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ABSTRACT Despite the remarkable performance of deep learning methods on various tasks, most
cutting-edge models rely heavily on large-scale annotated training examples, which are often unavailable
for clinical and health care tasks. The labeling costs for medical images are very high, especially in medical
image segmentation, which typically requires intensive pixel/voxel-wise labeling. Therefore, the strong
capability of learning and generalizing from limited supervision, including a limited amount of annotations,
sparse annotations, and inaccurate annotations, is crucial for the successful application of deep learning
models in medical image segmentation. However, due to its intrinsic difficulty, segmentation with limited
supervision is challenging and specific model design and/or learning strategies are needed. In this paper,
we provide a systematic and up-to-date review of the solutions above, with summaries and comments about
the methodologies. We also highlight several problems in this field, discussed future directions observing
further investigations.

INDEX TERMS Medical image segmentation, semi-supervised segmentation, partially-supervised segmen-
tation, noisy label, sparse annotation.

I. INTRODUCTION
Medical image segmentation, identifying the pixels/voxels
of anatomical or pathological structures from background
biomedical images, is of vital importance in many biomedical
applications, such as computer-assisted diagnosis, radiother-
apy planning, surgery simulation, treatment, and follow-up
of many diseases. Typical medical image segmentation tasks
include brain and tumor segmentation [1]–[3], cardiac seg-
mentation [4], liver and tumor segmentation [5]–[8], cell
and subcellular structures [9]–[11], multi-organ segmenta-
tion [12] and lung and pulmonary nodules [13], vessel seg-
mentation [14], etc., and thus can deliver crucial information
about the objects of interest. While semantic segmentation of
medical images involves labeling each pixel/voxel with the
semantic class, instance segmentation (such as cell segmen-
tation) extends semantic segmentation to discriminate each
instance within the same class. Recently, deep learning meth-
ods have achieved impressive performance improvements on
various medical image segmentation tasks and set the new
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state of the art. Numerous image segmentation algorithms
have been developed in the literature and have made great
progress on the designs and performance of deep network
models [15], [16].

However, the scarcity of high-quality annotated train-
ing data has been a significant challenge for medical
image segmentation. The strong generalization capabilities
of most cutting-edge segmentation models, which are usu-
ally deep and wide networks, highly rely on large-scale
and high-quality pixel-wise annotated data, which are often
unavailable for clinical and health care tasks. In fact, it is an
expensive and time-consuming process to manually annotate
medical images at pixel-level since it requires the knowledge
of experienced clinical experts. The scarcity of annotated
medical imaging data is further exacerbated by the data dif-
ferences in patient populations, acquisition parameters and
protocols, sequences, vendors, and centers, which may result
in obvious statistical shifts. Thus, it is even challenging to col-
lect a sufficiently large number of training data due to the het-
erogeneous nature of medical imaging data and the strict legal
and ethical requirements for patient privacy. The data scarcity
problem is much more severe for emerging tasks and new
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FIGURE 1. A taxonomy of medical image segmentation under limited supervision.

environments, where quick model employment is expected.
However, only a limited amount of annotations with limited
quality are available. Therefore, the high cost of pixel-level
labeling and the privacy and security of data hinder the model
training and their scalability to novel images of emerging
tasks and new environments, which subsequently hamper
the application of deep segmentation models in real-world
clinical and health care usage. Thus, learning strong and
robust segmentation models from limited labeled data and
readily available unlabeled data is crucial for the successful
application of deep learning models in clinical usage and
health care.

These challenges have inspired many research efforts on
learning with limited supervision, where the training data
only have a limited amount of annotated examples, accurate
but sparse annotations, inaccurate annotations, coarse-level
annotations, and combinations of thereof. However, due to
its intrinsic difficulty, segmentation with limited supervision
is challenging, and specific model design and/or learning
strategies are needed. Despite these challenges, researchers
have introduced a diverse set of deep network models [16]
that can handle incomplete, sparse, inaccurate, or coarse
annotations. However, the progress is more slowly than that
of fully supervised learning. In this paper, we will take a
systematic and up-to-date look at the development of recent
technologies that explored the unlabeled examples and prior
knowledge to address the limited supervision and small data
problem.

Several comprehensive surveys exist about the deep learn-
ing methods [15], [17] or its subcategories such as generative
adversarial networks (GAN) [18] for general medical image
analysis (including classification, reconstruction, detection,
registration, and segmentation) [15], [17], [19] or a special-
ized topic [1], [4], [9], [12], [13], such as digital pathol-
ogy image analysis [12], [20], and incorporating domain
knowledge [21]. While several reviews have reviewed the
application of deep learning for a specific application of
the segmentation, such as cardiac image segmentation [4],
brain tissue segmentation [1], brain tumor segmentation [22],
and segmentation for covid-19 [13], the surveys by [16],
[23], [24] review advancement of deep network architec-
tures, losses, and training strategies for medical image seg-
mentation. There are also several reviews closely related to
our paper. Karimi et al. [25] reviewed deep learning methods
dealing with label noises for medical image analysis, where
most of the representative studies are about medical image
classification. Zhang et al. [26] provided a review of deep
learning methods that tackling small sample problems for
various medical image analysis tasks, such as classification,
detection, and segmentation. The most relevant survey to our
study is [27], which focused on deep learning solutions for
medical image segmentation with an imperfect training set.
The current survey focuses on deep networkmodels for medi-
cal image segmentationwith limited supervision and provides
a more updated review of recent advancements. An overview
of the main body of this survey is demonstrated in Fig. 1.
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To sum up, the main contributions of this paper are:

• We provide a systematic and up-to-date review of med-
ical image segmentation with limited supervision. One
can quickly identify the frontier ideas in this field and,
more importantly obtain an overall picture of the prob-
lems and methodologies in this research area.

• We categorize the problem of limited-supervised seg-
mentation into semi-supervised segmentation, partially
supervised segmentation, and inaccurately-supervised
segmentation and offer a structural review of recent
advances in methods that can be used to address these
problems.We also offer summaries and comments about
the pros and cons of the methodologies in each category,
and the connections of methods in different categories.

• We also highlight several problems in this field and
discuss the limitation and the new trends and future
directions for medical image segmentation with limited
supervision.

The paper is organized as follows. In Section II, we pro-
vide preliminary knowledge about medical image segmenta-
tion and the basic deep network architectures for this task,
as well as the categorization of medical image segmentation
with limited supervision. Section III to Section V provide
a detailed review of methods for semi-supervised segmen-
tation, partially-supervised segmentation, and inaccurately
supervised segmentation, respectively. Section VI discusses
future directions. Lastly, Section VI concludes this survey.

II. OVERVIEW
A. MEDICAL IMAGE SEGMENTATION
involves delineating the anatomical or pathological structures
from medical images of various modalities. As pointed out
in [17], medical images are heterogonous with imbalanced
classes and have multiple modalities with sparse annotations.
Thus, it is complicated and challenging to analyze various
medical images. Here, we focus on the medical image seg-
mentation problem, which typically consists of semantic seg-
mentation and instance segmentation. Semantic segmentation
refers to the task of assigning each pixel/voxel with a seman-
tic category label (such as liver, kidney, etc.). Thus, semantic
segmentation generates per-pixel segmentation masks, and
the multiple objects of the same category are treated as
one entity. In contrast, instance segmentation delineates the
instances of each category. An illustration of the difference
of semantic segmentation and instance segmentation is exem-
plified in Fig. 2. For semantic segmentation of nuclei, all
nuclei pixels are annotated with the same label, and instance
segmentation associates different nuclei with different labels.

B. DEEP NETWORK FOR IMAGE SEGMENTATION
The convolutional neural network (CNN) has been the
de-facto solution for medical image segmentation. CNNs
have shown striking improvement over traditional meth-
ods, such as machine learning methods using hand-crafted
features [10], [28], graph cut methods [29], shape

FIGURE 2. A comparison of b) semantic segmentation and c) instance
segmentation of nuclei from a) histopathology images. While semantic
segmentation labels all nuclei pixels as the foreground, instance
segmentation associates each nucleus with a unique label. Different
labels are denoted by different colors.

deformation [30], and variational methods [31]. Image seg-
mentation has recently been tackled by end-to-end learning
and fully convolutional networks (FCN) [32], especially in
encoder-decoder architecture [33], [34]. Compared to clas-
sical CNN, the FCN is composed of convolutional layers
without any fully-connected layer at the end of the network
and can transform the feature map of the intermediate layer
back to the size of the input image. Thus, the prediction
of an FCN has a spatial one-to-one correspondence with
the input image, which has dramatically promoted semantic
segmentation research. Many models with improved network
architectures have been introduced, such as SegNet [33] with
encoder-decoder architecture, the U-Net [34], PSP-Net [35]
with pyramid pooling, DeepLab [36] with atrous spatial pyra-
mid pooling, Attention U-Net with attentionmodule [37], etc.
An FCN in encoder-decoder architecture typically consists
of a contracting sub-net, i.e., the encoder, that gradually
reduces the feature maps and captures high-level features,
and an expending sub-net, i.e., the decoder, that gradually
recovers the spatial information and fine boundary. A demon-
stration of the difference between a CNN and an FCN in
encoder-decoder architecture is shown in Fig. 3. Notably,
the U-Net introduces additional skip connections between
the encoder and decoder (as shown in Fig. 4), and have
produced very impressive results in the domain of medical
image segmentation. Dense skip connections were introduced

FIGURE 3. A comparison of standard convolutional neural networks
(CNNs) (Top) and fully convolutional networks (FCNs) (Bottom) in
encoder-decoder architecture. An FCN is a CNN that substitutes the the
fully connected layers in the standard CNN by convolution layers and
deconvolution/transposed convolution layers.
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FIGURE 4. U-Net in [34].

in the DenseNet [38], and have been widely used in many
segmentation models [15]. Please refer to [15], [39], [40] for
comprehensive reviews of recent improvements of the FCN
models for semantic segmentation of natural and medical
images.

C. IMAGE SEGMENTATION WITH LIMITED SUPERVISION
The cost of labor-intensive, pixel-level annotation of large
scale medical imaging data can be reduced by utilizing
1) a small subset of labeled training data, also known as
semi-supervised learning or few-shot learning; 2) partial
annotations (including sparse annotations), i.e., partially-
supervised learning; or 3) inaccurate annotations includ-
ing noisy labels, bounding boxes, and boundary scribbles.
It is noteworthy that, though the labeled data is scarce in
the semi-supervised setting, these annotated are typically
assumes to be precise and reliable, which is different from
inaccurate and partial annotation settings. The extreme case
of limited supervision is the unsupervised setting, where there
is ultimately no labeled data available. However, methods
only exploring unlabeled data, such as clustering, are usu-
ally task-agnostic and usually show very low performance
for the complicated segmentation tasks. Recently, auxiliary
tasks, such as the adaptation of a well-trained model from
a similar domain with a similar task [11], [41], have been
leveraged tomigrate this problem.Althoughwewill not cover
the unsupervised segmentation and their solutions, such as
unsupervised domain adaptation (UDA) [42] and zero-shot
learning [43], we mention it here to start by looking at all
settings in the big picture. In this paper, we focus on methods
that learn to segment medical images with incomplete, inex-
act, and inaccurate annotations by jointly leveraging a few
labeled data and a large number of unlabeled examples.

III. SEMI-SUPERVISED SEGMENTATION
Semi-supervised Segmentation is a common scenario in
medical applications, where only a small subset of the train-
ing images are assumed to have full pixel-wise annota-
tions. However, there is also an abundance of unlabeled
images that can be used to improve both the accuracy

and generalization capabilities. Since unlabeled data do not
involve labor-intensive annotations, any performance gain
conferred by using unlabeled data comes with a low cost. The
major challenge of this learning scenario lies in how to effi-
ciently and thoroughly exploit a large quantity of unlabeled
data. The most common approaches for semi-supervised seg-
mentation include 1) general strategies, e.g., transfer learn-
ing, data augmentation, prior knowledge learning, curriculum
learning, and few-shot learning, and 2) specialized methods
that make use of unlabeled data, e.g., self-training [44]–[47],
consistency regularization [48], co-training, self-supervised
learning, and adversarial learning.

In the following subsections, we first review general meth-
ods that can be used to address small labeled data problem,
i,e., transfer learning, data augmentation, prior knowledge
learning, curriculum learning, as shown in Fig. 5. Then,
we discuss specializedmethods designed for semi-supervised
learning. Finally, we elaborate on few-shot learning, which
learns to generalize from a few examples with prior
knowledge.

FIGURE 5. General solutions for tackling semi-supervised medical image
segmentation.

A. TRANSFER LEARNING
Transfer learning refers to reusing a model developed for
a task as the starting point for a model on a second task,
which may speed up the learning process, alleviate the prob-
lem of limited training data, and improve generalization on
the second task. In contrast, training an entire deep net-
work from scratch usually requires a large-scale labeled
dataset. The ‘‘model pretraining and fine-tuning’’ strategy,
a notable example of transfer learning, has been a simple
but effective paradigm in many deep network applications
since many tasks are related. In many deep learning studies,
transfer learning also narrowly refers to the ‘‘model pre-
training and fine-tuning’’ strategy. Typically, transfer learning
from natural image data to medical datasets involves starting
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with standard network architectures, e.g., VGG [49] and
ResNet [50], and using corresponding pre-trained weights
trained on large-scale external sources of natural images,
namely ImageNet [51] and PASCAL VOC [52], as initial-
ization or a fixed feature extractor, and then fine-tuning the
model on medical imaging data. This model reusing strategy
tends to work if the features are general and suitable for both
the source and target tasks. The transferability of features on
different layers of the deep network was investigated in [53].
They showed that transferring features even from distant tasks
can be better than using random features.

It is noteworthy that, various medical applications involves
segmentation of 3D medical images, which hinders the trans-
fer of pre-trained model on 2D natural images to the cur-
rent task. While it is straightforward to reformulate volume
image segmentation to slice-by-slice 2D segmentation, rich
spatial 3D contexts will inevitably lose. Possible solutions for
transferring 2D networks to 3D networks include 1) copy-
ing the 2D kernels along an axis [54] and 2) padding the
pre-trained 2D kernels by zeros along an axis [55], [56]. For
instance, Liu et al. [56] proposed to transfer convolutional
features learned from 2D images to 3D anisotropic volume
and obtained desired strong generalization capability of the
pre-trained 2D network.

For medical image analysis, another challenge of the
pre-trained model on large-scale natural image sets is the
significant domain gap between natural images and medi-
cal images, even an obvious gap between medical images
of different modalities. Tajbakhsh et al. [57] investigated
the effectiveness of pre-trained deep CNNs with sufficient
fine-tuning compared to training a deep network from scratch
on four different medical imaging applications. They showed
that, in most cases, fine-tuned network could outperform
those trained from scratch and showed better robustness.
However, Raghu et al. [58] recently evaluated the properties
of transfer learning from ImageNet on two large scale med-
ical imaging tasks. They demonstrated a contrasting result
that transfer learning gained little performance benefit, and
simple and lightweight models can perform comparably to
large pre-trained networks. Zoph et al. [59] demonstrated
that stronger data augmentation and more labeled data would
diminish the benefit of pretraining for vision applications, but
self-training is always helpful.

While a well pre-trained model trained on a large-scale
medical image dataset may be more valuable for medical
image segmentation, there is not a large scale annotated
dataset like ImageNet in the medical domain. To obtain a
universal pre-trained model with promising transferable and
generalizable ability for medical image analysis, several stud-
ies have proposed to pre-train models on medical datasets
that are limited to specific modalities or tasks. Zhou et al.
[60] built a 3D pre-trained model, called Genesis Chest
CT, using unlabeled 3D Chest Computed Tomography (CT)
images with a novel self-supervised learning method. Similar
pre-trained models for specific image domains were also
similarly built, such as Genesis Chest CT 2D, and Genesis

Chest X-ray, which used 2D chest CT and chest X-ray images,
respectively. A universal 3D model was learned in [61] by
leveraging a self-supervised learning scheme from multiple
unlabeled source datasets of different modalities and distinc-
tive scan regions.

B. DATA AUGMENTATION
Since deep networks are heavily reliant on big data to
learn discriminative representation and avoid overfitting, data
augmentation [62] has been considered as a simple yet effec-
tive data-space solution to the problem of limited anno-
tated data. Specifically, data augmentation aims to artificially
enhance the size, diversity, and quality of the training data
without collecting and manually labeling new data. Typical
data augmentation methods not only include data warping
methods [62] such as random affine and elastic transfor-
mations, random cropping [50], random erasing [63], [64],
intensity transformation and adversarial data augmentation
[65], [66], but also include methods that can synthesize more
diverse and realistic labeled examples, such as mixing images
[67]–[70], feature space augmentation [71], and generative
adversarial networks [18], [72]–[74]. While general trans-
formation augmentation methods such as random affine
transformations, elastic transformations, and intensity trans-
formations are easy to implement and have shown perfor-
mance improvements in abundant applications [2], [34], [75],
they do not take advantage of the knowledge in unlabeled
training data. Recently, there is a growing interest in devel-
oping augmentation that can simulate real variations of the
data, and thus task-driven approach [76]–[78] is a promising
direction. Schlesinger et al. [79] provided a recent review of
data augmentation methods for brain tumor segmentation.

1) MIXING AND CUTTING IMAGES
[67]–[69], [80] is a class of simple but effective augmenta-
tion methods in many applications [70]. Specifically, Mixup
[67] linearly interpolates a random pair of training images
and correspondingly their labels. Recently, Mixup has been
improved in [69] with learned mixing policies to prevent
manifold intrusion. Cutout [64] adopts the idea of the regional
dropout strategy, that is occluding a portion of an image,
on training data. Alternatively, CutMix [68] is a combination
of aspects of Mixup and Cutout by replacing a portion of an
image with a portion of a different image. For the application
of medical image segmentation, Panfilov et al. [70] tested the
efficiency of Mixup for knee MRI segmentation and showed
improved model robustness.

2) ADVERSARIAL DATA AUGMENTATION
Involves harnessing adversarial examples to train robust mod-
els against unforeseen data corruptions or distribution shifts
[65], [66], [81] and thus is plausible to cope with limited
labeled training data. When applying to medical image seg-
mentation, designing and constructing more realistic adver-
sarial perturbations is a crucial problem [65], [77], [82]. For
MR image segmentation, Chen et al. [77] introduced intensity
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inhomogeneity as a new type of adversarial attack using a
realistic intensity transformation function learned with adver-
sarial training to amplify intensity non-uniformity in MR
images and simulate potential image artifacts, such as bias
field. To obtain adversarial samples subject to a given trans-
formation model, Olut et al. [83] proposed to learn a statisti-
cal deformation model that can capture plausible anatomical
variations from unlabeled data by deep registration models.
A similar idea was adopted in [84].

3) GENERATIVE ADVERSARIAL NETWORKS (GAN)
[18], [72] have also been utilized to conduct medical data
augmentation by directly synthesizing new labeled data.
Costa et al. [85] proposed training a generative model with
adversarial learning to synthesize both realistic retinal vessel
trees and retinal color images. For semi-supervised medi-
cal image segmentation, Chaitanya et al. [86] proposed to
learn a generative network to synthesize new samples from
both labeled and unlabeled data by simultaneously learning
and applying realistic spatial deformation fields and additive
intensity transformation fields. To improve cross-modal seg-
mentation with limited training samples, Cai et al. [87] devel-
oped a cross-modality data synthesis approach to generate
realistic looking 2D/3D images of a specific modality as data
augmentation. Yu et al. [88] integrated edge information into
conditional GAN [89] for cross-modality MR image synthe-
sis. To segment pulmonary nodules, Qin et al. [90] augmented
the training set with synthetic CT images and labels and
achieved promising results. For one-shot brain segmentation,
Zhao et al. [76] used a data-driven approach for synthesiz-
ing labeled images as data augmentation. Specifically, they
proposed to model the set of spatial and appearance trans-
formations between all the training data, including both the
labeled and unlabeled images, and then applied the learned
transformations on the single labeled image to synthesize new
labeled images.

C. PRIOR KNOWLEDGE LEARNING
A group of semi-supervised methods has addressed
semi-supervised segmentation by incorporating prior knowl-
edge/ domain knowledge such as anatomical priors about
the objects of interest into the segmentation model as a
strong regularization [91]–[96]. In fact, prior knowledge
about location, shape, anatomy, and context is also crucial for
manual annotation, especially in the presence of fuzzy bound-
aries or low image contrast. As for semantic segmentation
with deep networks, the model training is typically guided
by local or pixel-wise loss functions (e.g., Dice loss [97]
and cross-entropy loss), which may not be sufficient to
learn informative features about the underlying anatomical
structures and global dependencies. Anatomical-prior guided
methods usually assume the plausible solution space can
be expressed in the form of a prior distribution, enforc-
ing the network to generate more anatomically plausible
segmentations.

1) ATLAS-BASED SEGMENTATION
[98], [99] with single- or multiple- atlas has been widely used
in medical image segmentation to exploit prior knowledge
from previously labeled training images. An atlas consists
of a reference model with labels related to the anatomi-
cal structures. Thus, it can provide crucial knowledge, such
as information about location, texture, shape, spatial rela-
tionship, etc., for segmentation, especially when limited
labeled data available for model training. Atlas-based meth-
ods essentially treat the segmentation problem as a regis-
tration problem, and non-rigid registration is typically used
to account for the anatomical differences between subjects.
Wang et al. [91] addressed one-shot segmentation of brain
structures from Magnetic Resonance Images (MRIs) with
single atlas-based segmentation, where reversible voxel-wise
correspondences between the atlas and the unlabelled images
were learned with a correspondence-learning deep network.
Ito et al. [100] considered semi-supervised segmentation of
brain tissue from MRI. Specifically, they relied on image
registration with one or more atlas to generate pseudo labels
on unlabeled data. The expectation-maximization (EM) algo-
rithmwas used to update model parameters and pseudo labels
alternatively. However, image registration, the process of
geometrically aligning two or more images, is computation-
intensive, which may hamper its practical application. Please
refer to [101] for a comprehensive review of both affine and
deformable image registration with deep learning methods.
A similar idea was employed by Chi et al. [102], where
they generated pseudo-labels by utilizing deformable image
registration to propagate atlas labels onto unlabeled images.
Xu and Niethammer et al. [92] proposed to jointly learn
two deep networks for weakly-supervised image registration
and semi-supervised segmentation, assuming that these two
tasks can mutually guide each other’s training on unlabeled
images. He et al. [103] further proposed an improved joint
learning model, which added a perturbation factor in the
registration to its sustainable data augmentation ability and a
discriminator to extract registration confidence maps for bet-
ter guidance of the segmentation task. For 3D left cavity (LV)
segmentation on echocardiography with limited annotation
data, Dong et al. [104] introduced a deep atlas network with
a lightweight registration network and a multi-level infor-
mation consistency constraint. However, registration, which
is a computation insensitive and challenging task, is not an
essential segmentation. For semi-supervised 3D liver seg-
mentation, Zheng et al. [105] proposed to combine proba-
bilistic atlas, which can provide the shape and position prior,
with deep segmentation networks using a prior weighted
cross-entropy loss. The probabilistic atlas was obtained by
averaging the manually labeled liver masks after aligning
all labeled training images. Vakalopoulou et al. [106] devel-
oped an AtlasNet, which consisted of multiple deep net-
works trained after co-aligning multiple anatomies through
multi-metric deformable registration. The multiple deep net-
works were used to map all training images to common
subspaces to reduce biological variability.
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2) SHAPE-PRIOR BASED SEGMENTATION
[94]–[96], [107]–[113] has been an active research topic
in the context of deep learning to obtain more accurate and
anatomically plausible segmentation. While principal com-
ponent analysis (PCA) based statistical shape model (SSM)
[30] was widely adopted by traditional segmentation meth-
ods, it is not straightforward to combine SSM with deep
networks. Ambellan et al. [114] combined 3D SSMs with
2D and 3D deep convolutional networks to obtain a robust
and accurate segmentation of even highly pathological knee
bone and cartilage. Specifically, they used SSM adjustment
as a shape regularization of the outputs of the segmentation
networks. Oktay et al. [94] initially used a stacked convolu-
tional autoencoder to learn non-linear shape representations,
which is integrated with the segmentation network to enforce
its predictions to follow the learned anatomical priors. With
the shape prior, their method obtained highly competitive per-
formance for cardiac image segmentationwhile learning from
a limited number (30) of labeled cases. Rather than using
the compact codes produced by an autoencoder as the shape
constraint in [94], Yue et al. [113] used the reconstructions of
the predicted segmentations to maintain a realistic shape of
the resulting segmentation.

While the framework in [94], [113] incorporated the
learned anatomical prior into deep networks through a
regularization term, Painchaud et al. [115] incorporated
the anatomical priors through an additional post-processing
stage. Specifically, they warped initial segmentation results
toward the closest anatomically correct cardiac shape,
which was leaned and generated with a constrained vari-
ational autoencoder. Ravishankar et al. [116] introduced a
shape regularization network (convolutional autoencoder)
after the segmentation. Larrazabal et al. [107] learned
lower-dimensional representations of plausible shapes with
a denoising autoencoder and use it as a post-processing step
to impose shape constraints on the coarse output of the seg-
mentation network.

As a novel extension of template deformation methods
[30] in the context of deep networks, Lee et al. [110]
introduced a template transformer network, where a shape
template is deformed to match the underlying structure of
interest through an end-to-end trained spatial transformer
network. Zotti et al. [117] introduced a probabilistic image
estimated by computing the pixel-wise empirical proportion
of each class based on aligned ground truth label fields
of the training images. The probabilistic shape-prior image
was concatenated with network features for prior guidance.
For the semi-supervised 3D segmentation of renal artery,
He et al. [103] proposed assisting the segmentation network
with multi-scale semantic features extracted from unlabeled
data with an autoencoder.

Other types of anatomical priors such as star shape
prior [108], [118]–[121], convex shape prior [122], topology
[123]–[127], size [128]–[130], etc., have also been introduced
to improve the segmentation robustness and anatomically
accuracy.

D. CURRICULUM LEARNING
Given the greater complexity of semi-supervised segmenta-
tion over classification and the importance of starting small,
the concept of curriculum learning [131], or the easy-to-hard
strategy, has also been utilized. Curriculum learning describes
a type of learning strategy that first starts with easier aspects
of the task or easier subtasks and then gradually increases
the difficulty level. In a broad sense, the most widely used
curriculum learning strategies include data curriculum learn-
ing and task curriculum learning. While early studies focused
on data curriculum learning by reweighting the target train-
ing distribution, recent studies also investigated the varied
easiness among different works [132], i.e., task curriculum
learning.

In data curriculum learning, non-uniform sampling of
examples or mini-batches from the entire training data, rather
than uniform-sampling as in standard deep network training,
is used in model training. Therefore, the core tasks are how
to rank the training examples and how to guide the order
of presentation of examples based on this ranking [133].
Thus, it is flexible to incorporate prior knowledge about the
data and task. It has been empirically demonstrated that this
learning paradigm is useful in avoiding bad local minima
and in achieving better generalization ability [134]. Data
curriculum learning has recently been used in several med-
ical applications, especially location and classification tasks
[78], [135]–[137] but few in segmentation tasks [138], [139].
To train a deep network for the classification and location
of thoracic diseases on chest radiographs, Tang et al. [135]
first ranked the training images according to the difficulty
(indicated by the severity-levels of the disease) and then fed
them to the deep network to boost the representation learning
gradually. For fracture classification, Jiménez-Sánchez et al.
[137], [140] assigned a degree of difficulty to each training
example according to medical decision trees and inconsis-
tencies in multiple experts’ annotations. In addition to the
predefined curriculum by prior knowledge and keeping it
fixed after that, the curriculum can also be dynamically deter-
mined to adapt to the feedback of the learner, also known as
self-paced curriculum learning [141] or self-paced learning
[142]. For lung nodule segmentation/detection with extreme
class imbalance, Jesson et al. [138] introduced an adaptive
sampling strategy, which favors difficult-to-classify exam-
ples. For instance-level segmentation of pulmonary nodule,
Wang et al. [139] employed pseudo labels as the surro-
gate of ground truth labels on unlabeled data. To utilize the
pseudo-labeled data, they followed the idea of self-spaced
curriculum learning [141] and embedded curriculum design
as a regularization term into the learning objective.

Task curriculum learning consists of tackling easy but
related tasks first to provide auxiliary information for more
complicated tasks, which will be solved later. Task cur-
riculum learning is highly related to multi-stage learning
in segmentation [2], [143], [144], where more easier tasks
such as location or coarse segmentation are first solved with
a simple method. After that, the more complex pixel-level
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FIGURE 6. The flowchart of the self-training for semi-supervised segmentation and active learning for interactive segmentation
on a conceptual level. For self-training, the segmentation model is initially trained only on the small size labeled data and then
retrained with the extended data that consists of both the labeled data and confidence pseudo-labeled data. Human interaction
is required for active learning, and the segmentation model is retrained with original labeled data and newly-labeled data.

segmentation is addressed. For example, for cross-domain
segmentation of natural images, Zhang et al. [145] proposed
to solve easy tasks first to infer necessary properties about the
target domain. Specifically, they first estimated label distribu-
tions over both global images and some landmark superpixels
of the target domain. They then enforced the semantic seg-
mentation network to follow those target-domain properties
as much as possible. For left ventricle segmentation in MR
images, Kervadec et al. [146] introduced a curriculum-style
strategy that first learned the size of the target region, which
is the more easier task and then regularized the segmentation
task, which is a difficult task, with pre-learned region size.

E. SELF-TRAINING STRATEGY
Self-training [44], [147]–[149] (also called pseudo-labeling)
is an iterative process that alternatively generates pseudo-
labels on the unlabeled data and retrains the learner on the
combined labeled and pseudo-labeled data. An illustration
of the self-training based semi-supervised segmentation is
shown in Fig. 6 (a) (with a comparison of the strategy of
human-in-the-loop, i.e., active learning for interactive seg-
mentation that will be discussed in Sec. IV). The generality
and flexibility of self-training have been validated in many
applications [59]. A fundamental property of self-training
strategy is that it can be combined with any supervised learner
and provides a straightforward but effective manner of lever-
aging unlabeled data.

Self-training is usually in a teacher-student paradigm
[150], [151] (as shown in Fig. 7), which consists of first
learning a teacher model from ground truth annotations and
then using the predictions of the teacher model to gener-
ate pseudo-labels on the unlabeled data. The ground truth
annotations and pseudo labels with high confidence are fur-
ther jointly digested iteratively to learn a powerful student
model. Bai et al. [44] first trained a teacher neural network
using the labeled data and then utilized prediction confidence
(i.e., the probability prediction followed by a conditional
random field (CRF) refitment) of the teacher model on the

FIGURE 7. The flowchart of a typical self-training procedure in the
teacher-student framework on a conceptual level. The segmentation
model is initially trained only on the small size labeled data and then
retrained with the extended training dataset that consists of both the
labeled data and confident pseudo-labeled data.

unlabeled data as the pseudo labels. Fan et al. [152] applied
a similar strategy for lung infection segmentation from CT
images. Typically, the self-training method is iterative, and
the quality of pseudo-labels should be gradually improved for
a successful self-training approach [151]. The self-training
strategy’s main challenge lies in generating reliable pseudo
labels and handling the negative impacts by adding incom-
plete and incorrect pseudo-labels, which may confuse the
model training.

A promising direction to improve the quality of pseudo
labels and reduce the negative impact of noisy pseudo
labels is to estimate the uncertainty or confidence estimation
[153]–[157]. To this end, it is pleasable to let the teacher
model simultaneously generate the segmentation predictions
as the pseudo labels and estimate the uncertainty maps for
the unlabeled images. The uncertainty maps can be used as
guidance to maintain reliable predictions [158]–[165].

There are two categories of uncertainty [154], [157] one
can model, namely aleatoric uncertainty (data uncertainty),
which is an inherent property of the data distribution and
irreducible, and epistemic uncertainties (model uncertainty),
which can be reduced through the collection of additional
data. Popular approaches to generate pseudo-labels and
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quantify uncertainties in deep networks include Bayesian
neural networks [155], [166], Monte Carlo Dropout [45],
[46], [153], [167], Monte Carlo batch normalization [168],
and deep ensembles [169]. Bayesian neural networks cap-
ture model uncertainty by learning a posterior distribution
over parameters. While Bayesian networks are often hard to
implement and computationally slow to train [153], [169],
non-Bayesian strategies, including Monte Carlo Dropout and
deep ensembles, are more attractive. Jungo et al. [160] eval-
uated several widely-used pixel-wise uncertainty measures
concerning their reliability and limitations for medical image
segmentation, and also highlighted the importance of devel-
oping subject-wise uncertainty estimations.

The model uncertainty estimated with Monte Carlo
Dropout [153] can be interpreted as an approximation of
Bayesian uncertainty. Concretely, the predictive uncertainty
is estimated by averaging the results of multiple stochastic
forward passes of the deep network under random dropout.
The widely-used uncertainty measures include normalized
entropy of the varied probabilistic predictions, the vari-
ance of the Monte Carlo samples, mutual information, and
predicted variance. Nair et al. [158] provided an in-depth
analysis of the different measures based on medical image
segmentation performance. Camarasa et al. [170] conducted
a quantitative and statistical comparison of several uncer-
tainty measures of Monte Carlo Dropout based on the task
of multiclass segmentation. Given the uncertainty estimated
by Monte Carlo Dropout [153], Yu et al. [46] introduced
an uncertainty-aware consistency loss for the learning of the
student model and applied it to the semi-supervised seg-
mentation of the left atrium. Similarly, Sedai et al. [45]
conducted semi-supervised segmentation of retinal layers in
OCT images with uncertainty guidance estimated withMonte
Carlo Dropout.

Deep ensembles [169] were theoretically motivated by the
bootstrap and have been empirically demonstrated to be a
promising approach for boosting the accuracy and robustness
of deep networks. Concretely, multiple networks using dif-
ferent training subsets and/or different initializations are sep-
arately trained to enforce variability, and then the predictions
are combined by averaging for the uncertainty estimation.
Mehrtash et al. [163] used deep ensembles for confidence
calibration, where they trained multiple models with different
initializations and random shuffling of the training data. They
applied their confidence calibratedmodel for brain, heart, and
prostate segmentation.

Ayhan and Berens [171] showed that applying tradi-
tional augmentation at the test time can be an effective
and efficient estimation of heteroscedastic aleatoric uncer-
tainty in deep networks, and they applied their method
on fundus image analysis. Kendall and Gal [157] intro-
duced a unified Bayesian framework to combine aleatoric
and epistemic uncertainty estimations for deep networks.
Wang et al. [164] validated the effectiveness of test-time
augmentation as aleatoric uncertainty estimation on the seg-
mentation of fetal brains and brain tumors.

F. CO-TRAINING
Co-training initially introduced by Blum and Mitchell [172]
exploits multiview data descriptions to learn from a limited
number of labeled examples and a large amount of unlabeled
data. The underlying assumption is that the training exam-
ples can be described by two or more different but comple-
mentary sets of features, called views, which are assumed
conditionally independent in the ideal given the category.
As an extension of self-training to multiple base learners,
the original co-training for classification first learns a sep-
arate learner for each view using any labeled examples, then
most confident predictions of all base learners on unlabeled
data are gradually added to the labeled data of other base
learners to continue the iterative training. By enforcing pre-
diction agreements between the different but related views,
the goal is to allow inexpensive unlabeled data to augment
a much smaller set of labeled examples. Moreover, it is
essential to ensure the different base learners giving different
and complementary information about each instance [173],
namely, view difference constraint or diversity criterion.
Peng et al. [174] applied the idea of co-training to
semi-supervised segmentation of medical images. Con-
cretely, they trained multiple models on different subsets of
the labeled training data and used a common set of unlabeled
training images to exchange information with each other.
Diversity across models was enforced by utilizing adversarial
samples generated using both the labeled and unlabeled data
as [175]. For semi-segmentation of multi-organ from 3D
medical images, Zhou et al. [176] introduced multi-planar
co-training, which involves training different segmentation
models on multiple planes, i.e., axial, coronal, and sagittal
planes, of a volume image in the teacher-student paradigm.
Xia et al. [177] incorporated uncertainty estimation to the
multi-planar co-training approach in [176] to generate more
reliable pseudo labels for unlabeled data.

G. CONSISTENCY REGULARIZATION
Consistency regularization [48], [178], [179] utilizes unla-
beled data by relying on the assumption that favoring mod-
els should generate consistent predictions for similar inputs,
as shown in Fig. 8. More specifically, the trained model
should output the same predictions for classification or equiv-
ariant predictions for segmentation when fed perturbed or
transformed input. To this end, methods of this category
learn to minimize the difference in predictions of pass-
ing perturbed or transformed versions of a training sam-
ple through the deep network, aiming to obtain a model
of better generalization ability. The conceptual idea of con-
sistency regularization in both single-model architecture
and dual-model architecture is shown in Fig. 8. Cui et al.
[180] adapted the mean teacher model [151], an improved
teacher-student self-training strategy that also considered
consistency regularization, to semi-supervised brain lesion
segmentation. Specifically, they minimized the differences
between the predictions of the teacher model and the student
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FIGURE 8. The conceptual idea of consistency regularization. a) Single model with consistency constraint, e.g., 5 model [150];
b) dual model in the teacher-student framework with consistency constraint, e.g., Temporal Ensembling [150], and Mean
Teacher [151].

model for the same input under different noise perturba-
tions. Yu et al. [46] further introduced uncertainty estimation
into the mean teacher learning framework. Li et al. [181]
introduced geometric-transformation consistent loss, which
was integrated into the mean teacher learning framework
[151] and applied to the semi-supervised segmentation of
sin lesion, optic disc, and liver tumor. In the mean teacher
framework, Zhou et al. [182] encouraged the predictions
from the teacher and student networks to be consistent in
both feature and semantic level under small perturbations.
They applied their model to semi-supervised instance seg-
mentation of cervical cells. In the teacher-student paradigm,
Fotedar et al. [183] further considered consistency under
extreme transformations, including a diverse set of intensity-
based, geometric, and image mixing transformations, and
conducted semi-supervised lesion segmentation and retinal
vessel segmentation from skin and fundus images, respec-
tively. Liu et al. [184] explicitly enforced the consistency
of relationships among different samples under perturba-
tions in the teacher-student framework. Instead of using
the self-training strategy (i.e., the teacher-student paradigm),
Bortsova et al. [48] enforced transformation consistency on
both the labeled and unlabeled data within a Siamese network
and achieved state-of-the-art performance on chest X-ray
segmentation. A similar idea has been adopted in [185] to
weakly supervised segmentation of covid-19 in CT images.
For semi-supervised medical image segmentation, Peng et al.
[186] further employed mutual-information-based clustering
loss to explicitly enforce prediction consistency between
nearby pixels in the unlabeled images and random perturbed
unlabeled images. Fang and Li [187] developed a convolu-
tional network with two decoder branches of different archi-
tectures and minimized the difference between soft masks
generated by the two decoders. They applied their method
to kidney tumor and brain tumor segmentation and showed
promising results.

H. SELF-SUPERVISED LEARNING
Self-supervised learning [188]–[190] (as shown in Fig. 9),
a form of unsupervised learning, has been widely used to

FIGURE 9. The basic workflow of self-supervised semi-supervised
segmentation.

explore unlabeled data and has shown soaring performance
on representation learning through discovering data-inherent
patterns. Self-supervised learning leverages the unlabeled
data with automatically generated supervisory signal and
benefits the downstream tasks by self-supervised model pre-
training. Then, the pretrained model and the leaned fea-
tures are adapted to the target tasks of interest. Therefore,
self-supervised learning aims to obtain a good representa-
tion of the training data without using any manual label.
A popular solution is to learn useful features by introducing
various pretext tasks, such as Jigsaw puzzles [189], rotation
prediction [191], inpainting [192], colorization [190], relative
position [188], and a combination of a number of them, for the
networks to solve, as demonstrated in Fig. 9. In this way, unla-
beled training data can also be leveraged to acquire generic
knowledge under different concepts, which can be transferred
to various downstream tasks. These pretext tasks share one
common property: labels for the pretext task can be automat-
ically generated based on a certain degree of image under-
standing. For semi-supervised medical image segmentation,
Li et al. [47] proposed generating pseudo-label by recur-
rently optimizing the neural network with a self-supervised
task, where Jigsaw puzzles were used as the pretext task.
Tajbakhsh et al. [193] used three pretext tasks, i.e., rota-
tion, reconstruction, and colorization, to pre-train a deep
network for different medical image segmentation tasks in the
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context of having limited quantities of labeled training data.
Taleb et al. [194] extended five different pretext tasks, includ-
ing contrastive predictive coding, rotation prediction, Jigsaw
puzzles, relative patch location, and exemplar networks to
3D context, and showed competitive results on brain tumor
segmentation from 3DMRI and pancreas tumor segmentation
from 3D CT images. In [195], Taleb et al. introduced a
multimodal puzzle task to pretrain a model from multi-modal
images, which was then finetuned on a limited set of labeled
data for the downstream segmentation task.

I. ADVERSARIAL LEARNING
Generative adversarial learning was introduced by
Goodfellow et al. [72], which involves training two subnet-
works, one serves as a discriminator that aims to identify
whether a sample is drawn from true data or generated by the
generator, and the other as a generator that aims to generate
samples that are not distinguishable by the discriminator.
The generator and discriminator are trained as a minimax
two-player game. Adversarial training has been used in many
applications, including fully-supervised image segmentation
[196]–[198], semi-supervised segmentation [103], [105],
[187], [199]–[203], and domain adaptive segmentation [11],
[41], [204]–[207]. For semi-supervised segmentation tasks,
a straightforward strategy [208], [209] is to augment the
standard segmentation (the generator) with a discriminator
network designed to distinguish between the predicted seg-
mentation and the ground truths and choose reliable pseudo
labels on the unlabeled data. Zhang et al. [209] applied
adversarial learning to biomedical image segmentation with
a model consisting of two subnetworks: a segmentation
network (generator) to conduct segmentation and an evalu-
ation network (discriminator) to assess segmentation quality.
Han et al. [198] introduced Spine-GAN, a recurrent Gen-
erative Adversarial Network, to segment multiple spinal
structures from MRIs. For semi-supervised medical image
segmentation, Nie et al. [208] followed a similar strategy
introduced in [199] and utilized an adversarial network to
select the trustworthy regions of unlabeled data to train the
segmentation network. Generative adversarial learning has
also been used as a data-space solution to the small data
problem by directly synthesizing more realistic looking data.
For the segmentation of unpaired multi-model cardiovascu-
lar volumes with limited training data, Zhang et al. [210]
utilized a cycle-consistent adversarial network for training
a cross-modality synthesis model, which can synthesize real-
istic looking 3D images. Cross-modality shape-consistency
was enforced to guarantee the shape invariance of the syn-
thetic images.

J. FEW-SHOT SEGMENTATION
Few-shot segmentation (FSS) [211] aims at learning a
model on base semantic classes but performing segmenta-
tion on novel semantic class with only k labeled images
(i.e., k-shot) of this unseen class without retraining themodel.
The k image-label pairs for the new class are typically

referred to as the support set. Given the support set, FSS
predicts a binary mask of the novel class for each query
image. It is noteworthy that, in FSS, the base classes for
model training are assumed to have sufficient labeled training
data, and the novel class, i.e., the testing class, is not seen by
the model during training. Although few-shot learning has
shown promising performance for classification and detec-
tion, its application in segmentation is immensely challenging
due to the need for pixel-wise prediction. A comprehensive
review of few-shot learning (FSL) [212] has been provided
in [213]. The application of FSL to semantic segmentation
of natural images was initially introduced in [211]. Rather
than fine-tuning the pre-trained model on the few support
set as [214], Shaban et al. [211] introduced a two-branched
approach, where the first branch takes the labeled image as
input and predicts in a single forward pass a set of parameters,
which are used by the second branch to generate a prediction
for a query image. It is noteworthy that fine-tuning a large
network on a very small support set is prone to overfitting.
Roy et al. [215] considered the few-shot segmentation of
organs from medical volumetric images, where only a few
annotated slices are available. Following the two-branch
paradigm in [211], they introduced strong interactions at mul-
tiple locations between the two branches by using Channel
Squeeze & Spatial Excitation modules [216], [217], which
is different from the one interaction at the final layer in
[211]. Ouyang et al. [218] introduced a superpixel-based self-
supervision technique for few-shot segmentation of medical
images and showed the promising ability of generalization to
unseen semantic classes.

K. SUMMARY
In previous sections, we summarize popular techniques for
semi-supervised segmentation of medical images. In sum-
mary, these methods address three crucial problems: 1) how
to learn a reliable model from just a few labeled data without
overfitting, 2) how to make the best use of the unlabeled data,
and 3) how to use domain knowledge to learn a robust model
with better generalization. Note that the three problems are
not independent. The first problem can be easier to address
when additional unlabeled data are available, or specific
domain knowledge can be exploited.

The first problem can be partially addressed by data aug-
mentation, curriculum learning, and transfer learning. Data
augmentation is a simple yet effective data-space solution
and artificially augment the labeled data. However, recent
methods also exploit unlabeled data to capture real variations
of the data. Data curriculum learning works on the data
space by taking advantage of human knowledge about the
training data. However, this method is not always effective.
The transfer learning relies on the availability of external
large benchmark datasets for model pretraining and can be
regarded as a model-space solution. However, the effective-
ness of the transfer learning, that is, adapting the pretrained
network to the current dataset, depends on the nature of
the current dataset, such as the similarity of the benchmark
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dataset and the current dataset, and the size of the current
dataset. Generally, when the similarity of the two datasets
is high, and the size of the current dataset is small, the per-
formance gain is significant. When transferring from natu-
ral image benchmarks to medical datasets, where the data
similarity is relatively low, the benefit of transfer learning
is not always significant [58]. Thus, pretraining on relevant
domains and applying to the current domain with super-
vised or semi-supervised training, known as Domain Adap-
tation [219] or Domain generalization, has received growing
attention. Please refer to [42] for comprehensive reviews of
domain adaptation for semantic segmentation.

There are more methods that leverage unlabeled data,
including the self-training, consistency regularization,
adversarial learning, and self-supervised learning. The
self-supervised learning strategy also follows the ‘‘pretrain,
fine-tune’’ pipeline, but conducts model pretraining on the
current unlabeled data in an unsupervised or self-supervised
style, which is different from the supervised pretraining in
transfer learning. In contrast, the consistency regularization
strategy introduces unsupervised losses on the unlabeled
data, and the unsupervised losses are jointly learned with
the supervised loss on the labeled data. The self-training
directly augments the labeled data through pseudo-labeling
the unlabeled data.

There are many types of domain knowledge, such as
anatomical priors by shape or atlas modeling, data or task
priors by curriculum learning and transfer learning, and so on.
Incorporating domain knowledge has proven to be effective
in regularizing the model training and especially valuable in
medical image segmentation. The few-shot learning aims to
generalize from a few labeled examples with prior knowl-
edge. Thus, it can help relieve the burden of data collecting
and annotation and help learn from rare cases, which is crucial
for biomedical applications.

IV. PARTIALLY-SUPERVISED SEGMENTATION
While semi-supervised segmentation addresses the scenario
that a small subset of the training data is fully annotated,
partially-supervised segmentation refers to more challenging
cases wherein partial annotations are available for all exam-
ples or a subset of examples. Obviously, a model that requires
only partial annotations will further reduce the workloads of
manual labeling. However, this problem is more challenging
than semi-supervised learning.

A. VOLUME SEGMENTATION WITH SPARSELY
ANNOTATED SLICES
For 3D medical image segmentation, uniformly sampled
slices with annotations were used in [220]–[224] to train
a 3D deep network model by assigning a zero weight to
unannotated voxels in the loss function. Bai et al. [221]
performed label propagation from annotated slices to unan-
notated slices based on non-rigid registration and introduce
an exponentially weighted loss function for model training.
Bitarafan et al. [223] considered a partially-supervised

segmentation problem where only one 2D slice on each
volume in the training data was annotated. They addressed
this problem with a self-training framework that alternatively
generates pseudo labels and updates the 3D segmentation
model. Specifically, they utilized the registration of consecu-
tive 2D slices to propagate labels to unlabeled voxels. To seg-
ment 3D medical volumes with sparsely annotated 2D slices,
Zheng et al. [224] utilized uncertainty-guided self-training
to gradually boost the segmentation accuracy. Before train-
ing segmentation models with sparsely annotated slices,
Zheng et al. [225] first identified the most influential and
diverse slices for manual annotation with a deep network.
Aftermanual annotation of the selected slices, they conducted
segmentation with a self-training strategy. Wang et al. [226]
considered a 3D image training dataset with mixed types
of annotations, i.e., image volumes with a few annotated
consecutive slices, a few sparsely annotated slices, or full
annotation. Under the self-training framework, they itera-
tively generated pseudo labels and updated the model with
augmented labeled data. To take advantage of the incomplete
annotated data, they introduced a hybrid loss, including a
boundary regression loss on labeled data and a voxel clas-
sification loss on both labeled data and unlabeled data.

B. SEGMENTATION WITH PARTIALLY
ANNOTATED REGIONS
As sparse annotations, partially annotated regions or scrib-
bles can provide the location and label information at a
few pixels or partial regions. They have been widely used
in segmentation tasks [29], [227]–[230], especially in the
context of interactive segmentation [231]–[236], where users
give feedback to refine the segmentation iteratively. Scribbles
have been recognized as a user-friendly way of interacting
for both natural and medical image segmentations [6], [29],
[227], [231]. While scribble-supervised segmentation was
usually addressed by optimizing a graphical model [29] or
a variational model [31], tackling this problem with deep
networks has also been a hot topic.

Since medical images usually suffer from low tissue con-
trast, fuzzy boundaries, and image artifacts such as noise
and intensity bias, an interactive strategy is also valuable for
medical image segmentation. Zhang et al. [237] considered
interactive medical image segmentation via a point-based
interaction, where the physician should click on rough central
points of the objects for each testing image. For MR image
segmentation, Wang et al. [238] employed scribbles as user
interaction to fine-tune coarse segmentation in the context
of deep learning. Zhou et al. [239] introduced an interactive
editing network trained using simulated user interactions to
refine the existing segmentation. Liao et al. [240] proposed
to solve the dynamic process of iteratively interactive image
segmentation of 3D medical images with multi-agent rein-
forcement learning, where they treated each voxel as an agent
with shared behaviors.

To reduce the annotation effort in the context of inter-
active segmentation, especially for instance segmentation,

36838 VOLUME 9, 2021



J. Peng, Y. Wang: Medical Image Segmentation With Limited Supervision: A Review of Deep Network Models

researchers have explored methods to suggest annotations
[139], [241]–[243] or select informative samples [244].
A promising solution is active learning, the process of select-
ing the examples or regions that need to get human labels.
In this way, we can obtain a model that achieves the desired
accuracy faster and with low annotation cost. The flowchart
of active learning for interactive segmentation on a concep-
tual level is shown in Fig. 6 (b). A comparison with self-
training, which explores no human interaction, is also demon-
strated. Yang et al. [241] combined the deep network model
with active learning to identify the most representative and
uncertain areas for annotation. In instance-level segmentation
of pulmonary nodules, Wang et al. [139] utilized active learn-
ing to overcome the annotation bottleneck by querying the
most confusing unannotated instances for manual annotation.
The most confusing unannotated instances were identified
with high-uncertainty. For breast cancer segmentation on
immunohistochemistry images, Sourati et al. [243] intro-
duced a new active learning method with Fisher information
for deep networks to identify a small number of the most
informative samples to be manually annotated. To achieve a
rapid increase in the segmentation performance, Shen et al.
[245] designed three criteria, i.e., dissatisfaction, representa-
tiveness, and diverseness, in the framework of active learn-
ing to select an informative subset for labeling, which can
obviously reduce the cost of annotation. Given an initial
segmentation, Wang et al. [235] used uncertainty estimation
to identify a subset of slices that require user interactions.

Rather than performing interactive segmentation,
Lin et al. [227] directly used the given sparse scribbles as
the supervision to train a deep convolutional network for
natural image segmentation. Tang et al. [228] investigated
partially-supervised segmentation with scribbles as annota-
tions and introduced several regularized losses, including
CRF [29] loss, high-order normalized cut loss, and kernel
cut loss in the context of deep convolutional networks.
In [229], Tang et al. further introduced normalized cut loss.
Ji et al. [246] investigated the segmentation of brain tumor
substructures with whole tumor/normal brain scribbles and
the image-level labels as supervision. To capture fine tumor
boundaries, they augmented the segmentation network with
a dense CRF [247] loss. For 3D instance segmentation in
medical images, Zhao et al. [248] considered a mix of 3D
bounding boxes for all instances and voxel-wise annotation
for a small fraction of the instances. They addressed this prob-
lem with a cascade of two stages: an instance detection stage
with bounding-box annotations and an instance segmentation
stage with full annotations for a small number of instances.

For semantic segmentation of emphysema with both
annotated and unannotated areas in training data, in the
self-training framework, Peng et al. [249] utilized the similar-
ities of deeply learned features between labeled and unlabeled
areas to guide the label propagation to unannotated areas.
Then, the selected regions with confident pseudo-labels are
used to enrich the training data. For the segmentation of
cancerous regions in gigapixel whole slide images (WSIs),

Cheng et al. [230] considered a partially labeled scenario,
where only partial cancer regions in WSIs were annotated
by pathologists due to time constraints or misinterpreta-
tion. To tackle this problem, they integrated the idea of the
teacher-student learning paradigm and self-similarity learn-
ing to enforce nearby patches in aWSI to be similar in feature
space. A similar prediction ensemble strategy was used to
generate pseudo labels, which were used to filter out noisy
labels.

Dong et al. [250] considered neuron segmentation from
macaque brain images, where both central points and rough
masks were used as the supervision. Zheng et al. [251]
proposed to use boundary scribble as the weak supervision
for tumor segmentation, where boundary scribbles are coarse
lesion edges. While boundary scribbles provide both location
information about the lesions and more accurate boundary
information than bounding boxes, they still lack information
about accurate boundaries. For cell segmentation with scrib-
ble annotations, Lee and Jeong [252] proposed to generate
reliable labels through the integration of pseudo-labeling and
label filtering in the mean teacher framework [151].

C. SEGMENTATION WITH POINT ANNOTATIONS
An extremely sparse annotation is point annotation [253],
which is labeling only one point in each object as exam-
plified in Fig. 10. Point annotations [253]–[257] have also
been considered to reduce the cost of manual labeling,
which is especially useful for multiclass segmentation and
instance-level segmentation. Point annotation is one of the
fastest ways to label objects. As has shown in [253], point
annotation is significantly cheaper than dense pixel-level
annotation. Despite its cost-efficiency, point annotations are
extremely sparse annotations and only contain location infor-
mation. Thus, most studies have utilized point annotations

FIGURE 10. An illustration of pixel-wise annotation, point annotation and
bounding-box annotation for mitochondria segmentation from electron
microscopy (EM) images.

VOLUME 9, 2021 36839



J. Peng, Y. Wang: Medical Image Segmentation With Limited Supervision: A Review of Deep Network Models

on object detection and counting tasks [258]–[260], such
as cell detection [260], [261] and nuclei detection [262].
Yoo et al. [263] investigated nuclei segmentation with point
annotations. Since point annotations do not contain nucleus
boundary information, they augmented the segmentation net-
work with an auxiliary network for edge detection with the
Sobel filtered prediction map of the segmentation network
as the supervision signal. To segment mitosis from breast
histopathology images with centroid labels, Li et al. [264]
expanded the single-pixel label to a novel label with con-
centric circles, where the inside circle was regarded as a
mitotic region, and the regions outside the outer ring were
regarded as non-mitosis. They introduced a concentric loss
to make the segmentation network be trained only with the
estimated labels in the inside circle and outside the outer cir-
cle. For nuclei segmentation, Qu et al. [256], [265] addressed
a more challenging case, where only sparse points annota-
tion, i.e., only a small portion of nuclei locations in each
image, were annotated with center points. Their method con-
sists of two stages, the first stage conducts nuclei detection
with a self-training strategy, and the second stage performs
semi-supervised segmentation with pseudo-labels generated
with Voronoi diagram and k-means clustering. The dense
CRF loss was utilized in training to refine the segmentation.

D. MULTICLASS SEGMENTATION FROM MULTIPLE
FEW-CLASS-LABELED DATASETS
Segmentation of various anatomical structures from medical
images, such as multi-organ segmentation, is a fundamental
problem in medical image analysis and downstream clinical
usage. However, besides the cost of data collection, obtaining
sufficient multiclass annotations on a large dataset in itself is
a labor-intensive and often impossible task. In contrast, there
are various annotated datasets from different medical centers
for their own clinical and research purposes but with miss-
ing annotations for several classes, or even only single-class
annotations available. Most public available medical image
data are designed and annotated for specific clinical and
research purpose, such as Sliver07 [23] for evaluation of
liver segmentation [6]–[8], [266], LiTS [267] for evaluation
of liver-tumor segmentation, KiTS [268] for evaluation of
kidney-tumor segmentation [269], LUNA [270] for lung nod-
ule analysis [271], [272], and BRATS [273] for brain tumor
analysis [2], [3]. Thus, a significant challenge is how to learn
a universal multi-class segmentation model from multiple
partially annotated datasets with missing annotated classes.

Zhou et al. [274] first considered a partially-supervised
multi-organ segmentation problem where a small fully
labeled dataset and several partially-labeled datasets are
available. They developed a prior-aware neural network that
explicitly incorporated anatomical priors on abdominal organ
sizes as domain-specific knowledge to guide the training
process. Dmitriev et al. [275] further removed the need
for the fully labeled data and investigated the problem of
multi-class (e.g.,multi-organ) segmentation from single-class
(e.g., single-organ) labeled datasets [274]. They proposed

to condition a single convolutional network for multi-class
segmentation with non-overlapping single-class datasets for
training. Concretely, they inserted the conditional informa-
tion as an intermediate activation between convolutional
operation and the activation function. Huang et al. [276]
tackled the problem of partially-supervised multi-organ seg-
mentation in the co-training framework, where they collab-
oratively trained multiple networks, and each network was
taught by other networks on un-annotated organs. Yan et al.
[277] proposed to develop a universal lesion detection algo-
rithm to detect a comprehensive variety of lesions from mul-
tiple datasets with partial labels. Specifically, they introduced
intra-patient lesion matching and cross-dataset lesion mining
to address missing annotations and utilized feature sharing,
proposal fusion, and annotation mining to integrate differ-
ent datasets. Shi et al. [278] addressed partially-supervised
multi-organ segmentation with two novel losses: the marginal
loss that aims to merge all unlabeled organ pixels with
the background label, and the exclusion loss that constrains
multi-organs exclusive. To segment multi-organ and tumors
from multiple partially labeled datasets, Zhang et al. [279]
proposed an encoder-decoder network with a single but
dynamic head, in which the kernels are generated adaptively
by a controller, conditioned on both the input image and
assigned task. Dong et al. [250] considered a special case
where full labels for all classes are not available on the
whole training set, but labels of different classes are available
on different subsets. They addressed this problem with a
data augmentation strategy by exploiting the assumption that
patients share anatomical similarities.

E. SUMMARY
Reducing annotation cost essentially echoes the real-world
environments, where the annotations are often incomplete or
even sparse. This section covers four types of partial annota-
tions, including partially annotated slices for 3D images, par-
tially annotated regions, point annotations, and multiple few-
class-labeled datasets. As shown in previous sections, most
methods to address these scenarios are based on self-training
and regularization techniques. When collecting annotated
data with a human in the loop, suggestive annotations can sig-
nificantly reduce the annotation effort, mostly when extensive
scale data should be annotated, or a large number of instances
need annotations. Thus, a critical question is which data sam-
ples or image regions should be selected for annotations to
achieve high-quality performance faster. This active learning
paradigm, as exemplified in Fig. 6 (b), has been an active
research field, where more efforts are still needed.

V. INACCURATELY-SUPERVISED SEGMENTATION
Segmentation with inaccurate or imprecise annotations refers
to the scenario where the ground truth labels are corrupted
with (random, class-conditional or instance-conditional
[280], [281]) noises, thus also referring to noisy label learn-
ing [282], [283]. Imprecise boundaries, and mislabeling
are also inaccurate annotations. Moreover, bounding-box
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annotations can be treated as annotations with inaccurate
boundaries and mislabeled regions. Note that, as shown
in [284], boundary-localized errors are more challenging than
random label errors.

A. LEARNING FROM NOISY LABELS
has recently drawn much attention in many applications,
including medical image analysis [25], [285], [286]. It is
expensive and sometimes infeasible to obtain accurate labels,
especially on medical imaging data where labeling requires
domain expertise, and annotating huge-size imaging data is
inherently a daunting task. In contrast, noisy labels such as
those generated by non-experts [287] or computers [236]
are easy to obtain. Moreover, it is impractical to manually
correct the label errors, which is not only time-consuming
bust also requires a stronger committee of experts.
Karimi et al. [25] provided a review of the state-of-the-
art deep learning methods (published in 2019 or earlier) in
handling label noise. However, most approaches for dealing
noisy (low-quality) annotations are developed for classifica-
tion [288]–[292] and detection [293]. Herein, we focus on
medical image segmentation with noise labels.

While a class of methods struggles to model and learn label
noises [294], [295], other methods choose to select confi-
dence examples, reducing the side effects without explicitly
modeling the label noise [289], [296], [297], such as the
co-teaching paradigm [296] and reweighting strategy [294].
To eliminate the disturbance of segmentation from inaccurate
labels, Zhu et al. [297] developed a label quality evaluation
strategy with a deep neural network to automatically assess
the label quality. They trained the segmentation model on
examples with clean annotations. For chest X-ray segmenta-
tion with imperfect labels, Xue et al. [298] adopted a cascade
strategy consisting of two stages: a sample selection stage,
which selects the clean annotated examples as the co-teaching
paradigm, and a label correction and model learning stage,
which learns the segmentation model from both the cor-
rected labels and original labels. To segment skin lesions
from noisy annotations, Mirikharaji et al. [299] adopted a
spatially adaptive reweighting approach to emphasize the
learning from clean labels and reduce the side effect of
noisy pixel-level annotations. Ameta-learningwas adopted to
assign higher importance to pixels. Shu et al. [300] proposed
to enhance supervision of noisy labels by capturing local
visual saliency features, which are less affected by supervised
signals from inaccurate labels. For noisy-labeled medical
image segmentation, Zhang et al. [301] integrated confidence
learning [302], which can identify the label errors through
estimating the joint distribution between the noisy annota-
tions and the true (latent) annotations, into the teacher-student
framework to identify the corrupted labels at pixel-level. Soft
label correction based on spatial label smoothing regulariza-
tion was also adopted to generate high-quality labels. Rather
than using fully manual annotations for vessel segmenta-
tion, Zhang et al. [236] proposed to learn the segmentation
from noisy pseudo labels obtained from automatic vessel

enhancement, which usually has system bias. To tackle this
problem, they adopted improved self-paced learning with
online guidance from additional sparse manual annotations.
The self-paced learning strategy enabled the model training
to focus on easy pixels, which have a higher chance to have
correct labels. To minimize manual annotations, they intro-
duced a model-vesselness uncertainty estimation for sug-
gestive annotation. To weaken the influence of the noise
pseudo labels in semi-supervised segmentation, Min et al.
[303] introduced a two-stream mutual attention network with
hierarchical distillation, where the multiple attention layers
were used to discover incorrect labels and indicate potentially
incorrect gradients.

B. SEGMENTATION WITH BOUNDING-BOX ANNOTATIONS
A appealing weak supervision is bounding-box annotations
[304]–[306], which are easy to obtain and can yield con-
firmed information about backgrounds and rich information
about the foreground. Moreover, the bounding box, as shown
in Fig. 10, can be simply represented by two corners, which
allows light storage. Given the uncertainty of figure-ground
separation within each bounding box [307], one of the core
tasks for bounding-box supervised segmentation is to gener-
ate accurate pseudo-labels. A popular pseudo-label genera-
tion approach is Grabcut [231], which iteratively estimates
the foreground and background’s distributions and conducts
segmentation with CRF models such as graph cut [29].
The iterative strategy that alternatively updates segmentation
model parameters and pseudo labels have been widely used
to address bounding box annotations [304], [308]. In the con-
text of natural image segmentation with deep networks, the
BoxUp model [304] iterated between automatically generat-
ing region proposals and training convolutional networks. For
fetal brain segmentation fromMR images with bounding-box
annotations, Rajchl et al. [308] introduced DeepCut model,
an extension of the GrabCut method to estimate distribu-
tions by training a deep network classifier. Specifically, they
iteratively optimized a densely-connected CRF model and a
deep convolutional network. Kervadec et al. [309] leveraged
the classical bounding-box tightness prior [310] to regular-
ize the output of deep segmentation network. Concretely,
the bounding-box tightness prior was reformulated as a set
of foreground constraints and a global background empti-
ness constraint, which enforced the regions outside bounding
box to contain no foreground. They solved the introduced
energy function with inequality constraints a sequence of
unconstrained losses based on an extension of the log-barrier
method. Wang et al. [311] investigated the segmentation of
male pelvic organs in CT from 3D bounding box annotations,
which was addressed with iterative learning of deep network
model and pseudo labels. A label denoising module, which
evaluated the consistency of predictions across consecutive
iterations, was designed to identify the voxels with unreliable
labels. Zheng et al. [251] proposed to use boundary scrib-
ble as the weak supervision for tumor segmentation, where
boundary scribbles are coarse lesion edges. While boundary
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scribbles include locations of lesions and provide more accu-
rate boundary information than bounding boxs, they still lack
accurate information about boundaries.

C. SUMMARY
Lower the requirement of precise annotations can also sig-
nificantly reduce annotation efforts. In this section, we have
reviewed two types of inaccurate annotations, i.e., noisy
labels and boxing-box label. While the partial annotations
reviewed in Section IV are reliable annotations for the pos-
itive classes (except for the background class), inaccurate
annotations in this section refer to unreliable labels. For
example, the noisy labels can be regarded as labels cor-
rupted from ground truth labels; the bounding-box annota-
tions, as shown in Fig. 10 (d), contain both foreground pixels
and background pixels. It is known that deep network models
are susceptible to the presentation of label corruptions [25],
[312]. Thus, addressing label noises has gained increasing
attention in recent years and has been a popular topic in top
conference venues.

VI. DISCUSSION AND FUTURE DIRECTIONS
In this section, we discuss some ongoing or future directions
of medical image segmentation with limited supervision.

A. TASK-AGNOSTIC VERSUS TASK-SPECIFIC USE OF
UNLABELED DATA
Semi-supervised
segmentation methods partially differ in how to leverage
unlabeled data. There are two typical ways to make use of
unlabeled data: 1) the task-agnostic approach, which lever-
ages unlabeled data through unsupervised or self-supervised
pretraining, such as the self-supervised learning strategy in
Sec. III-H; 2) the task-specific approach, which jointly lever-
ages the labeled and unlabeled data by enforcing a form of
regularization, such as the consistency regularization strat-
egy in Sec. III-G and self-training in Sec. III-E. While the
task-agnostic approaches utilize the unlabeled data for unsu-
pervised representation learning followed by supervised fine-
tuning, the task-specific approaches use the unlabeled data to
directly augment the labeled data through pseudo-labeling,
or regularize the supervised model learning through consis-
tency regularization. Both paradigms have shown promising
results and received substantial attention in the fields of
medical imaging and computer vision. Recently, an encour-
aging progress in self-supervised learning is the contrastive
learning [313], [314], which formulates the task of discrim-
inating similar and dissimilar things in the learning model.
The Momentum Contrast model [314] with contrastive unsu-
pervised pretraining outperformed its supervised pretrained
counterpart in several natural image segmentation tasks. The
contrastive learning strategy also has been used in medi-
cal image segmentation with limited annotations and has
shown promising results [315]. However, the gap between
the objectives of the self-supervised pretraining and down-
stream segmentation task is non-negligible. More work in

this direction is expected to push the boundaries on medical
image segmentation tasks. Another promising direction is
integrating the task-agnostic and task-specific approaches in
an elegant way. A possible solution is introduced in [316].
They first fine-tuned the unsupervised pretrained model and
then distilled the model into a smaller one with the unlabeled
data.

B. MORE CONSTRUCTIVE THEORETICAL
ANALYSIS IS NEEDED
Although diverse strategies, such as self-supervised learn-
ing, and curriculum learning, have been introduced and
achieved promising results, more studies are needed to
identify their mechanisms. For example, it is still unclear
how to automatically design an adaptive curriculum for
the given segmentation task instead of using a predefined
curriculum [131] and when will curriculum-like strate-
gies, especially data curriculum, benefit the deep model
training. Possible promising directions for automatic cur-
riculum design may be the self-pace paradigm [141] and
teacher-student paradigm [317]. Whereas curriculum learn-
ing has achieved success on classification and detection tasks
[78], [135]–[137], it has relatively limited applications on
semi-supervised medical image segmentation tasks [138],
[139]. In addition to more extensive experimental results on
diverse segmentation tasks, there is also a need for theoret-
ical guarantees on their effectiveness [133], [318], which is
the foundation for its application on specific tasks. A solid
foundation is also needed for segmentation methods based on
self-supervised learning, especially those using consistency
loss or contrastive loss [319].

C. LIGHTWEIGHT AND EFFICIENT SEGMENTATION
MODELS ARE FAVORABLE
Deep and wide models are slow to train and, more impor-
tantly, they may easily overfit on datasets with limited anno-
tation. Lightweight models with few parameters and few
computational resource requirements are favorable for model
training and deploying on computationally limited platforms,
which may significantly improve the clinical application’s
efficiency [2], [320], [321]. Two strategies are usually
employed: model compression [322] and efficient model
architecture designs [2], [320], [323]. Moreover, model cas-
cade, model ensemble, maintaining multiple networks, and
combining them, such as the self-training strategy, are usu-
ally used, which inevitably increase system complexity and
degrades training efficiency [2]. Thus, maintaining a more
simple model system is challenging future direction.

D. HYPER-PARAMETER SEARCHING IS CHALLENGING
There are usually more hyper-parameters, such as the
trade-off parameters, in segmentation methods with lim-
ited supervision. However, there are not enough labeled
data for reliable hyper-parameter searching, resulting in
high-variance in performance. A possible solution is using
meta-learning [324], the goal of which is ‘learning to
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learn better’. In other words, meta-learning seeks to improve
the learning algorithm itself with either task-agnostic or
task-specific prior knowledge and thus can improve both
data and computational efficiency. Thus, there is a rapid
growth in interest in meta-learning and its various appli-
cations, including medical image segmentation with lim-
ited supervision [325]. Utilizing meta-loss on a small set of
labeled data has shown promising results in few-shot learning
[324], [326], [327].

E. COMPLEX LABEL NOISES ARE CHALLENGING
Label noises in real-world applications are usually a mix
of several types of noises, such as class-dependent noise,
instance-dependent noise, and adversarial noise, which tends
to confuse models on ambiguous regions or instances.
Thus, training models with the ability to tackle com-
plex noises is valuable for real-world clinical applications.
Karimi et al. [25] reviewed deep learning methods dealing
with label noises for medical image analysis, where most of
the representative studies are about medical image classifi-
cation. However, the challenge of dealing with label noises is
particularly significant in segmentation tasks since pixel-wise
labeling of large datasets is resource-intensive and requires
experts’ domain knowledge. The limited imaging resolution
also makes the annotators difficult to identify small objects
and fuzzy boundaries. More label noises exist in the large
number of annotations produced by non-experts or automat-
ics labeling software with little human refitments. To analyze
and address various kinds of label errors, an important thing
is to construct large scale datasets with real noises, which
in itself is a challenging task. Currently, most studies still
use public datasets with simulated label perturbations [284],
[298], [301] or private datasets [25], [300]. Building up public
benchmarks with real noises is crucial to make further break-
throughs, especially for clinical usage.

F. LEARNING TO REPRESENT AND INTEGRATE DOMAIN
KNOWLEDGE IS STILL CHALLENGING
Although domain knowledge has dramatically boosted med-
ical image segmentation methods, especially in settings with
limited supervision, the selection and representation of prior
knowledge are still challenging since it is usually highly
dependent on the specific task. Xie et al. [21] summarized
recent progress on integrating domain knowledge into deep
learning models for medical image analysis. Moreover, trans-
lating the original representation of prior knowledge in clin-
ical settings to the representations that are ready for the
integration with deep networks is challenging.

VII. CONCLUSION
In this review, we covered effective solutions for the seg-
mentation of biomedical images with limited supervision,
namely, semi-supervised segmentation, partially-supervised
segmentation, and inaccurately-supervised segmentation.
We reviewed a diverse set of methods for these problems.
For semi-supervised segmentation, we provide a taxonomy of

existing methods that are with the ability to leverage labeled
data, unlabeled data, and also prior knowledge. For the task
of partially-supervised segmentation, we considered segmen-
tation with partially annotated regions, point annotations,
or partially annotated slices, interactive segmentation, and
multi-class segmentation from multiple partial-class-labeled
datasets and shown the current technical status regarding
recent solutions. For the task of inaccurately-supervised
segmentation, we summarized the methods addressing
noisy labels and bounding-box aannotations. We also
have discussed possible future directions for further
studies.
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