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ABSTRACT Estimating 3D human poses from 2D poses is a challenging problem due to joints self-
occlusion, weak generalization, and inherent ambiguity of recovering depth. Actually, there exists spatial
structure dependence on human body key points which can be used to alleviate the problem of joints self-
occlusion. Therefore, we represent human pose as a directed graph and propose a network implemented with
graph convolution to predict 3D poses from the given 2D poses. In the digraph, we determine the connection
weight of each edge according to the error distribution of joints estimation. This makes our model robust to
noise. By optimizing coarse 3D estimation and adversarial learning, our algorithm can successfully improve
the accuracy of estimation and relieve the ambiguity of mapping. Through testing on Human 3.6M and
MPI-INF-3DHP datasets, we achieve excellent quantitative performance. More importantly, our algorithm
also has a superior generalization to outdoor dataset MPII by the pre-training process.

INDEX TERMS 3D human poses, graph convolutional networks, adversarial learning, geometric priors,
gradient vanish, in-the-wild scenes.

I. INTRODUCTION
Locating the 3D joints of human poses in images or videos is
a fundamental problem in computer vision [1]–[4]. There has
been great success in 2D human pose estimation due to the
availability of large annotated datasets. However, advances
in 3D human pose estimation remain limited by joints self-
occlusion, weak generalization, and ambiguous mapping.

Note that current methods rarely utilize the spatial struc-
ture information among joints to estimate 3D human poses.
As shown in Fig. 1, the network fails to reconstruct the 3D
pose correctly when those self-occluded joints tend to be
indistinguishable, because it cannot get effective information
from such a 2D pose. Especially, the location of joints is
mainly influenced by their adjacent joints according to the
human skeletal structure. And such structural information can
be used to relieve the problem of joints self-occlusion. So we
model the human pose as a digraph and propose a network to
predict 3D human poses from 2D poses which uses the graph
convolution to capture structural dependence among joints.

Currently, almost all the algorithms for monocular 3D
human pose estimation can be divided into two approaches:
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FIGURE 1. 3D human pose estimation with joints self-occlusion. (a) is the
image from MPI-INF-3DHP dataset. (b) is the 2D ground truth with some
joints overlapped in the green box area. And (c) is the 3D estimation
predicted from the given 2D pose. Compared to the 3D ground truth
(d), those self-occluded joints are inaccurate in the depth axis. Actually, It
is a challenging problem for the network to predict 3D pose from such a
2D pose because the network cannot acquire useful structure knowledge.

(i) estimating 3D joints from 2D images directly [5], [6];
(ii) estimating 3D human poses from 2D observations, such
as joint heatmaps or coordinate vectors [7], [8]. Our paper
belongs to the second method. Actually, approach (ii) is more
effective than approach (i) since using 2D human poses as
input makes the process of 2D-to-3D invariant to environ-
ment, light, background, etc. And the whole process of 3D
human pose estimation is shown in Fig. 2.

In standard graph convolutional networks (GCNs), the con-
struction of adjacency matrix only depends on the graph
structure, which makes models more sensitive to noise. Some
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studies show that the estimation error mainly comes from
these joints with a large range of activities. Assuming the
estimation error satisfies a certain distribution, we deter-
mine the adjacent matrix according to this error distribution.
Meanwhile, the most commonly large-scale 3D datasets are
captured in a restricted laboratory environment. And the 3D
models trained on such datasets do not generalize well to
other datasets in the wild. Hence, it is desirable to exploit
multiple datasets. Specifically, we first train our network on
an outdoor 2D dataset and then fine-tune it on a 3D dataset.

There is no 3D information available, which results in
ambiguousmapping. And different 3D poses can be projected
to a same 2D pose. So we utilize our network to generate
coarse 3D poses and extract pose features from them. Then
we concatenate low-dimensional 2D and 3D pose features to
further refine these coarse 3D estimations. Also, we train our
network in an adversarial manner. Our discriminator provides
feedback to the generator allowing it to learn priors of 3D
human poses. By using an optimized loss function on the
discriminator, our method successfully avoids the problems
of gradient vanishing and model collapse.

We evaluate our approach on three datasets Human 3.6M,
MPI-INF-3DHP, and MPII. On all datasets, our network gets
remarkable performance. To sum up, our main contributions
are as follows:
• We model the human pose as a digraph and propose
a network to predict 3D human poses from 2D poses
which can capture spatial structure information among
joints to relieve the problem of joints self-occlusion.

• We determine the connection weights of edges in graphs
according to the error distribution of joints estima-
tion, which makes our model robust to noise. Also,
we strengthen the generalization by pre-training our
network on an outdoor dataset.

• We also introduce a method to refine coarse 3D human
poses in the current task. This method fuses 2D and 3D
pose information to alleviate ambiguity of recovering
depth.

• Our method avoids the problems of gradient vanish and
model collapse in adversarial learning. Through quan-
titative and qualitative analysis, our approach achieves
excellent performance.

II. RELATED WORK
A. 2D POSE TO 3D POSE
Recent work has decoupled the 3D human pose estimation
into two stages. These methods first use a state-of-the-art
2D pose detector [9]–[12] to get a 2D estimation and then
lift the 2D pose to 3D by regression modules. The state-
of-the-art work gets a remarkable improvement in accuracy
using a simple feedforward network [13]. Their results further
suggest the feasibility of predicting 3D human poses from
the 2D poses. Li and Lee [14], [15] argue that 3D human
pose estimation is an inverse problem where multiple solu-
tions can exist. So they propose several types of networks
to generate multiple feasible hypotheses from 2D poses.

FIGURE 2. The process of 3D human pose estimation with two stages.
Left is an input RGB image from MPI-INF-3DHP dataset. Middle is the 2D
human pose predicted from the given image. And right is the final 3D
human pose by lifting the 2D human pose to 3D.

Meanwhile, it is easy to collect the relative depth information
of joints which is sufficient for training and evaluating the
3D pose estimation algorithms. Therefore, Ronchi et al. [16]
and Pavlakos et al. [17] use such information as a supervision
signal to avoid the inversion of joints. Fang et al. [18] and
Park and Kwak [19] divide the human body joints into several
groups to model the relationship among different groups.

However, the above approaches fail to reconstruct 3D poses
accurately when the 2D poses are considerably different from
training examples or contain self-occluded human poses.
Because they rarely consider the spatial structural informa-
tion among human body key points. Specifically, the location
of each joint mainly depends on its adjacent joints. Therefore,
we further utilize such structure information to address the
problem of effectively learning 3D poses from 2D poses.

B. GRAPH CONVOLUTIONAL NETWORKS
GCNs [20], [21], [22] as the special networks of CNNs are
often used to process data represented in the graph domain.
Recent researches have achieved state-of-the-art performance
in modeling the relations of visual temporal sequences [23],
[24] and visual objects [25], [26] with GCNs. Ci et al. [27]
present a locally connected network to improve the represen-
tation capability of GCNs. Liu et al. [28] first systematically
analyze themechanism ofweight sharing in graphs. Inspirited
by them, we apply GCNs to 3D human pose prediction.
Advances in GCNs are often categorized as spectral and spa-
tial approaches. For spectral approaches, graph convolutional
operation is defined in the Fourier domain by computing
the eigenvalue decomposition of Laplacian matrix. Yet spa-
tial graph convolution aggregates the joint features directly
among adjacency points. Our work belongs to the second
approach.

In general, the format of adjacency matrix only depends
on the graph structure. The 3D estimations will produce a
large deviation when 2D poses are inaccurate. To make our
network robust to noise, we first assume that the estimation
error satisfies a certain distribution. And then we determine
the weights among joints according to this distribution. Our
experimental results prove that it is a feasible solution for the
noise issue.

C. OUTDOOR 3D POSE ESTIMATION
Many researchers have attempted to estimate the 3D human
pose from an image captured in the wild. However, there are
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FIGURE 3. The proposed network contains four parts of modules: a regression module used to estimate coarse 3D
pose, a discriminator module used to distinguish between ground-truth and projection, a camera parameter module
used to project the 3D pose into 2D, and a pose refinement module used to optimize coarse 3D estimation. There
are also some detailed implementations (red) for regression, discriminator, and projection.

no large-scale outdoor datasets. Therefore, Wang et al. [29]
propose a novel stereo inspired neural network to gener-
ate high quality 3D pose labels for in-the-wild images.
Li et al. [30] and Chen et al. [31] address this problem by
training networks in self-supervision without annotated 3D
data. Ramakrishna et al. [32] propose an algorithm based on
Projected Matching Pursuit. Meanwhile, there is an ambigu-
ous mapping from 2D to 3D due to a lack of 3D information.
So some methods apply generative adversarial networks to
learn 3D pose priors [8], [33], [34]. Others propose several
geometric priors to constrain the 3D human poses, such as
angle limits [35], physical plausibility [36], and anthropomet-
ric regularization [32], [37], [38].

Our method is similar to theirs, but we combine the advan-
tages of these algorithms in a framework. We acquire robust
detectors by pre-training the network on a small outdoor
dataset. In addition, our approach successfully avoids the
problems of gradient vanish and model collapse by using
an optimized loss in the discriminator during adversarial
learning.

III. METHOD
The main idea behind our method is to utilize the spatial
structure information to predict 3D human pose P3d ∈ RN×3

from the given 2D pose P2d ∈ RN×2. As shown in Fig. 3,
the total network consists of four components. To establish
the relations among joints, we represent the human pose as
a digraph G. First, the pose regression module (1) is imple-
mented with stacked graph convolutional layers [39], which
captures the structural dependence to relieve the problem of
joints self-occlusion and generates coarse 3D estimation P3d

′

fromG. Later, 2D input results in the ambiguity of recovering
depth. So the pose refinement module (2) concatenates 2D
and 3D pose features to learn a refined pose P3d from P3d

′

.
Then, to estimate the accurate 3D pose consistent with 2D
input, the refined 3D estimation P3d is projected into 2D

through a weak perspective model. And the camera parameter
module (3) is used to predict the projection matrix in the
absence of ground truth. Finally, the discriminator module
(4) learns to distinguish between the 2D ground truth P2d and
projection P2d

′

. Our regression module can acquire 3D pose
priors and further relieve the ambiguity from 2D to 3D by
adversarial learning.

A. REPRESENTATION OF HUMAN POSE
Following the basic kinematic constraints of joints, the rep-
resentation of human pose is shown in the right of Fig. 4.
To consist with the definition in Hourglass network [9],
we choose the most common applied 16 joints and define the
human pose as a triplet G = (V , ξ,A), where V denotes a
set of pose joints [V1,V2, . . . ,VN ], ξ is the edges indicating
the connection relationship among adjacent joints, and A is
the adjacent matrix with aij = 0 if (i, j) not in ξ , aij = 1 if
(i, j) in ξ . For each joint Vi, its feature is denoted as Hi =
[H1

i ,H
2
i , . . .H

n
i ] where n is the dimension of feature.

B. REGRESSION MODULE
1) GRAPH CONVOLUTION MODULE
The graph convolution in our work is used to aggregate joint
features among adjacent nodes, which can explicitly capture
the structural dependence of joints.When joints are occluded,
their location can be inferred by such structural informa-
tion. The architecture of our graph convolutional module is
illustrated in Fig. 5. Inspired by the stacked neural network
in [11], this module consists of a residual block that contains
two graph convolutional layers with batch normalization,
dropout, and non-linear activation after each layer. A residual
connection is added from the first layer to the final layer
with 512 channels. The main principle of constructing graph
convolution is to maximize the receptive field and avoid the
indistinguishability between graph nodes due to excessive
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FIGURE 4. Spatial graph representation of human poses. The left is the
structure used in many previous approaches which divide the human
pose into five groups according to semantic information. Different color
represents different semantic groups. The right is the pose representation
in our paper where the pose is modeled as a spatial digraph. Wi denotes
the weights, where paired joints have different influence factors.

FIGURE 5. The graph convolutional module.

network layers. Actually, capturing long-range relationships
can address the problem of the limited receptive field as
well as obtain complete pose information. Therefore, we add
a non-local layer [40] after each residual block which is
favorable for information interaction.

Feature updating mechanism among joints is defined as (1)
where A is the adjacent matrix and δ (.) is the non-linear acti-
vation function. First, joint feature H is gathered to joint Vi
according to the adjacent matrix. And then these aggregated
features are transformed to objective dimension by learnable
weightW . If 3D ground truth is available, the loss of distance
Lori between estimation and ground truth is calculated as (2).
The pg and pi are ground truth and estimation.

H l+1
= δ(AH lW ) (1)

Lori =
n∑
i=1

||pi − pg||2 (2)

2) CONNECTION WEIGHTS OF EDGES
In standard graph convolution, the adjacency matrix A ∈
RN×N is computed as (3), where D is a degree matrix and
I denotes the identity matrix. By multiplying by the degree
matrix, the adjacency matrix is normalized.

A = D−
1
2 (A+ I )D−

1
2 (3)

However, the fixed adjacent matrix limits the robustness
of the model to noise. The final 3D estimation will produce
a grand deviation when the 2D pose is inaccurate. Our main
idea is to construct an adjacent matrix according to the distri-
bution of the estimation error. Thus, we adopt a method based

FIGURE 6. The process of calculating the weight matrix Matt . T denotes
the linear transformation.

on iterative error feedback. The graph convolution operation
is redefined as (4).

H l+1
= δ(WH lA′) (4)

A′ is the adjacent matrix fitted by networks with initial
A. First, node representations are transformed into objective
dimension by the learnable weightW . Then these feature rep-
resentations are aggregated to current joints from its adjacent
nodes. In each convolutional layer, our network calculates a
refined adjacent matrix which is used as the input of next
layer to propagate the characteristics. This process is defined
in following (5) and (6).

A′ = A ·Matt
T (5)

Matt = Sigmoid(δ((concatHiHj)W )), i, j ∈ N (6)

Matt ∈ RN×N is the weight matrix with formats
of [[m11,m12, . . . ,m1N ], . . . , [mN1,mN2, . . . ,mNN ]]. Each
element mij denotes the influence factor between joint i and
j. Shown as (6), we first concatenate each joint with others to
compute the similarity among them. The weight coefficient
is obtained by learnable transformation matrix W . Through
ReLU and Sigmoid functions, our network gains the weight
matrix Matt . Finally, we update the adjacent matrix by dot
multiplication. Whole network is implemented in a differen-
tiable manner. The estimation error in each round of iteration
back propagates to front layers. Therefore, those joints with
a large range of activities will get higher weights than others.
And the process of calculating weight matrix Matt is shown
in Fig. 6.

C. POSE REFINEMENT MODULE
To relieve the ambiguity of recovering depth, our network
generates coarse 3D estimations and then the pose refinement
module concatenates 2D and 3D pose features to learn refined
3D poses. Meanwhile, the high-dimensional pose features
generated by the intermediate layer contains redundant infor-
mation, which may result in inaccurate estimation. So we
move this process to front layers. In current 2D coordinate
space, data is collected from different perspectives. And all
joints seem to be occluded except head and neck joints. But
these two joints are also affected by other joints. Therefore,
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FIGURE 7. The process of human pose refinement.

our pose refinement module is applied to whole human poses.
The method of optimizing coarse 3D estimation is defined
as (7) and (8), where P3d denotes the refined pose and
W denotes the learnable parameters of pose refinement
module.

P3d = F(P′,W ) (7)

P′ = P3d
′

concatP2d (8)

Once obtaining the coarse 3D human pose, we concatenate
2D and 3D poses. The fused vector is denoted as P′ = [N ,D]
where D is the dimension of joint features. By concatenating
the features of different dimension, the input vector contains
original location and orientation information. Finally, we use
the pose refinement module F to learn the accurate location
from the fused representation of joints. The above process
of pose refinement is shown as Fig. 7. And the structure of
pose refinement module is similar to Wei et al. [11], which
achieve excellent performance for 3D human pose estimation
with their neural network.

Our approach also imposes a penalty on those invalid
3D poses with inversion and swap. Especially, we use loss
functions derived from joints angle limits and skeletons sym-
metries. Most body joints are constrained within an angular
limit. Shown as (9), the illegal angle loss Lang encapsu-
lates this constraint for four pose joints the left/right elbow
L/R(e) and left/right knee L/R(k) with their bending beyond
180 degrees [41]. Supposing we are given the human skele-
tons as B = ((p1, p2, t12), (p2, p3, t23), . . .) where each tuple
(pi, pj, tij) specifies the pair keypoints i, j and its length t . The
bones symmetry loss Lske is defined as (10) where len(pi, pj)
denotes the length of bones predicted by our network and
||.||F stands for F-norm.

Lang = L(e)+ L(k)− R(e)− R(k) (9)

Lske =
∑
(i,j)∈B

||len(pi, pj)− t||F (10)

D. CAMERA PARAMETER MODULE
In outdoor scenes, the ground truth of camera parameters and
3D poses are not available. Therefore, our camera parameter
module is used to predict the projection matrix. We do not set
any assumptions about this matrix. The 3D poses are valid
only if their projections are consistent with 2D input. This
module has a similar architecture to the refinement module
but with the output of a 6-dimension vector R ∈ R3×2.

Each module in our camera parameter network consists of
two consecutive residual blocks. For activation functions,
we produce the best result with Leaky ReLUs. As shown in
(11), the refined 3D human pose P3d is projected into 2D by
a weak perspective camera model.

P2d
′

= P3dR (11)

E. DISCRIMINATOR MODULE
To further relieve ambiguity of mapping and constrain inac-
curate 3D human poses, the discriminator module is utilized
in our network to discriminate between 2D ground truth P2d

and projection P2d
′

. Total network shown in Fig. 3 is trained
alternatively between the generator and discriminator. Our
generator can acquire prior information of 3D human poses
when the model converges.

We set the true labels as 1 and 0 for 2D ground-truth
and projection, respectively. And the most used loss function
on the last layer of discriminator module is Cross-Entropy.
Shown as (12), P and Q represent two different distributions.

H (P,Q) = −
1
N

N∑
i

[pi log qi + (1− qi) log(1− qi)] (12)

Especially, minimizing this loss function may result in
the problems of model collapse and gradient vanish when
the model manifold and the true distribution’s support have
not a non-negligible intersection with random initialization.
Therefore, we use the optimal transport distance [45] as a
loss function on the discriminator module. Shown as (13),∏

(P,Q) denotes the set of all feasible distribution whose
marginals are P and Q. We observe that there often exhibits
sharp gradients around some regions. Thus, a gradient penalty
scheme is also utilized on the discriminator as (14). We cal-
culate the distance from gradient to pre-defined parameter K .
And α denotes the punishment intensity.

L(P,Q) = min E(x,y)∼γ [||x − y||], γ ∈
∏

(P,Q) (13)

Ladv(P,Q) = maxEx∼P[f (x)]− Ex∼Q[f (x)]

+α||
h

D− K ||2, ||f ||L < k (14)

Finally, the total loss function is shown as (15) where λ
denotes the weight coefficient of pose prior terms.

Ltotal = Lori + Ladv + λ(Lske + Lang) (15)

IV. EXPERIMENTS
We perform our experiments on three datasets: Human 3.6M,
MPI-INF-3DHP, and MPII. The first two datasets are the
benchmark datasets for 3D human pose estimation with 2D
and 3D labels. We use Human 3.6M training set to train our
network. Consistent with reference methods, we also utilize
the 2D estimation of stacked hourglass networks as input in
quantitative analysis. For denoting the generalization of our
model on unseen data, we evaluate the trained network on
MPI-INF-3DHP dataset. Finally, the qualitative results for
unusual poses are shown on MPII.
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A. DATASET DESCRIPTION
1) HUMAN 3.6M
Human 3.6M [46] is the largest available dataset for 3D
human pose estimation with the image under the motion
capture system. This dataset contains 3.6 million RGB
images with four camera perspectives. A total of 15 different
actions are classified with 11 test subjects in this dataset
such as walking, eating, sitting, and smoking. Meanwhile the
camera projection parameters and body proportions are also
available.

2) MPI-INF-3DHP
MPI-INF-3DHP [5] is a newly released dataset with different
scenes including both indoor (backgroundwith a green screen
(GS) and no green screen (NoGS)) and outdoor settings.
This is a more challenging dataset than Human3.6M, whose
data is collected only in an indoor setting. In our experi-
ments, we only directly use the test split of this dataset to
demonstrate the generalization ability of our trained model
quantitatively.

3) MPII
MPII [47] is the widely used dataset for 2D pose estima-
tion which is collected from short YouTube videos covering
daily human activities. It contains 25k training images and
2,957 validation images. The human pose is annotated with
sixteen 2D joints. Since this dataset consists of a large variety
of poses, we use it for qualitative analysis and pre-training the
network in a self-supervised manner.

B. IMPLEMENTATION DETAILS
In the stage of data pre-processing, we apply the standard
normalization procedure to 2D and 3D poses by subtracting
the mean and dividing by the standard deviation. Firstly, our
network is pre-trained on the MPII dataset with 100 epochs
in a self-supervised manner where 3D ground truth is not
available. The generated 3D human poses are projected into
2D using camera projection matrix which is predicted by our
camera parameter module. Finally, the pre-trained model is
fine-tuned on Human 3.6M dataset for another 100 epochs
with ground truth.

Total experiments are carried out in our laboratory plat-
form with GeForce RTX 3080 Graphic Card. The training
rate between generator and discriminator is set as 1:3. The
weight coefficient of geometric pose priors and the number of
stacked convolutional layers are analyzed in ablation experi-
ment.We use an initial learning rate of 0.001with exponential
decay every 10 epochs.

C. QUANTITATIVE EVALUATION
Our main contribution is to propose a network to regress the
3D poses from 2D poses. The network can maintain a mean-
ingful pose even if the 2D poses have deviation. Therefore,
in quantitative evaluation part, we compare our model with

those approaches which mainly focus on the process from 2D
human poses to 3D poses.

1) FOR HUMAN 3.6M
There are two different evaluation protocols: Protocol-I and
Protocol-II. Protocol-II employs a rigid alignment between
the prediction and ground truth by Procrustes Analysis
whereas protocol-I does not. We compute Mean Per Joint
Positioning Error (MPJPE) in millimeters (mm) as evaluation
metric. Meanwhile, we use the data of subjects S1, S5, S6, S7,
S8 for training and S9, S11 for testing.Most of the contrastive
methods give the results under both ground truth (GT) and 2D
estimation of hourglass networks (HG). Therefore, we differ-
entiate the test results with these two different input.

In Table 1, we evaluate our method with the input of GT.
Our approach outperforms all the methods based on original
regression network. In these methods, the spatial structure
information among joints is rarely considered. This is our
motivation of using graph convolutional networks to regress
3D human poses. On average our approach reduces estima-
tion error by 6.8 millimeters under protocol-I, compared to
themethod [13].We are also aware of the fact that our method
will not outperform these methods based on the weight non-
sharing mechanism in graphs [27]. Because weight non-
sharing mechanism enhances the model’s complexity and
representation capability. As shown in this table, they achieve
state-of-the-art performance in the current task.

Table 2 shows the results of 3D pose reconstruction with
the input of HG. All the numbers are taken from reference
papers. In this table, we also achieve a significant improve-
ment over Martinez et al. [13] on all the actions. Our result
is 8.5 millimeters and 3.6 millimeters smaller than its, under
Protocol -I and Protocol-II. Meanwhile, we outperform about
7.1% on protocol-I over the state-of-the-art method based on
joints spatial structure information [19]. The estimation error
in Pavlakos et al. [17] is 41.8 millimeters, which indicates
the advantage of using extra ordinal annotations in predicting
depth.

2) FOR MPI-INF-3DHP
To verify the generalization of our model to unseen human
poses. We compare our method with several approaches that
use adapted Percentage of Correct Keypoints (PCK) and Area
Under Curve (AUC) as metrics in MPI-INF-3DHP dataset.
Especially, we choose a threshold of 150mm in the cal-
culation of PCK. Table 3 shows the quantitative results of
different scenes from which our results are closest to the
method of [27]. In outdoor scenes, our result is 5.7% higher
than Chang et al. [44]. They model the estimation error and
synthesis the input to make the network robust to error. But
it cannot generalize well to outdoor scenes. Our results on
MPI-INF-3DHP dataset further suggest the fact that utilizing
graph convolutional networks to capture the spatial structure
information of human poses can relieve the problem of joints
self-occlusion, improve the accuracy of estimation, and also
enhance the generalization.
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TABLE 1. The quantitative results on Human 3.6M dataset following protocol-I (no rigid alignment) and protocol-II (rigid alignment). The input of our
network is 2D ground truth (GT). The contrastive methods also focus on the process from 2D pose to 3D pose. All the numbers are taken from reference
papers. − denotes the values not given. * denotes the method based on weight non-sharing mechanism. The lower MPJPE (mm) denotes the better results.

TABLE 2. Quantitative results for the reconstruction of 3D pose on Human 3.6M. The input data is 2D estimation by Hourglass network (HG). Other
methods are under the same data conditions as we did. − denotes the values not given. * is the method based on weight non-sharing mechanism. +
denotes the method using extra ordinal annotations.

D. QUALITATIVE RESULT
Firstly, we show some qualitative results on Human 3.6M
dataset in Fig. 8. The input to our model is 2D ground truths
from the test set. Estimation results are shown in the right
column. We can see our method successfully reconstructing
3D human poses from the given input. Our network can still
recover the correct depth, even if the 2D joints are occluded.
Then, Fig. 9 shows the qualitative results on MPII dataset.
These results also prove that our method can get an excellent
performance across different datasets.

E. ABLATION STUDY
In this section, we show the ablative analysis of differ-
ent network components and designed parameters used

during training. All of the ablation experiments are per-
formed on Human 3.6M dataset with the test metrics of
MPJPE. The Model 1 is a fully connected network similar
to Martinez et al. [13].
Table 4 shows the ablative results of different network

components. From this table, we can see that the basic graph
convolutional network with fixed adjacent matrix Model 2
and fitted adjacent matrix Model 3 can decrease the error
by 1.7mm and 3.4mm compared to Model 1. In Model 4,
we use the optimal transmission distance based on gradient
penalty as a loss function and train the whole network in
an adversarial manner. This model further outperforms about
3.1% compared toModel 2. By adding a refinement network,
theModel 5 reduces the estimation error by 0.9mm compared
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FIGURE 8. The qualitative results on the test set of Human 3.6M. The left: 2D inputs. The middel: 3D ground truths. The
right (green): 3D predictions.

FIGURE 9. The qualitative results on the MPII test set. In this section, we use Stacked Hourglass [9] as the 2D detector to
get 2D pose estimations from images. And then the 2D poses are lifted to 3D by our network. The left: input images. The
middle: 2D estimations. The right (purple): 3D predictions.

TABLE 3. Quantitative results on MPI-INF-3DHP test set with different
scenes. All the results of other methods are taken from the reference
papers. − means the values are not given. The higher PCK(%) and AUC
denote the better results. Reference [44] is a method with data
augmentation. Algorithm [27] is based on weighted non-sharing
mechanism. * denotes the methods without capturing spatial structure
information.

to theModel 3. Finally, we combine all methods together and
the final error is decreased to 38.7mm on protocol-I.

Table 5 shows the ablation results of differently designed
hyperparameters. The first row denotes different weight

TABLE 4. Ablation results for different algorithm module. A denotes the
fixed adjacent matrix. A′ denotes the fitted adjacent matrix by network.
And WE denotes the Wassertein loss function.

coefficients of geometric priors in self-supervised learning
and the third row denotes the number of stacked graph con-
volutional modules during fine-tuning training. We note that
our results are getting worse with the increase of weight
coefficients and the excessive number of convolutional lay-
ers. As shown in Table 5, the best appropriate parameter
for weight coefficients is 0.1 and for the amount of stacked
convolutional layers is 4. Actually, the longest skeleton con-
tains 4 joints according to the representation of human poses.
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TABLE 5. Ablation studies for different hyperparameters during network
learning. Weight denotes the weight coefficient λ in (15). Amount denotes
the number of stacked graph module.

Through the superposition of convolution layers, the recep-
tive field just covers a complete skeleton. Therefore, our
results are consistent with this prior.

V. CONCLUSION
In this paper, we model the human pose as a digraph and pro-
pose a neural network for estimating 3D human poses from
2D poses which can explicitly capture the spatial structure
information among joints to alleviate the problem of joints
self-occlusion. To make our model robust to noise, we deter-
mine the connection weights of edges in graphs according
to the error distribution of joints estimation. The pre-training
and geometry prior term are also proved necessary for strong
generalization and accurate 3D human pose. Through adver-
sarial learning and refining coarse estimation, our method
relieves the ambiguity of recovering depth. Using an opti-
mized loss function in discriminator module, our regression
module successfully avoids the gradient vanish and model
collapse. By validating on three datasets, ourmethod achieves
excellent performance. More importantly, our experimental
results further prove that graph convolution and adversarial
learning based on geometric constraint are feasible solutions
for the problems of joints self-occlusion and ambiguous
mapping.
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