
biomarker selection in terms of ROC. Moreover, ensemble or
hybrid modeling, where all the four classifiers are combined,
impressively improves classification results. The proposed
method in [53] for early detection of AD was based on blood
plasma protein which is comparatively inexpensive and easier
to access. The blood proteomic data was collected from the
ADNI database. The correlation-based feature subset selec-
tion method was used to select the 16 proteins as relevant
biomarkers for the classification. The SVM with a 2-degree

VOLUME 9, 2021

polynomial kernel was used to classify AD. The proposed
approach in [54] was developed to predict AD and MCI early
and classify them from elderly cognitively normal. To com-
pute CT of several anatomical regions from segmented gray
matter tissue, the FreeSurfer method was used and required
features were extracted. It was identified that non-linear SVM
with RBF kernel showed better performance than some other
classifiers. Brain region-gene pairs were proposed as the
multimodal fusion features to detect AD in [55]. SNP and
fMRI were used to detect correlation between genes and
brain regions and build the fusion features. PCA technique
was used to extract those features and then fed to the CERF
framework. By selecting distinguishing biomarkers between
AD and NC this framework could easily detect abnormal
brain regions and genes. To investigate the performance of
an ML algorithm on the classification of patients in different
classes such as AD vs or non-MCI, AD vs MCI, and MCI
vs non-MCI, a dCDT method was investigated in [56], where
data was collected via a memory assessment program. In [57],
on the basis of communicability at the whole brain level,
an ML framework was developed for the classification of
AD by using DWI data. The detection performance of AD
from NC was investigated by applying three state-of-the-art
ML classifiers such as SVM, RF, and ANN. The outcome of
this study suggests that the alterations in the brain’s structural
communicability because of AD, can be a worthful biomarker
to characterize pathological conditions.

Considering volumetric information of right and left hip-
pocampus of brain, age, and gender, AD prediction approach
was proposed in [58]. The performance of the proposed
study was investigated by six different ML classifiers.
In [59], the authors claimed that they have first proposed
an SVM-based ML approach to identify AD patients from
NC, where graph theory parameters were used from EEG
signals. However, it is not evident that either the graph the-
ory based model is better than other types of EEG analysis
or not to identify patients with AD from NC. A five-stage
ML pipeline was proposed in [60] for the diagnosis of AD,
where MMSE, Atlas Scaling Factor, and clinical dementia
rating scores were used for the analysis. Among the different
classifiers, RF showed the best performance in terms of dif-
ferent performance metrics. To identify the patients with AD,
an ML approach named LogisticRegressionCV was proposed
in [61], where the spectrogram features extracted from speech
data were utilized. The speech data was collected from wear-
able [oT devices and created a database by the authors named
VBSD. Moreover, the existing Dem@Care dataset was also
used to verify the proposed strategy. From the experimental
results, it was observed that the proposed LogisticRegres-
sionCV model shows improved performance on Dem@Care
dataset as compared to VBSD. Based on the functional fea-
tures extracted from 5 core brain regions, a classification
method was proposed in [62] to identify different stages accu-
rately towards AD. In [63], to identify the patients with AD,
DNA methylation expression profiles were collected from
GEOQO database and then integrated genome-wide analysis was
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performed. Three different ML classifiers (e.g. SVM, DT,
and RF) were exploited to predict AD. It was identified that
RF classifier predicts AD more effectively. To identify the
presence of AD, three different diagnostic biosignatures were
produced in [64] and the performance metrics were validated
through AutoML tool JADBIO. The produced biosignatures
were based on blood miRNA, mRNA, and protein, respec-
tively. In [65], a combination of laser-induced breakdown
spectroscopy and a supervised ML algorithm (QDA) was
used for analyzing the micro drops of plasma samples to
diagnose a patient with AD or no AD. As a specimen for
the analysis, 67 plasma samples from 31 AD patients and
36 NC were taken. The manual selected features from the
difference spectra was exploited to study the performance of
the proposed system.

2) DL-BASED APPROACHES IN AD DIAGNOSIS

In this section, we present recent works related to DL
approaches to identify patients with different stages of AD.
Note the summary of the presented works for a quick
overview is provided in Table 3.

A neuroimaging study with deep CNN was performed
in [66] to detect different stages of AD such as non demented,
very mild AD, mild AD, and moderate AD by exploiting
axial, coronal, and sagittal planes of MRI image. Though
the precision of detecting non demented and very mild stage
was satisfactory, precision of detecting moderate and mild
dementia was poor. [67] proposed a novel 8 layered 3D
CovNet specialized in automatic detection of significant fea-
tures required to classify between AD and NC. The impact
of different factors such as pre-processing, data partitioning
strategy, tuning hyperparameter, and dataset on results was
discussed. The use of DNN for detecting different stages of
AD using MMSE was validated in [68]. This work ranked
third considering the overall accuracy in “The International
Challenge for Automated Prediction of MCI from MRI data™.
The performance of this study shows the competency of DNN
for future developments of AD detecting systems. A method-
ology using RNN with LSTM to diagnose preclinical or early
AD was proposed in [69]. The superiority of the proposed
approach as compared to the conventional ML approach was
authenticated in terms of accuracy. CNN-AlexNet was used
in [70] to classify the processed fMRI data into 5 categories
naming NC, significant memory concern, EMCI, LMCI, and
AD. A good number of preprocessing of the raw data includ-
ing removal of unwanted tissues, slice timing corrections,
spatial smoothing, high pass filtering, and spatial normaliza-
tion resulted in very high accuracy of detection by AlexNet.

In [71], a cascaded deep CNN using Softmax function
to detect AD, MCI, and NC was investigated, where fuses
features from 3D patches of MRI and PET images were used.
Results not only showed that multimodality is superior to
unimodality but also showed that deep CNN can perform
better than autoencoder to detect AD from NC. A classifica-
tion strategy on the basis of multiple clusters DenseNets with
Softmax function was proposed in [72], where each MRI (T1)
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image was divided into local regions instead of considering
ROIs in order to save time and computational cost. [73] com-
bined hippocampal morphology features from 2.5D patches
gone through CNN with other brain morphology in ROI gone
through FreeSurfer for detecting sMCIL,cMCI, and AD using
ELM. The employment of both features extractions resulted
in higher accuracy as compared to the accuracy obtained
while considering only one type of feature extraction. In [74],
out of 256 2D slices of preprocessed SMRI, most informative
slices were selected based on image entropy. A classification
strategy using CNN for the automatic detection of patients
suffering from AD, sMCI, and cMCI was proposed in [75],
where high levels of accuracy were obtained for all the dif-
ferent classes. A new technique termed “‘attention based” 3D
ResNet for diagnosing AD by identifying chief brain regions
associated with AD symptoms was proposed in [76]. The
attention seeking protocol resulted in 92% accuracy which
would rather be 90% without it. In [77], a scratched-trained
CNN model having a minimal number of layers with optimal
performance was proposed to identify patients with AD. For
the experiment, a total of 56 subjects was selected, where the
patients with AD and NC were 28 and 28, respectively. It was
identified that the proposed model outperformed Alexnet,
Googlenet, and Resnet50 in terms of classification accuracy.
The methodology proposed in [78] identified MCI from NC
based on a dataset including R-fMRI time series data from
ADNI and resulting CCD data due to preprocessing the data.
Detection using the proposed autoencoder resulted in around
20% improvement in terms of accuracy compared to tradi-
tional classifiers. The detection accuracy was validated by
the AUC under the ROC curve. An innovative deep convolu-
tional generative Boltzmann Machine with multitask learning
model was proposed in [79] to define a connection between
feature extraction and classification. The proposed method
obtains an accuracy of 95.04% and gains an increase of 2.5%
than the existing model as mentioned in the study.

In [80], a novel approach was proposed to identify MCI
patients who are at a higher risk of developing the MCI to
AD. This proposed method classified MCI to AD conversion
and AD vs NC. Besides the modalities of images used here,
it can be applied to other modalities like PET. Moreover,
the convolutional framework used here makes the system
more flexible as any kind of 3D image dataset is applicable to
it. Deep learning is applied on the basis of dual learning and
an adhoc layer. The neural network uses fewer parameters
and thus prevents data overfitting. Here, they have used a
multi-modal feature extractor and 10-fold cross validation
for testing purposes. In [81], a novel DBN framework was
proposed that uses limited 18F-FDG-PET data from ADNI
to identify AD from MCI patients. In this method, the images
were pre-processed first and then ROIs were identified. From
ROIs, features were then extracted using DBN. DBN makes
the prediction simpler. In the last step, SVM was used with
three kernels (e.g., linear, polynomial, and RBF) for classi-
fication as it is advantageous in the classification of a small
dataset. Among the different kernels, RBF showed the highest
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TABLE 3. A comparative study on recent works to detect AD using DL approaches.

SN | Ref | Year Image Database | Extracted Feature Classifier/Detector Performance ement Others
Modality/other data (Single-stage) Ay Sy Spy | AUC | Py F1
) | ) | o) | B | %) | (%)
1 |[66] | 2018 SMRI OASIS ROI CNN - 50 - - 75 60 very mild AD
71 62 67 Mild AD
50 33 40 Moderate AD
2 | [67]] 2018 sMRI (T1) ADNI ROI 3D CNN 98.74 | - - - - - AD vs NC
3 | [68] ] 2018 sMRI (T1) ADNI Feature maps DNN 56.30 | 87.50 | -- - | 7450 | - | AD onsetin MCI
4 | [69]] 2018 Demographics, NACC Temporal patterns RNN ~83.5 | - - - - - AD Detection
medical history, FAQ without image
(Non-image data) processing
5 | [70] | 2018 fMRI ADNI ROI CNN-AlexNet 97.64 | - - 19422 - - AD detection
6 | [71]] 2018 | sMRI(T1), FDG-PET ADNI 3D patch Cascaded CNN + 84.97 | 82.65 | 87.37 | 90.63 | -- -- | MRI (AD vs NC)
Softmax 88.08 | 90.70 | 85.98 | 94.51 PET(AD vs NC)
93.26 | 92.55 | 93.94 | 95.68 Multi-modality
(AD vs NC)
7 [[72]] 2018 sMRI (T1) ADNI 3D patch Multiple cluster 89.50 | 87.9 | 90.8 | 9240 | -- - AD vs NC
DenseNet + softmax
8 |[73]] 2018 sMRI ADNI LBRP, ROI ELM 7990 | 84 |74.80 | 86.10 | -- - AD vs NC
9 | [74] | 2019 sMRI (T1) ADNI Image entropy CNN 9573 | 91 - - 100 | 95 (AD vs NC vs
MCI)
10 | [75] | 2019 sMRI(T1), ADNI and Feature maps CNN 99.20 | 98.90 | 99.50 | -- -- - ADNI (AD vs
Demographic, clinical Milan NC)
and neuropsychological 98.20 | 98.10 | 98.30 ADNI + Milan
(AD vs NC)
11 | [76] | 2019 sMRI (T1) ADNI 3D-AM Attention based 3D 92.10 | 89 |94.40|94.10| -- - AD vs NC
CNN-ResNet
12 | [77] | 2019 MRI OASIS Axial slice Scratched trained CNN | 98.51 - - - - - AD vs NC
13 | [78] | 2019 R-fMRI ADNI ROI, CRT Autoencoder + softmax | 64.71 | 64 66 | 6191 - - RTS (MCI vs
NC)
86.47 | 92 81 |91.64 CCD (MCI vs
NC)
14 | [79] | 2019 | EEG Spectral Image BEMT MSBI DSccCDBM with 95.04 | - - - - - AD vs NC vs
Multitask learning MCI
15 | [80] | 2019 SMRI, cognitive ADNI 4-dimensional CNN 86 |87.50| 85 |9250 | -- - AD vs MCI
measures, APOe4, vectors
demographics
16 | [81] | 2019 SF-FDG PET ADNI ROI (Spatially DBN+SVM-RBF 86.60 | 89.50 | 85.20 | 90.80 -- -- AD vs MCI
constrained atoms)
17 | [82] | 2019 | Cognitive score, MRI, ADNI 4-feature vectors Multimodal RNN 81 84 80 86 - - MCI to AD
CSF biomarker, conversion
demographic data
18 | [83] | 2019 MRIL PET ADNI Feature maps, high 3D-CNN + FSBi- 94.82 1 97.70 | 92.45 | 96.76 94.44 AD vs NC
level semantic and LSTM+Softmax
spatial information
19 | [84] | 2019 SF-FDG PET ADNI ROI CNN- InceptionV3 - 81 94 92 76 78 AD
ITSFLI 100 | 82 98 54 70
20 | [85] | 2019 MRI, PET ADNI Local features CNN 98.47 | 96.58 | 95.39 | 98.61 | -- - AD vs NC
integrated to global
features
21 | [86] | 2019 MRI ADNI ROI (Temporal and Volumetric CNN 86.60 | 88.55 | 84.54 | -- - - AD vs NC
parietal lobes)
22 | [87] | 2020 | MRI, demographics ADNI Feature maps CAE-SVC 84.40 | 84.10 | 84.90 | -- - | 84.60 | GM (AD vs NC)
CAE-MLP 77.70 | 75.10 | 81.70 78.40
23 | [88] | 2020 R-fMRI ADNI A matrix 90 x 90 Autoencoder 93 194.60|96.70 | - - - MCI vs NC
from 90 ROIs.
24 | [89] | 2020 MRI ADNI 7007 image Faster R-CNN 98.80 | - - - - - AD vs NC,
inference size SSD 97.43 Object detection
YOLOV3 99.66 dataset is
provided
25 | [90] | 2020 sMRI ADNI Discriminative H-FCN 90 82 97 95 - - AD vs NC
local patches and
regions
26 | [91] | 2020 | MRI, PET, cognitive ADNI Local and Stacked CNN-BIiLSTM | 92.62 | 98.42 | -- -~ 194.02|92.56 | AD Progression
scores, neuropathology, longitudinal
assessment features
27 | [92] | 2020 sMRI (T1) ADNI 3D patches Hybrid multi-task deep | 88.90 | 86.60 | 90.80 | 92.50 | -- - AD vs NC
CNN and 3D
DenseNet+softmax
28 | [93] | 2020 | sMRI(T1), PET, CSF ADNI Feature vectors Minimal RNN 8870 | - - 9440 - - mAUC and BAC
was computed
29 | [94] | 2020 SMRI (T1) OASIS Patch Patch-based SSA- 90 95 85 92 - - AD vs NC
majority vote (Sagittal plane)
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TABLE 3. (Continued.) A comparative study on recent works to detect AD using DL approaches.

30 | [95] | 2020 MRI ADNI One slice CNN-PCANet + K- 95.52 - - - - AD vs MCI
TOP means clustering 97.01
31 [96] | 2020 fMRI ADNI Deep features: conv-ELM -- - 91.40 - - AD vs NC
RCPF, APF recur-ELM 91.30
32 | [97] | 2020 Sensor data Cloud server Movement RNN 88.63 | 88.60 | -- -- 83 84 | IoT-based assistance
tracking mechanism is also
presented
33 | [98] | 2020 Sagittal MRI, ADNI Feature CNN-ResNet + SVM | 86.05 | 30.62 | 97.72 | -- | 73.93 | 43.31 AD (AD vs NC)
patient’s sex and age OASIS vectors 99.54 0 100 0 0 Moderate AD
(AD vs NC)
34 | [99] | 2020 SsMRI (T1), age, ADNI Feature FCN, MLP 96.80 | 95.70 | 97.70 | -- - 196.50 AD vs NC
gender, MMSE score AIBL vectors 93.20 | 87.70 | 94.30 81.40
FHS 79.20 | 74.20 | 80.80 63.30
NACC 85.20 | 92.40 | 81 82.40
35 | [100] | 2020 SMRI (T1) ADNI Image voxel, 3D-CNN+SVM 99.10 | 99.80 | 98.40 | 99.90 | -- - AD vs NC
feature maps
36 |[101] | 2020 MRI ADNI Texture Hybrid CNN and DBN | 92.50 | 90.89 | 90.67 | -- - - AD vs NC
EEG Rowan | Properties of
University an image
37 | [102] | 2020 sMRI (T1) OASIS+ Feature map CNN 83 72 94 85 - - AD vs NC
MIRIAD
38 | [103] | 2020 SMRI (T2) Real time Brain sub CNN 95 95 94 -- - - AD vs NC
dataset from regions
CHCC
39 | [104] | 2020 sMRI OASIS Feature map SCNN 99.05 -- -- -- - - Moderate AD vs NC
vs very mild AD vs
mild AD
40 | [105] | 2020 MRI, DTI ADNI Diffusion CNN 93.50 | 92.50 | 93.90 | 94 - - MD+GM (AD vs
maps, GMV NO)

*ITSFLI: 40 imaging studies from 2006 to 2016, 40 patients from local institution were collected.

performance. A multi-modal system was considered in [82],
where a gated recurrent unit approach, a variant of RNN
was used for each modality to classify MCI patients that
were converted to AD or not. The system doesn’t need any
preprocessing steps and is capable of working with longitu-
dinal data with any irregular length. In [83], MRI and PET
modalities were being used to differentiate between AD from
NC, pMCI from NC, and sMCI from NC. A novel method
was proposed, where 3D-CNN was first applied to extract
the primary features and next instead of the general FC layer,
the FSBi-LSTM was used to get more accurate spatial infor-
mation. Afterward, the features are classified using SoftMax
classifier. Also, the number of filters in the convolution layer
was reduced to avoid overfitting. In [84], a DL algorithm was
proposed that detected either a patient had AD, MCI, or none.
18F-FDG PET was being used from ADNI dataset where
90% was used for training and 10% for testing. Auxiliary
diagnosis of AD was investigated in [85] using deep learning.
It was multimodal in the sense that, two independent CNN
were used to extract features from two different modalities
(e.g., PET and MRI) of images of the same patient to clas-
sify. Next, the results were judged using correlation analysis.
Moreover, the obtained results were integrated with the neu-
ropsychological diagnosis for classification which made the
whole process much more efficient. It is also mentionable that
the image format converted from DICOM to PNG makes the
processing method less complicated.

In [86], an end-to-end learning approach was applied in
deep learning that increased the performance of the whole
system. Four classifications were made i.e AD vs NC, pMCI
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vs NC, sMCI vs NC, and pMCI vs sMCI using volumetric
CNN. Both supervised and unsupervised learning methods
were applied. In [87], a DL approach using CAE was investi-
gated to classify patients with AD from NC, where MRI was
decomposed and the extracted features were compared with
neuropsychological tests and other clinical data. Through
this, a link between these data had been found with a cor-
relation of more than 0.6. In [88], a deep learning algorithm
was proposed that used R-fMRI to detect AD. Training and
classification were done using all f-MRI and clinical data.
It is found that the accuracy has approximately increased to
about 25% compared with other mentioned existing methods.
In [89], AD was diagnosed using the most recent DL object
detection techniques. Three different techniques, i.e., Faster
R-CNN, SSD, and YOLOv3 were used, where no prepro-
cessing of images was needed. A DL approach using H-FCN
was investigated in [90], where discriminative local patches
and regions of brain were identified from sMRI automat-
ically. A multi-modal ensemble DL method was proposed
in [91] to detect AD progression, where local and longitu-
dinal features were extracted from each modality. Moreover,
background knowledge was used to extract local features. All
the extracted features were then fused together for regres-
sion and classification tasks. In [92], a multi-modal process
was proposed, where automatic segmentation of hippocam-
pal was performed for the classification of AD. A minimal
RNN model to predict longitudinal AD dementia progres-
sion was proposed in [93] using 1677 participants. It was
identified that the proposed model achieved better classifi-
cation performance as compared to the baseline algorithms.
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The application of SSA was investigated in [94] for classify-
ing AD from a single 2D slice of sSMRI. Neurodegeneration
patterns were visualized and fused with disease information.
Moreover, the regions of the disease were identified using a
local patch based method.

An automatic prediction approach using unsupervised DL
was proposed in [95], where unsupervised CNN was used
for feature extraction and an unsupervised classifier was
used to take the final decision for classifying patients with
AD from MCI. A brain network classification problem for
identifying AD utilizing two DL methods was studied in [96],
where deep regional-connectivity and adjacent positional
features were learned by convolutional and recurrent learn-
ing respectively. Finally, to improve the ability of learning,
the ELM-boosted structure was implemented. For the assis-
tance of patients suffering from AD, an internet-of-things
based healthcare framework was suggested in [97]. By ana-
lyzing data obtained from different sensors embedded in
internet of health ecosystem, a RNN method was exploited
to identify patients experiencing AD. Moreover, to track
abnormal activities of AD patients, CNN based emotion iden-
tification and language processing using timestamp window
methods were also investigated. Utilizing sagittal MRI, a DL
approach for the automatic identification of AD was studied
in [98] and a satisfactory performance was obtained as com-
pared to the state-of-art method. A DL strategy to improve
the diagnosis of AD from multi-modal inputs was proposed
in [99]. The model was trained using AD and NC sub-
jects from ADNI and validated on three different databases
such as AIBL, FHS, and NACC. The superiority of the
3D-CNN-SVM model as compared to the other reported
classification models illustrated that the DL model has great
potential for medical diagnostics [100]. A multi-modal DL
approach exploiting hybrid CNN and DBN was investigated
in [101]. From the experimental results, it was apparent that
the hybrid method outperformed conventional methods like
CNN, DNN, and SVM. A DL approach using CNN was stud-
ied in [102], where the OASIS dataset was used only for train-
ing and the MIRIAD dataset was used only for evaluating the
model. The outcome of this paper suggested that it was more
difficult to identify patients with MCI than AD. Brain sub
regions were exploited in [103], to identify patients with AD.
Among the various optimization algorithms reported here for
the proper selection of features, it was revealed that Grey
Wolf Optimization showed promising results. Motivated by
Oxford Net, the Siamese CNN model was studied in [104]
for multi-class classification of AD. The superiority of the
proposed model as compared to the state-of-the art models
was authenticated by obtaining an excellent classification
accuracy of 99.05%. A multi-model DL approach using diffu-
sion maps and GM volumes was studied in [105] to classify
patients with AD and MCI from NC. The authors claimed
that this was the first study, where the impact of more than
one scan per subject was evaluated. A competitive perfor-
mance result was also obtained as compared to the existing
literature.
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B. BRAIN TUMOR

Brain cancer is one of the life-threatening diseases at present
and detecting the tumor at an early stage is very much
important to save lives. Brain tumor is basically the abnormal
growth of cells. There are two types of brain tumor: benign
and malignant. Brain tumors are of different varieties based
on appearance and it is hard to differentiate between tumor
and normal brain tissues. For this, the extraction of tumor
regions becomes very difficult. Manual detection systems
were performed before by Radiologists. However, these man-
ual systems may lead to errors which can be serious for the
patients. The recent approaches based on ML and DL can
perform automatic detection of brain tumors. Such attempts
were made in the following works. Note the summary of the
presented works for a quick overview is provided in Table 4.

1) ML-BASED APPROACHES IN BRAIN TUMOR DIAGNOSIS

In [106], an AutoML model was proposed to do three-way
and binary classification of the main types of pediatric
posterior fossa tumors based on routine MRI prior to an
operation. Here, contrast-enhanced T1-weighted images,
T2-weighted images, and ADC maps from histologically
confirmed 111 MB, 70 EP, and 107 PA fossa tumor patients
are utilized in order to extract radiomics features. The pro-
posed TPOT performs better than manual expert pipeline
optimization and qualitative expert MRI review. In [107],
an automatic classification method to effectively delineate
brain tumors at an earlier stage using MRI images from
different databases was presented. The methodology was
outlined as pre-processing via Median Filter, 3 x 3 block
conversion of images, extraction of texture features using
gray-Level Co-Occurrence Matrix, classification, and seg-
mentation. Adaptive k-nearest neighbor (AKNN) classifier
was adopted to identify usual and unusual images based on
the extracted features. And the unusual ones were segmented
by applying optimal probabilistic fuzzy C-means algorithm
to detect affected parts of the brain. The authors of [108]
have studied the significance of key differentially expressed
genes to understand the different stages of glioma tumor
(grade I to IV), the most fatal nervous system cancer, using
a combination of ML algorithm and protein-protein inter-
action networks. A brain tumor localization pipeline based
on fluid attenuated inversion recovery scans of MRIs (skull
stripped) using ML algorithms is illustrated in [109]. After
noise removal, Gabor filter bank is used to create texton-map
images and texture maps. Low level features are extracted
through segmentation of the texton-map images into super-
pixels that are integrated with features at the region level
approach. Finally, classification results are shown consid-
ering four different sets of data such as real high grade
(HG), real low grade (LG), synthetic HG, and synthetic LG.
The proposed methodology in [110] differentiates among
brain tumors (tumor/non-tumor/benign/malignant) by feed-
ing a fusion of features to the ML classifiers. Brain surface
extraction method is adopted to remove non-brain portions
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TABLE 4. A comparative study on recent works to detect brain tumors using ML/DL approaches.

SN# | Ref. | Year Image Database Extracted Classifier/Detector Performance measurement Others
Modality/other Feature (Single-stage) Acy Sy Sy | AUC | Pm F1
data o) | o) | (%) | (%) | (%) | (%)
Machine Learning
1 [106] | 2020 | MRI(T1 & T2), Academic Radiomics AutoML (TPOT) 85 91 81 94 -- - MB vs non-MB
ADC maps hospitals in China features 80 52 93 84 EP vs non-EP
88 95 84 94 PA vs non-PA
2 [ [107] | 2020 MRI BraTS and a Texture features Adaptive KNN 96.50 | 100 93 - - 90 | Brain tumor detection
Publicly available
database
3 | [108] | 2020 | Gene expression GEO Feature vector Complement NB 72.80 | 72.20 | 73.30 | - - - Grade II-III glioma
RF 97.10 | 96.70 | 97.40 Grade I-II_glioma
RF 83.20 | 85.10 | 81.10 Grade ITI-IV glioma
4 [ [109] | 2020 MRI BraTS First order RF 98 92 95 - 88 - Real HG images
intensity (Tumor localization)
statistical 96 90 | 94.50 86 Real LG images
features and the (Tumor localization)
histogram level 98 92 96 86 Synthetic HG images
of texton-map (Tumor localization)
95 91 95 87 Synthetic LG images
(Tumor localization)
5 | [110] | 2020 MRI BraTS Local binary SVM 98.34 | 99.39 | 96.12 | -- - - Tumor vs non-tumor
RIDER patterns and deep 97.95 | 99.05 | 95.12 Benign vs malignant
features

Deep Learning

6 | [111]] 2020 MRI GBM Feature of 352 CNN+SVM JSI= 80% for tumor detection
dimensions
7 | [112] | 2020 MRI BraTS 2012 LSTM + Softmax 100 100 | 100 - - - Benign vs malignant
synthetic (JSI= 100%)
BraTS 2013 92.20 | 92.10 | 92.80 Benign vs malignant
(JSI= 91%)
BraTS 2013 98.60 | 100 | 94.40 Benign vs malignant
leaderboard (JSI=98%)
BraTS 2014 98.50 | 98 99 Benign vs malignant
(JSI= 98%)
BraTS 2015 9740 | 96 |99.10 Benign vs malignant
(JSI= 96%)
BraTS 2018 98 98 99 Benign vs malignant
(JSI=97%)
SISS-ISLES 2015 93.40 | 100 | 82.10 Benign vs malignant
(JSI= 90%)
8 | [113] ] 2020 MRI BraTS 2015 Deep features 3D-CNN 98.32 -- - -- -- - Tumor detection
BraTS 2017 96.97
BraTS 2018 92.67
9 |[114] | 2020 MRI (T1) Figshare Multi-level Inception-V3+Softmax 99.34 | - - 99 - - Tumor detection
features DensNet201+Softmax | 99.51 100
10 | [115] | 2020 MRI (T1) Figshare Feature patterns Hybrid CNN-NADE 95 [94.64 9742 | -- 94.49 | 94.56 Tumor detection
11 | [116] | 2020 MRI (T1, T2, BraTS 2015 Feature matrix CNN-ELM 98.16 -- - -- -- - Tumor detection
TICE and (MCC=88.04%)
FLAIR) BraTS 2017 97.26 Tumor detection
(MCC=87.64%)
BraTS 2018 93.40 Tumor detection
(MCC=82.44%)
12 | [117]| 2020 MRI TCGA-GBM 1000 features SqueezeNet (CNN)-ELM | 98.33 98 Benign vs malignant
13 | [118] | 2020 MRI Kaggle repository Feature maps CNN 97.01 | 94.70 | 100 -- -- 96.90 | Tumor vs non-tumor
14 | [119] ] 2020 MRI Kaggle repository | Array of features BrainMRNet (CNN) 96.05| 96 |96.08 | -- ]92.31 |94.12 | Tumor vs non-tumor
15 | [120] | 2020 MRI BraTS 2012 Feature maps Stacked sparse auto- 100 100 | 100 | 100 - - Tumor vs non-tumor
encoder + Softmax (JSI=100%)
BraTS 2012 90 88 100 | 100 Tumor vs non-tumor
synthetic (JS1=89%)
BraTS 2013 95 100 90 97 Tumor vs non-tumor
(JSI=93%)
BraTS 2013 100 100 100 100 Tumor vs non-tumor
Leaderboard (JSI=100%)
BraTS 2014 97 98 96 929 Tumor vs non-tumor
(JSI=97%)
BraTS 2015 95 93 100 96 Tumor vs non-tumor
(JSI=93%)
Deep Learning
16 | [121] | 2020 MRI(T1, T2, BraTS 2012 ROI CNN + Softmax 97 97 97 - - -- | Tumor vs non-tumor
TICE and BraTs 2013 98 99 95
FLAIR) BraTS 2013 100 100 100
Leaderboard
BraTs 2015 96 98 92
BraTS 2018 97 99 93
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TABLE 4. (Continued.) A comparative study on recent works to detect brain tumors using ML/DL approaches.

17 | [122]| 2020 MRI Figshare Features vector Fine-tune AlexNet 97.39 - - Meningioma vs
Fine-tune GoogleNet 98.04 glioma vs
Fine-tune-VGG16 98.69 pituitary
Freeze AlexNet-Conv5 95.77
Freeze GoogleNet- 95.44
inception-4e
Freeze-VGG16- Conv5-1 | 89.79
18 | [123]| 2020 MRI BraTS Pixel of tumor Deep CNN 81.60 78 97.40 Tumor detection
regions,
SIMBraTS statistical and 81,60 | 79.10 | 97.40
texture features
19 | [124] | 2020 MRI (FLAIR, Siemens Medical Texture, DBN Correct detection rate=88% Tumor detection
T1, and T2) System datasets geometric, and False acceptance rate=7%
statistical False rejection rate=5%
20 | [125] | 2020 MRI BraTsS 2015 Hand crafted and CNN-VGG 19+KNN 99.82 | 99.59 100 Tumor vs non-tumor
deep features (JSI=99.59)
BraTS 2016 CNN-VGG 19+Ensemble 100 100 100 Tumor vs non-tumor
(JSI=100)
BraTS 2017 CNN-VGG 19+Ensemble | 99.82 | 100 | 99.59 Tumor vs non-tumor
(JS1=99.67)

like skull and eyes from images which are then segmented
with better accuracy via PSO. The best features are selected
from the extracted features by employing a genetic algorithm.
The evaluation results of the proposed method for different
datasets proved its superiority in performance compared to
existing techniques.

2) DL-BASED APPROACHES IN BRAIN TUMOR DIAGNOSIS

In [111], a computer-aided detection model is proposed
where brain tumor features are recognized from MRI with
improved efficiency by CNN. Brain tumor MRIs are seg-
mented and the convolution operation elevated recognition
rate with the fusion of PCA extracted and synthetically
selected features. The performance analysis showed that the
model has practical impacts in improving diagnostic results.
An automatic brain detection approach using deep LSTM
was proposed in [112], where the model was tested on
SISS-ISLES 2015 database and six BRAT'S challenge dataset.
The outcome of this paper suggests that a radiologist can clas-
sify brain tumors more precisely with the proposed method.
A brain detection approach using 3D-CNN was proposed
in [113], where the model was tested on BRATS 2015, 2017,
and 2018 challenge datasets. From the experimental results,
it was clear that the proposed model showed the highest
classification accuracy on BRATS 2015 and a comparable
accuracy with the existing methods. A DL method was
proposed in [114], where multi-level features are extracted
from different layers of two pre-trained DL models namely,
Inception-v3 and DensNet201 and then concatenated prior to
the categorization of the brain tumor by Softmax classifier.
The proposed model is evaluated using a publicly available
dataset comprising of 708 glioma, 1426 meningioma, and
903 pituitary tumors. The concatenation based DL model
showed better performance than current DL and ML models
of brain tumor categorization. A DL based hybrid architec-
ture was proposed in [115] to categorize brain tumors using
T1-weighted contrast-enhanced MR images of 708 menin-
gioma, 1426 glioma, and 930 pituitary brain tumors from
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233 subjects, where the properties of CNN and neural autore-
gressive distribution estimation were incorporated. The three
core steps of the learning method were density estima-
tion, feature exploitation, and classification. A performance
comparison with other famous models pointed out that this
hybrid model maintained a similar level of accuracy with
a reduction in computation cost. The authors of [116] pro-
posed an automatic multi-modal brain tumors categorization
model based on DL with a robust feature selection technique.
They outlined the proposed model with five main stages
linear contrast enhancement, extraction of DL features with
transfer learning from visual geometry groups-VGG16 and
VGGI19 (pre-trained CNN models), feature selection using
correntropy-based joint learning with ELM, fusion of the
selected features in one matrix via partial least square-based
technique, and classification using ELM classifier. The per-
formance studied on BRATS datasets showed stable accu-
racy. The proposed brain tumor recognition and classification
(benign or malignant) system in [117] applied fuzzy-C-means
algorithm with super-resolution for segmentation as well as
CNN with ELM algorithm for classification. The system
utilizes digital imaging and communications in medicine for-
mat MRIs and employs a pertained CNN architecture called
SqueezeNet to perform feature extraction. This proposed sys-
tem with super-resolution performed 10% better in terms of
accuracy than without super-resolution.

In [118], a CNN based DL network is applied for the
identification of brain tumors from 115 tumor and 98 non-
tumor MRI images. A CNN architecture called Resnet50 was
employed as the base and 10 new layers were added instead
of the last 5 layers of this Restnet50 network. The modified
architecture gave a better accuracy rate compared to AlexNet,
Inception-V3, DenseNet201, GoogLeNet, and ResNet50 in
identifying brain tumors. A CNN model based on attention
modules and hypercolumn technique called BrainMRNet is
presented in [119] in order to detect brain tumor from het-
erogeneous MRIs of 155 tumor and 98 non-tumor samples.
The attention modules and hypercolumn technique help in

37639



IEEE Access

P. Khan et al.: Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis

maintaining the best and most competent features from the
significant areas of images till the last layer of the network
architecture. The BrainMRNet outperforms pre-trained CNN
models like GoogleNet, AlexNet, and VGG-16 using the
same sets of data. A DL based brain tumor detection approach
was proposed in [120], where the seed growing method was
used for segmentation. The model was tested on 6 differ-
ent BRATS datasets. From the experimental results, it was
clear that the proposed model showed the highest classifi-
cation accuracy on BRATS 2012 and BRATS 2013 Leader-
board datasets. In [121], structural and textural features from
multi-modal MR images (T1, T2, TICE, FLAIR) were fused
using discrete wavelet transform with Daubechies wavelet
kernel and applied a 23 layered CNN to classify normal and
brain tumor region. Noise reduction and segmentation were
respectively done by employing a partial differential diffusion
filter and a global thresholding method. The model was evalu-
ated using different BRAT'S datasets and performed better due
to the feature fusion. In [122], identification and classification
of 708 meningioma, 930 pituitary, and 1426 glioma brain
tumors were performed by applying three deep CNN archi-
tectures namely AlexNet, GoogleNet, and VGGNet. Further
validation of these architectures was conducted with fine-tune
and freeze transfer learning techniques. The fine-tune VGG
architecture turned out to be the best in terms of accuracy.
A deep CNN based brain tumor classification method was
investigated in [123], where a Whale Harris Hawks opti-
mization technique jointly derived from Whale optimization
Algorithm and Harris Hawks optimization algorithm was pro-
posed. The segmentation of MRIs was carried out by cellular
automata and rough set theory. The proposed optimized clas-
sification method attained better performance as compared to
other models in terms of accuracy, sensitivity, and specificity.
In [124], 204 brain tumor MRIs of T1, T2, and FLAIR
modality are categorized as normal and abnormal (tumor)
using a DBN optimized with improved seagull optimization
algorithm (ISOA). The core steps of this methodology are:
segmentation of preprocessed images via Kapur thresholding
method, extraction and then selection of optimal features
by adopting the ISOA, and finally classification with DBN.
Comparative analysis of performance with existing models
proved the superiority of the proposed model. In [125], deep
features acquired from CNN model VGG-19 through seg-
mentation using grab cut method and handcrafted features
like local binary pattern and histogram orientation gradient
are optimized via entropy after concatenation. The optimized
features are fused in one feature vector prior to being fed to
different classifiers for glioma and healthy image detection.
This methodology was individually evaluated on BRATS
challenge databases.

C. EPILEPSY

Epilepsy is a disorder in brain functionality that causes con-
vulsions in the whole body and sometimes loss of aware-
ness. Usually, it has no serious symptoms and people of
all ages are seen to suffer from it. It is the second most
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occurred neurological disease in humans after stroke and over
50 million people are suffering from it. So the importance
of its automatic detection and prediction is immense in the
field of biomedical signal processing. Note the summary
of the presented works for a quick overview is provided
in Table 5.

1) ML-BASED APPROACHES IN EPILEPSY DIAGNOSIS

The main goal of [126] was to discover the cognitive sig-
natures of mTLE patients also with lateralization informa-
tion. For this, SVM and XGBoost were used to classify the
extracted features to either left or right. Two types of dataset
such as “reduced and working” and ‘“‘original” were used
and it was observed that there were promising interactions
between language and memory scores. It was discovered
some cut off points that predict the disease with more accu-
racy. In [127], the authors proposed an automatic system to
detect the epileptogenic region for epilepsy detection. ANFIS
classifies the extracted features to either focal or non-focal
with high accuracy. An extra step for knowing the severity
added to classify the focal EEG signals further to either
‘early’ or ‘advance’ stages. [128] aimed at finding present and
previous comorbid psychiatric conditions in epilepsy patients
who are mostly teenagers and young adults. Here machine
learning approaches figure out whether the patient is suicidal
or not. The study was conducted for classifying mainly three
groups that include no psychiatric disorders, non-suicidal
psychiatric disorders, and participants with any degree of
suicidality. In [129], unsupervised learning has been applied
to distinguish epilepsy patients in a cluster form on the basis
of unique psychosocial characteristics. This approach aims to
cluster patients into three unique clusters: ““high psychosocial
health”, “intermediate”, and “poor psychosocial health”
using K-means—++-. It is observed that intermediate clusters
mainly form from seizure-related issues and poor cluster
depends on social factors. Thus social support can help in
optimizing the health of patients. [130] introduced a new
scope in discriminating mTLE from NC with an increasing
accuracy.

In [131], a comparative study of epilepsy detection was
performed using different ML techniques. The observations
suggested that the fine Gaussian SVM was most efficient.
Classification of the EEG signals into focal and non-focal sig-
nals using soft computing methods was performed in [132].
The whole process comprises three modules: transforma-
tion, feature computation, and feature classifications. Lastly,
the adaptive neuro-fuzzy inference system classifies the
extracted features. In [133], the laterality in cases of TLE was
analyzed by using theoretical graph analysis and ML algo-
rithms. In [134], a comparative study was done on epilepsy
detection using various classifiers. Among the classifiers,
RF showed the best results. In [135], it was observed that TLE
remains even after the removal of medial temporal structures.
It is discovered that extra-medial regions are capable of caus-
ing seizures.

VOLUME 9, 2021



P. Khan et al.: Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis

IEEE Access

TABLE 5. A comparative study on recent works to detect epilepsy using ML/DL approaches.

SN# | Ref. | Year | Image Modality/other Database Extracted Feature Classifier/ Performance measurement Others
data Detector Acy Sny Spy | AUC | Pm ‘ F1
(Single-stage) | (%) | (%) | (%) | (%) | (%) | (%)
Machine Learning
1 | [126] | 2020 Clinical, Self-generated Cognitive scores XGBoost 7739 | - -- 88.20 - - Left mTLE vs
neuropsychological, right mTLE
speech assessment,
video- EEG recordings SVM-RBF | 7626 88.90
and MRI
2 [ [127] | 2020 EEG Bern—Barcelona Bias, weight, ANFIS-ANN | 99.70 | 96.70 | 98.10 - - - Epilepsy vs no-
entropy, activity, epilepsy
mobility,
complexity,
skewness and
kurtosis
3| [128] | 2020 Spoken language Self-generated Language features SVM 72 - -- - - - Suicidality vs No
disorder
71 Suicidality vs
Non-suicidal
disorder
73 Non-suicidal
disorder
vs No disorder
4 | [129] | 2020 Graphic, social, Calgary Demographic and K-means++ | 269 of the 462 patients (58%) were diagnosed with focal epilepsy,
employment, basic Comprehensive clinical features 143 (30%) with generalized epilepsy, and 57 (12%) with unknown
health-related, and Epilepsy Programme onset epilepsy.
substance use data
5 | [130] | 2020 sMRI, R-fMRI West China Hospital Feature space SVM 58.20 | 67.50 | 48.90 | 64.30 - | 57.60 | All patients vs.
of Sichuan University NC
84.10 | 86.50 | 81.70 | 87.80 83.30 | Left mTLE vs. NC
72.90 | 77.50 | 68.30 | 74.60 71.90 | Right mTLE vs.
NC
6 | [131] | 2020 EEG Bonn University Feature vectors Fine 100 - -- - - - Epileptic vs NC
Gaussian
SVM
7 | [132] | 2020 EEG Bern—Barcelona Statistical features ANFIS 99.40 | 99.70 | 99.70 99.30 Epilepsy vs no-
epilepsy
8 | [133] | 2020 R-fMRI Iranian National Dynamic graph SVM 91.50 - - 91 -- -- Left TLE vs right
Brain Mapping features TLE
Laboratory
9 | [134] ] 2020 MRIL, FDG PET Data collected at ROIs Linear SVM | 87.71 | 86.95 | 88.23 84 - - NC vs right TLE
National Center of
Neurology and 83.01 | 91.17 | 68.42 81 NC vs left TLE
Psychiatry Hospital, 76.19 | 7826 | 73.26 | 71 Left TLE vs right
Tokyo TLE
10 | [135] | 2020 MRI Data from 6 ROIs ANN -- - - 89.28 - -- Seizure-free or not
academic epilepsy seizure-free
centers
Deep Learning
11 | [136] | 2020 EEG UCI ML Repository Features matrix Deep C- 99.74 | 100 - - - 100 | Epileptic seizures
LSTM and tumors
detection
12 | [137] | 2020 DWI CHB-MIT Feature vectors DCNN 92 - - - -- 99.30 Preoperative
Evaluation of
Pediatric Epilepsy
13 | [138] | 2020 EEG Self-generated Feature map DCNN + 80 70 90 81.88 - | 7777 Patients with
Softmax epilepsy without
ED vs NC
14 | [139] | 2020 EEG University of Bonn 3D Feature map DNN 93.61 | 90.24 | 93.63 | 97.30 - - Epileptic seizure
University of Bern 93.13 1 93.46 | 95.93 detection
CHB-MIT 93.24 | 92.58 | 94.01
15 | [140] | 2020 EEG University of Bonn Feature vectors CNN 98.67 | 99 98 - 99 99 | Epilepsy detection
16 | [141] | 2020 EEG CHB-MIT Automated features CNN + -- 92.70 | 90.80 - -- -- Interictal vs
Linear SVM preictal states
17 | [142] | 2020 EEG Epilepsy Center of Multiview deep DCNN + 97.38 | 96.26 - - -- -- Seizures detection
the University features Multiview
Hospital of Freiburg FCM
18 | [143] | 2020 sMRI + R-fMRI National Institute of ROI correlation Multichannel | 46.25 - - 43 -- -- TLE vs NC
sMRI + personal Health-sponsored features, PDC data DNN 71.43 75
demographic and Epilepsy
cognitive (PDC) data Connectome Project,
R-fMRI + PDC USA 69.82 80
Task-fMRI + PDC 69.46 70
19 | [144] | 2020 EEG CHB-MIT Hand-crafted and DNN+HNN | 9897 | -- -- - - - Epileptic state
iNeuro deep features 92.04 classification
20 | [145] | 2020 MEG Sanbo Hospital of Local and global DNN 91.82 | 91.61 | 91.60 | 0.9688 | 91.90 | 91.70 Spikes vs
Capital Medical features - - - - - - nonspikes
University 99.89 | 99.53 | 99.96 | 0.9998 | 99.45 | 99.48
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2) DL-BASED APPROACHES IN EPILEPSY DIAGNOSIS

In [136], a deep C-LSTM model is proposed, where
multi-class (epileptic seizure, brain tumor, eye statuses) clas-
sification is attained through automatic extraction of fea-
tures from EEG datasets of three disease and two activities.
The proposed deep C-LSTM outperforms DCNN and LSTM
in terms of accuracy and noise robustness. Additionally,
the deep C-LSTM has the ability to detect seizure from a short
EEG signal portion (1 second). In [137], a novel imaging
tool was presented, where DCNN tract classification method
was used to analyze the pre-surgical condition of children
with focal epilepsy. Reference [138] mainly distinguished
non-epileptic paroxysmal events from epilepsy. In [139],
anovel hybrid method using the adaptive Haar wavelet-based
binary grasshopper optimization algorithm and DNN was
proposed to detect epilepsy with high accuracy. A new auto-
matic feature fusion CNN model for epilepsy detection based
on dilated convolution kernel was proposed in [140]. A DL
method to detect interictal and preictal states of a patient was
investigated in [141] to help in preventing epilepsy. A novel
method of classification using an unsupervised FCM mul-
tiview clustering algorithm was proposed in [142] to make
the system more efficient and robust than existing meth-
ods. A multi-channel DNN model was proposed in [143] to
evaluate the performance of individual and combinations of
multimodal MRI datasets to predict TLE accurately. A novel
method to classify the states of epilepsy was proposed
in [144], where frequency domain features and time scale
features for multichannel EEG were combined. Processing
of MEG data identifies epileptic zones using epileptic MEG
spikes. Visual inspection of these spikes is time-consuming.
Hence, [145] presented an automatic spike detection method
employing the deep learning approach EMS-Net. EMS-Net
was capable of identifying spikes from MEG raw data with
high accuracy.

D. PARKINSON's DISEASE (PD)

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease after Alzheimer’s. PD can be diag-
nosed early by monitoring several symptoms including
bradykinesia (slowness of movement), rigidity (stiffness of
muscles rendering a person unable to stretch muscles prop-
erly), tremor at rest (shaking of body parts especially hands
when at rest), and voice impairment (losing control over
speech) [96], [146]. According to the category of symptoms,
different ML approaches for detecting PD have been devel-
oped. Note the summary of the presented works for a quick
overview is provided in Table 6.

1) ML-BASED APPROACHES IN PD DIAGNOSIS

A comparative study was performed in [146] considering four
major symptoms of PD. Various ML algorithms were imple-
mented on UCI repository datasets. Static spiral test using
RF ML approach showed highest accuracy (99.79%) among
various spiral Test (mainly used to detect Tremor) approach as
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well as other approaches. In [147], hand movement activity
was used to detect PD at the 2nd and 3rd stages. 3D Leap
Motion sensor was used to capture the hand movement sig-
nals which was calculated based on speed, amplitude, and
frequency. Different ML classifiers were trained using feature
vectors separately and with various combinations of them.
Among the classifiers, SVM showed the highest accuracy
(98.4%) for combined features of all motor tasks. In [148],
R-fMRI based ML framework was used to detect PD. Three
frequency bins such as slow-5, slow-4 and conventional were
analyzed. A two-sample t-test was used for feature selection
and linear SVM was used to classify PD and NC patients.
From the experimental results, it was identified that combined
frequency scheme shows improved performance than the
individual frequency scheme. To predict different stages of
PD, both ML and DL based approaches were investigated
in [149]. Different types of ML methods such as LDA, SVM,
DT, MLP, RF, AdaBoost + DT, AdaBoost + SVM, and deep
CNN were used as classifiers. Among the different types
of feature extraction methods, intensity summary statistics
outperformed the others. Moreover, among the different clas-
sifiers, deep CNN with VGG16 gave the best result (test accu-
racy of 65.30%, training accuracy of 92.20%, and F1 score
of 60.60%). An ML approach for the early detection of PD
was proposed in [150], where voice was used as a modality.
Three different classification methods such as classification
and regression Tree (CART), SVM, ANN and two feature
selection methods such as feature importance and RFE were
investigated. From the experimental results, it was apparent
that SVM with RFE obtained the highest accuracy.

In [151], a wearable sensor array was used to distinguish
PD from progressive supranuclear palsy. The least absolute
Shrinkageand selection operator was used as a feature selec-
tion method. Various combinations of sensor data were fed
to the classifiers to distinguish between PD and progressive
supranuclear palsy, where RF showed the best classification
accuracy on combined tasks. A supervised ML based classi-
fication approach to differentiate different stages of PD (e.g.,
high, medium, and mild) from the NC based on the gait
patters data collected from sensors was investigated in [152].
Among the different state-of-the-art classifiers, DT achieved
the best performance. Moreover, the proposed approach out-
performed several other existing PD detection techniques.
In [153], an imbalance of gut microbiota was used to clas-
sify patients with PD from NC. 846 metagenomic samples
were analyzed, where 374 samples were taken from NC
and 472 samples were collected from PD patients. Finally,
the performance of the proposed scheme was shown by apply-
ing 3 different ML techniques. Among the ML classifiers,
RF showed the best performance. The strategy proposed
in [154] highlights that voice can be a key indicator for the
early detection of PD. It was also suggested that the tradi-
tional ML approaches can different the patients with little or
no symptoms from NC by exploiting voice features. In [155],
anovel approach was proposed to describe structural changes
related to the severity of hypokinetic dysarthria (HD) in
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TABLE 6. A comparative study on recent works to detect PD using ML/DL approaches.

SN | Ref | Year Image Database Extracted Classifier/Detector Performance measurement Others
Modality/other Feature (Single-stage) Ay Sy Spy | AUC | Pu F1
data ) | o) | ) | (B) | () | (%)
Machine Learning
1 | [146] | 2020 Tremor at rest UCI ML repository Feature vectors RF 99.79 1 99.91 | 99.61 - - - PD vs NC
Bradykinesia RF 97.50 | 100 | 100
Rigidity RF 83.12 | 81.03 | 89.47
Voice impairment KNN 97.96 | 100 | 97.50
2 | [147] | 2020 Hand movement Federal State Budget Speed, KNN (K=11) 8130 | -- - - - - PD vs non-PD
signal Scientific Institution | frequency, and
+ Scientific and amplitude SVM 98.40
Educational Medical estimates DT 82.80
and Tg:ehrl:t(;ioglcal RE 9410
3 | [148] | 2020 R-fMRI Wuhan Children’s Discriminative Linear SVM 80.75 | 73.61 | 86.52 | 81.09 | -- - PD vs NC
Hospital features
4 | [149] | 2020 SPECT E-Da Hospital, I- Pixel-based SVM 5250 | - - - - 37 PD vs NC
Shou University features RF 54.50 38.50
Deep CNN-VGG16 | 65.30 60.60
5 | [150] | 2020 Voice UCI ML repository Phonetic CART 90.76 | -- - - - - PD vs NC
features SVM 93.84
ANN 91.54
6 | [151] | 2020 Sensors data John Radcliffe Clinical features RF 88 86 90 - - - PD vs Progressive
Hospital, Oxford supranuclear palsy
LR 80 85 75 (Combined tasks)
7 | [152] | 2020 | Sensors data related Vertical ground Statistical DT 99.40 | 99.60 | 99.80 | -- - 199.25 Cumulative
to gait patterns reaction force features performance for
datasets Kinematic DT 99.40 | 99.60 | 99.80 99.25 | different stages of
features PD detection
8 | [153] | 2020 16S rRNA gene Sequencing Read Metagenomic RF 71 69 - 80 78 71 PD vs NC
sequencing data Archive data ANN 66 66 67 70 66
SVM 60 55 54 68 60
9 | [154] | 2020 Voice Data collected from Paralinguistic LR - | 7590 | - 91 |81.10 | 7840 | Mild PD vs NC
Synapse research features RF 69.30 94 190.20 | 78.30
portal GBT 79.70 95 190.10 | 83.60
10 | [155] | 2020 sMRI Data collected at Brain features SVM Pearson correlation coefficient = 75.16% HD severity
Beijing Tiantan Coefficient of determination=56.49% prediction
Hospital, Capital
Medical University,
China
Deep Learning
11 | [156] | 2020 Speech PC-GITA Deep features | CNN-AlexNet + MLP | 99.30 | -- - - - - PD vs NC
CNN-AlexNet + RF | 98.30
12 | [157] | 2020 Sensors data Self-generated Feature maps CNN 6739 | -- - - - - PD motor state
detection
13 | [158] | 2020 Rapid Eye PPMI Feature vectors | Deep ensemble model | 96.68 | 97.52 | 94.84 | 98.86 | 97.67 | 97.58 PD vs NC
Movement and based on feed-forward
olfactory loss, CSF, ANN
dopaminergic
imaging
14 | [159] | 2020 | Sensors data related PhysioBank Discriminative CNN-LSTM + 99.31 | 99.35 | 99.23 - - - PD vs NC
to left and right features Softmax
gait patterns
15 | [160] | 2020 Voice UCI ML repository Feature vectors | Sparse autoencoder + 95 96 98 - - - PD vs NC
LDA
16 | [161] | 2020 Real-world data UCI ML repository Feature map DBN + ELM Root mean square error=53.70% Motor-UPDRS
Coefficient of determination=88.90%
Root mean square error=52.20% Total-UPDRS
Coefficient of determination=90.70%
17 | [162] | 2020 | sMRI, DaTscans PPMI Feature vectors CNN-RNN 99.76 | - - - - - PD vs non PD
18 | [163] | 2020 Sensor data UK Brain Bank Feature vectors CNN-LSTM -~ | 84.90|84.90 {9230 | -- - Freezing of gait
detection
19 | [164] | 2020 Real-world data UCI ML repository | Feature vectors DNN Root mean square error=14.22% Motor-UPDRS
Coefficient of determination=97%
Root mean square error=22.21% Total-UPDRS
Coefficient of determination=95.60%
20 | [165] | 2020 Speech UCI ML repository Feature vectors DNN 91.69 | - - - - - PD vs NC
21 | [166] | 2020 MRI PPMI Mean Spatial variational - - 80 - - PD vs NC
diffusivity, autoencoder (WM)
fractional Spatial autoencoder 83
anisotropy Dense variational 74
autoencoder
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TABLE 6. (Continued.) A comparative study on recent works to detect PD using ML/DL approaches.

Deep Learning
22 | [167] | 2020 Handwriting Kaggle handwriting Spiral patterns CNN-VGGI19 88.50 | 86.50 | 92.20 | 91.60 - PD vs non PD
dataset Wave patterns 88 |89.20 | 87.90 | 88.60
23 | [168] | 2020 SNPs and DaT- PPMI Genetic features DNN - - - 84.75 - Biomarker
SPECT identification for
PD
24 | [169] | 2020 Speech UCI ML repository Vocal features Autoencoder 96.11 | 98.15 | 89.78 96.78 | 97.45 PD vs NC
25 | [170] | 2020 EEG Henan Provincial Non-linear RNN - 84.84 | 91.81 88.31 - PD vs NC
People’s Hospital features
repository
26 | [171] | 2020 Sensors data Self-generated Motion signals LSTM Pearson correlation coefficient = 86% Dyskinesia
Mean absolute error=6% severity estimation
27 | [172] | 2020 Handwriting Kaggle handwriting Spiral patterns, CNN-RF and 9330 | 9%4 - - 93.50 | 93.94 PD vs NC
dataset Wave patterns CNN-LR with
ensemble voting
28 | [173] | 2020 | sMRI (T2), clinical PPMI and ADNI ROI CNN + Softmax 77.90 - - PD detection
data

29 | [174] | 2020 sMRI (T1) PPMI Brain features Autoencoder 85 100 80 - NC vs. mild
impairment

30 | [175] | 2020 DaT-SPECT PPMI Feature vectors 3D-CNN 97 - -- 96 - -- PD vs NC

31 | [176] | 2020 SsMRI (T1) PPMI Feature vectors 3D-CNN 95.29 | 94.30 | 94.30 | 98 | 92.70 | 93.60 PD vs NC

32 | [177] | 2020 | Sensors data related Physionet Discriminative DNN 98.70 | 98.10 | 100 - - - PD detection

to gait patterns features 85.30 | 8530 | -- 87.30 | 85.30 | Parkinson severity

prediction

PD patients. FreeSurfer tool was used to extract features from
collected sSMRI data and SVM was used for the prediction of
severity of HD.

2) DL-BASED APPROACHES IN PD DIAGNOSIS

Based on speech spectrogram acoustic features, authors
of [156] designed and tested 3 different DL methodologies
for detection of PD. The first method uses transfer learning,
the most widely used DL technique on Fourier Transformed
speech spectrogram to detect PD. The second method uses
deep features extracted from the spectrogram and applied to
ML classifiers. Finally, the third method uses hand crafted
features, and it is safe to say that it was developed merely
to test the competence of handcrafted features to the deep
feature based ML detection method and transfer learning
method. The second method outperformed the other 2 tech-
niques. In [157], the authors use CNN to classify the motor
state of PD patients detected by IMU sensor worn on the
patient’s wrist. Practical challenges of motor state monitoring
in the free living environment were taken into account and
tested using the proposed CNN model and compared with
different ML classifiers. In a high temporal resolution, adept
motor state detection was possible with the proposed CNN
model. In [158], an innovative DL technique is proposed
for early detection of PD based on premotor features. Three
different DL models (e.g., DEEP1, DEEP2, and DEEP3)
were trained based on feed-forward ANN with two hidden
layers. Finally, a deep ensemble model was constructed from
the three individual model. From the experimental results,
it was identified that the proposed approach outperformed
the conventional ML approaches. An attention enhanced DL
framework was proposed in [159], where both left and right
gait patterns were exploited to detect PD. Each gait pattern
was considered separately and finally combined through a
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fully connected layer followed by Softmax classification.
Comparing it to studies that considered left and right gait
patterns as a whole, it was evident that separate gait patterns
tend to be more informative in terms of detecting PD.
Authors of [160] designed a potent feature extraction
pipeline incorporating adaptive grey wolf optimization algo-
rithm and sparse autoencoder neural network. The designed
feature extractor was employed in extracting candidate fea-
tures from the vocal dataset. Based on the features, classifica-
tion was performed with 6 different ML algorithms to detect
PD. Among the classifiers, LDA obtained the best perfor-
mance. In [161], anew DL model for tracking PD progression
was developed by hybridizing clustering and DBN. The pro-
gression of the disease was being evaluated based on UPDRS.
The results of the study showed how prediction accuracy
of UPDRS increases as DL is aided by cluster analysis.
A DL approach by combining CNN and RNN was investi-
gated in [162] and a high prediction accuracy was obtained to
classify PD from non-PD. A home-environment friendly IMU
sensor based system for detecting freezing of gait was inves-
tigated in [163]. A combination of CNN and RNN provided a
significant increase in freezing of gait detection accuracy with
low latency. In [164], a DL based approach was investigated
on a real-world dataset, where PD progression detection was
based on UPDRS. In [165], an efficient PD prediction model
was devised by optimizing hyperparameter tuning in the deep
learning prediction model. Based on grid search, the authors
proposed a multi stage optimization. [ 166] attempted to detect
anomalies in subcortical brain regions of newly detected PD
patients through diffusion MRI. A semi supervised autoen-
coder was designed to reconstruct MR diffusion of a healthy
person based on provided healthy dataset. The reconstruc-
tion errors for reconstructing a healthy MR diffusion were
compared to the reconstruction errors from pathological data.
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This research came to a conclusion that anomaly was not very
specific even in WM in T1 weighted images even though
the overall water displacement and diffusion orientation in
T1 weighted images were quite informative.

A CNN model for PD detection using screening of hand
writing was investigated in [167]. This model not only
worked with spiral patterns as done in the state-of-the-art
architecture but also worked with wave patterns. A fine-tuned
VGG-19 was used to classify PD and control groups auto-
matically. In [168], a DL based feature selection mechanism
was proposed to pick out genetic features that correspond
to imaging features. The proposed mechanism was tested
through simulation and real data. The results were compared
with sparse canonical correlation analysis. It was investigated
that genetics and neuroimaging data were potentially related
to PD. In [169], an autoencoder neural network was used to
detect PD based on vocal features. AEN posed outstanding
scores in terms of all performance metrics, leading to a
conclusion that AEN is potential of detecting AD. In [170],
the authors claimed that pooling based deep RNN on EEG
signals to detect PD was investigated for the first time. The
results of the study proved the model’s compatibility in terms
of PD detection. To accurately estimate dyskinesia severity
in patients with PD, a DL based approach was investigated
in [171]. It was claimed that during the normal activities
of daily living, the proposed method showed the highest
performance in estimating dyskinesia scores. To identify
patients with PD by analyzing spiral and wave sketches of
patients, a DL based system was designed in [172]. To diag-
nose PD, a CNN based technique was proposed in [173],
where T2-MRI and clinical data were integrated for obtaining
an improved classification accuracy. To differentiate mild
impairment in PD from NC, an auto-encoder based DL model
was proposed in [174] and finally, the performance was
studied in terms of different performance matrices. In [175],
DAT-SPECT 3D projection data was exploited to train CNN
for identifying subjects suffering from PD and a high clas-
sification performance was obtained. To detect PD, a DL
based approach was studied in [176], where 3D MRI was
analyzed to realize intricate patterns of the brain’s subcortical
structures. A 1D CNN architecture was designed in [177] to
detect PD accurately and predicting severity by processing
the signals from foot sensors.

IV. FEATURE EXTRACTION TECHNIQUES USED IN BRAIN
DISEASE DIAGNOSIS

There are different methods of extracting features for brain
disease classification. Here, a brief overview of the most
common feature extraction methods is demonstrated.

A. MULTISCALE GEOMETRIC ANALYSIS [178]

1) CONTOURLET TRANSFORM

Wavelets shows poor performance in directional analysis
of 2-D images. The contourlet transform is a new 2-D exten-
sion of the wavelet transform. So, it has the main features
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of wavelets. Also, it offers a high degree of directionality
and anisotropy. The contourlet transform allows a different
and flexible number of directions at each scale and achieves
nearly critical sampling.

2) CURVELET TRANSFORM

Curvelet transform is another multiscale geometric analysis
that overcomes the drawbacks of wavelets. The main advan-
tage is that it has no loss of information in terms of retrieving
frequency information from images. Curvelet Transform has
been divided into two generations: first generation curvelet
transform or continuous curvelet transform and second gen-
eration fast discrete curvelet transform. Fast discrete curvelet
transform via wrapping is the newer one and it is more
intuitive and faster.

B. WAVELET BASED FEATURE EXTRACTION [179]

1) DISCRETE WAVELET TRANSFORM

Wavelets transform the data into various frequency compo-
nents. It analyzes all components separately with its scale
matched resolution. Discrete wavelet transform uses a dis-
crete set of wavelet scales and translations under some
defined rules. The sampling is done on the dyadic sampling
grid. As for neuroimages, the discrete wavelet transform is
implemented to each dimension separately.

2) COMPLEX WAVELET TRANSFORM

Complex wavelet transform was introduced to overcome
two main problems of typical wavelets i.e. lack of shift
invariance and poor directional selectivity. This has been
shown by achieving lower errors and pixel intensity to con-
struct feature vectors. For 2D images, the complex wavelet

transform produces six bandpass sub-images oriented
at £15°, £45°, £75°.

3) DUAL-TREE COMPLEX WAVELET TRANSFORM

The dual-tree complex wavelet transform introduces perfect
reconstruction to shift invariance, good directional selectivity,
limited redundancy, and efficient order-N computation. For
having those features, dual-tree complex wavelet transform
considers positive frequencies and rejects negative frequen-
cies or vice-versa. Besides, the two trees give the real and
imaginary parts of the complex coefficients.

4) EMPIRICAL WAVELET TRANSFORM

Empirical wavelet transform is basically a filter bank that
is constructed around the detected Fourier supports from
the signal spectrum information. Like other classic wavelets,
the empirical wavelets also identical to dilated versions of
a single mother wavelet in the temporal domain. The new
feature is that corresponding dilation factors are not bound
to a certain scheme. They are detected empirically.

C. COMPONENT ANALYSIS

1) INDEPENDENT COMPONENT ANALYSIS [180]

It is a powerful analytical technique for neuroimaging data.
It is a multivariate data-driven technique that can extract
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FIGURE 5. Classifications of feature extraction techniques used in brain diseases detection process.

necessary biomarkers by exploring the links between voxels
in local substructures of the brain. The independent compo-
nent analysis algorithm separates the data into several com-
ponents that are related to a task.

2) PRINCIPAL COMPONENT ANALYSIS [181]

It summarizes structure in the covariate space. It transforms
the neuroimage data into the low dimensional coordinate
system which is grouped by several elements. These elements
represent the whole neuroimage data and are known as prin-
cipal components.

D. SPARSE INVERSE COVARIANCE ESTIMATION [182]
Sparse inverse covariance estimation is a method for func-
tional connectivity modeling. It is an effective tool to analyze
the structure of the inverse covariance matrix of the data.
It can be used to identify the existence and non-existence of
functional connections between brain regions.

E. GAUSSIAN MIXTURE MODEL [183]

This method is used to select ROI of the brain images. A sin-
gle Gaussian represents an ROI with a certain center, shape,
and weight. The processed ROIs of the neuroimage are the
extracted features.

F. NON-NEGATIVE MATRIX FACTORIZATION [184]

This method is developed to analyze non-negative data and
extract their physically meaningful temporal components.
Image pixel, gene expressions, power spectra etc. are known
as non-negative data. Though this method is linked to inde-
pendent component analysis but the components are not inde-
pendent.

G. SHEARLET TRANSFORM [185]

Wavelet transforms do not provide directional information
and is not effective in extracting different types of texture
features. ST provides an effective approach for merging
multiscale and geometry analysis of a neuroimage data.
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It shows high accuracy in detecting directional features such
as distributions of curves, edges and points in images.

H. PEARSON CORRELATION ANALYSIS [186]

Pearson correlation analysis is an interactive feature
extraction algorithm. It is used on the volume for each
structure and measured to analyze the relationship between
operators of ROIs. In this method, the brain is divided into
three-dimensional regions and volumetric measurements are
made accurately.

I. K-SKIP-N-GRAM [45], [187]

K-skip-n-gram method is used to extract the correlation
details of both adjacent and non-adjacent residues. The
sequence information of protein peptides can be extracted by
it. Each sequence is transformed into a feature vector.

V. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS
A. RESEARCH FINDINGS

In Fig. 6, an overview of the number of AD, brain tumor,
epilepsy, and PD articles is presented in two groups depend-
ing on whether the article is based on ML or DL. More
AD articles were reviewed than other brain diseases for both
of the ML (35) and DL (40) groups. In addition to that,
comparatively higher number of researches related to DL are
reviewed. Fig. 7 shows that AD has got the highest amount
of attention of the researchers among the four brain diseases
as maximum number of articles are on AD (75). After AD,
PD (32) is with the highest number of articles while brain
tumor (20) as well as epilepsy (20) have same number of
researches.

The bar charts of Figs. 8 and 9 illustrate the number of
researches based on image modality and source of data for
AD detection, respectively. It is noted that MRI (33) is the
most preferred type of image and ADNI (40) database is
used as a source of data more than any other sources in AD
detection articles. A range of image modality and database is
observed in a few articles though. In Fig. 10, we observed
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that almost all of the brain tumor detection articles utilize
MR images (18). A number of databases are seen to be
used in Fig. 11, where BraTs (6) is adopted comparatively
in more brain tumor detection researches. In the bar chart
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of Fig. 12, we noticed that EEG data (10) is used in the
highest number of articles for epilepsy detection. Moreover,
arange of different databases termed as others databases (11)
are the most utilized source of data for epilepsy detection
researches according to Fig. 13. According to the bar chart
in Fig. 14, the three highest number of articles are based on
sensors data (7), speech (6) and MRI (5) for PD detection,
respectively. Similar to epilepsy detection a range of different
databases (11) are used in the highest number of PD detec-
tion researches. Apart from that UCI ML repository (7) and
PPMI (7) databases are also adopted in a considerable amount
of articles.

Epilepsy detection
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FIGURE 12. Different types of image modality and other data used in the
different articles to detect epilepsy.

B. OPEN ISSUES AND FUTURE DIRECTIONS

From the contemporary studies presented in this paper,
it is clear that ML and DL methods are getting increasing
attention from the researchers because of their potentials to
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significantly contribute to brain disease detection. Nonethe-
less, in order to transform the computational intelligence
with the aim of full-scale deployment for clinical practice,
ML/DL-based brain disease diagnostic approaches must deal
with a number of major issues as described below.

1) EXPLAINABLE DIAGNOSIS AND CLINICAL PRACTICE

Although, they are potentials in terms of brain disease diagno-
sis and predictions, ML and DL methods suffer from opacity,
it is difficult to get straightforward insights into their internal
mechanisms of work [188]. This issue of opacity comes with
a set of problems, because entrusting key decisions to a brain
disease detection system that is not good to clarify itself
convey apparent dangers. Recently, Explainable Al (XAI)
emerges as an oracle to make the Al-based systems more
transparent. The primary goal of the XAl paradigm is to intro-
duce a set of methods that delivers more explainable models
while retaining high performance levels. Finding appropriate
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XAI approaches [189]-[191] in the context of brain disease
diagnosis will eventually be helpful to achieve the verified
predictions, improved models, and new insights that lead
towards more trustworthy brain disease detection systems.
Explainable diagnosis will be the ultimate basis for reliable
and trustworthy communications between medical experts
and AI experts, which is highly important to transform the
ML/DL-based brain disorder detection potentials into clinical
practice.

2) QUALITY OF TRAINING AND DATA AVAILABILITY

The disease diagnostic performances of ML and DL algo-
rithms largely rely on the accessibility of high-quality training
models. Moreover, the problem of annotated data scarcity
is the most critical issue in Al-based medical diagnosis.
Annotation of medical data is time consuming, tiresome,
and costly as it requires significant engagements of experts.
Various techniques such as information augmentation and
picture synthesis can be used to produce additional annotated
data [192], [193]. However, understanding and applications
of these methods are yet to be formulated for Al-based med-
ical diagnostics. Moreover, the methods need to be further
tailored to fit the brain disease diagnosis.

3) INTEROPERABILITY AND COLLABORATION

In the context of brain disease detection, there are possibly
many ways that vendors can build their Al-based hardware
and software solutions. Rules, regulations, and interfaces
adopted by a certain manufacturer might not be compati-
ble with another manufacturer of a product with the same
functionalities. This introduces interoperability issues. Mul-
tidimensional collaboration among health providers, manu-
facturers, and Al scientists is undoubtedly essential to setup
this beneficial solution for enhancing the quality of brain
disease treatments. This collaboration will even resolve the
medial data scarcity to the Al researcher [194]. In this regard,
the world’s leading health organizations such as world brain
alliance, world health professions alliance, and world health
organization can work together with the Al group run by the
international organization.

4) SECURITY AND PRIVACY

ML and DL techniques are typically application-specific
where a model trained for detecting one kind of brain disorder
might not work well for another brain disorder. To avoid the
wrong diagnosis, the underlying DL/ML algorithms need to
be separately retrained with respective brain data for each
disease class. Also, unfitting selections of hyper parameters,
by even a small change, can trigger a large change in model’s
performance resulting [195] in bad diagnosis, which will
eventually jeopardize patients’ lives. More comprehensions
are therefore extremely important for Al systems to be opti-
mized for particular brain disorder detection. Apart from
security, data privacy needs to be addressed jointly from both
sociological and technical perspectives [196]. Particularly,
patients in general and brain disorder patients should have
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legal rights over their personal information protection. The
exponential rise in medical data comes with a big challenge
that how to anonymize the patient information [197]. Efforts
are required to design appropriate algorithms for anonymiz-
ing sensitive information associated with brain data.

5) RESOURCE EFFICIENT METHODS

ML and DL applications often come with hardware limita-
tions. The issue becomes more severe when the computation
processing works on medical data because of the constraint of
lossless data preservation. Eventually, increased processing
power requires more memory and computation resources.
Image pre-processing is a major concern in ML and DL.
It’s important to preprocess images properly to obtain accu-
rate results. But preprocessing is both time consuming and
requires huge space. Interestingly, it is possible to predict
AD with high accuracy without the use of pre-processing
methods by using object detection techniques [89]. So, one
can perhaps focus on this sort of methods in future to reduce
the associated overhead and cost. The volume of data used for
brain disease detection is usually very high, the data sources
are heterogeneous in nature, and is the data often originated
from real-time sensors [198]. Due to the diverse data char-
acteristics, associated data processing platforms experience
critical challenges to effectively process and maintain the
generated data. It is also extremely important for medical
applications to determine data dependency. For example,
some data sections may be in need of various critical factors
such as time and location. Upon the correct identification
of such dependencies at the data processing layer, associ-
ated medical staff or software agents can rapidly respond
to the situation. Although efforts are visible to offer various
data processing methods and platforms suitable for big data
management and extracting meaningful information [199],
further researches are required to investigate whether these
existing techniques are necessarily resource efficient in the
context of ML/DL-based brain disorder identification.

6) EMERGING CONCEPTS

In the field of AI and XAI, whereas the word ‘“‘confidence”
typically indicates that the model of interest provides its
results with small variances, the word ““trust” implies that the
associated model offers interpretable and explainable results.
The quantification of trust for DL approaches has recently
been discussed [200]. Taking this quantification process into
account to design brain disorder diagnosis would be an
insightful investigation. Various network science approaches
have been used to analyze the brain activities for AD patients
to extract interconnectivity patterns of brain regions based
on neuroimaging techniques [201], [202]. These network
science approaches can be integrated with advanced XAl
and ML/DL techniques to have improved solutions for brain
disease treatments. In this context, the role of data fusion of
time series data with different modalities might be examined
using different ML and DL algorithms. Generative adver-
sarial network-based image processing techniques are also
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potentials to offer enhanced brain disease detection capability
by reducing the data scarcity problem [203], [204].

VI. CONCLUDING REMARKS

In this paper, we have presented a survey on the four
most dangerous brain disease detection processes using
machine and deep learning. The survey reveals some impor-
tant insights into contemporary ML/DL techniques in the
medical field used in today’s brain disorder research. With
the passage of time, identification, feature extraction, and
classification methods are becoming more challenging in
the field of ML and DL. Researchers across the globe are
working hard to improve these processes by exploring dif-
ferent possible ways. One of the most important factors is
to improve classification accuracy. For this, the number of
training data needs to be increased because the more the data
is involved, the more accurate the results will be. The use
of hybrid algorithms and a combination of supervised with
unsupervised and ML with DL methods are promising to
provide better results. Even, various fine tunings can some-
times offer promising improvements. For example, in [83],
3D-CNN is used first to extract primary features, and next,
instead of the general FC layer, the FSBi-LSTM is used. This
slight change in a part of the system eventually resulted in
superior performances. Based on the discussion on different
types of brain disease data sources and feature extractions
methods, it is apparent that the accuracies differ based on
different classifiers used and feature extraction processes
applied in the systems. To uncover the limitations of existing
ML/DL-based approaches to detect various brain diseases,
the paper provides a discussion focusing on a set of open
research issues. To design effective Al systems for medical
applications, the inclusion of XAI approaches is the ultimate
necessity. This will help medical professionals to build their
confidence and Al-based solutions will be transformed into
clinical practice in the treatment of patients with brain dis-
orders. We came to know that quality of training data and
interoperability are also major concerns to develop ML and
DL-based solutions. It is yet to be determined whether we
will be able to have sufficient training data without com-
promising the performances of DL/ML algorithms. To make
ML/DL-based solutions more practical, various other issues
such as resource efficiency, large-scale medical data man-
agement, and security and privacy should be addressed well.
This survey is expected to be useful for researchers working
in the area of Al and medical applications in general and
ML/DL-based brain disease detection in particular.
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