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ABSTRACT Extended Reality (XR)—which includes Virtual Reality and Augmented Reality — promises
to bring the virtual and telepresence experience to another level. Unfortunately, solutions leveraging these
technologies require special high-performance computing platforms that degrade the cost-benefit balance.
Moving processing to the cloud solves this problem but imposes strict requirements on data transmission
reliability, bandwidth, and delays. The satisfaction of these requirements becomes an extremely challenging
problem in the presence of other types of delay-sensitive traffic, such as remote control, industrial automa-
tion, or the control commands of the Cloud XR application itself. This article studies the joint service of the
adaptive Cloud XR traffic with other high-priority delay-sensitive traffics. The paper develops an analytical
model of the considered communication system. The model represents the system as a discrete state Markov
chain and estimates the quality of experience for Cloud XR users in various scenarios. Using the model, the
paper estimates the network capacity for the Cloud XR traffic and optimizes the bitrate adaptation function
of the Cloud XR video streaming application. The goal of the optimization is to improve the visual quality of
the virtual environment observed by the users, subject to the constrained probability of image impairments
due to excessive delivery delays. Numerical results demonstrate the high accuracy of the developed model
and the benefits provided by the optimization.

INDEX TERMS Cloud XR, heterogeneous traffic, high-priority traffic, real-time adaptive video, virtual
reality, quality of experience, queueing systems, analytical models, Markov chain.

I. INTRODUCTION
Extended Reality (XR), which includes Virtual Reality
(VR), Augmented Reality (AR), and Mixed Reality (MR),
is one of the key technologies enabling virtual and telepres-
ence. Numerous studies and emerging technological products
reveal that XR technologies can be applied in various fields.
For example, in education, highly immersive XR applications
can improve the attention and interest of the students [1].
In medicine, XR applications can be used for clinical pro-
tocol testing and educational training [2]. In engineering,
architecture, and geo-informational sciences, XR technolo-
gies simplify modeling, visualization, and analysis of large-
scale complex structures [3]–[6].
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However, the solutions leveraging XR non-tethered to
a workstation require integrating special high-performance
computing platforms into battery-poweredXR-headsets. This
simultaneously constrains the achievable visual quality,
reduces the battery life, and increases the cost of the head-
sets [7]. A recent paradigm of Cloud XR moves most of the
processing to the cloud and changes the system architecture
as follows.

In Cloud XR [8], the headset does not render the vir-
tual scene by itself, so it does not require expensive and
power-consuming hardware. Instead, the headset captures
the user’s actions and sends the data to a remote server.
The server renders the virtual XR scene according to the
received data, encodes it into a video stream, and sends
it back to the headset that shows the video to the user.
Moving processing to the cloud makes headsets very cheap
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and reduces their weight and power consumption [9], but
imposes strict requirements on data transmission reliability,
bandwidth, and delays between the remote cloud server and
the end-users [10]. Such an architecture might look fantastic
even a decade ago, but today with multi-gigabit wired and
wireless links, the architecture seems feasible [11] and is
evaluated and deployed around the world [12]–[14].

Typically, XR applications are interactive. To provide an
immersive experience, Cloud XR applications require mini-
mal feedback delay and high image quality [15], [16]. Since
the content is generated on-the-fly according to the actions
of the user, each generated video frame shall be delivered to
the headset with a limited delay. However, in the networks,
video traffic may have lower priority than the other delay-
sensitive traffic: remote control, gaming, industrial automa-
tion. In addition to interference from these traffic types, video
traffic transmissions can be affected by the control traffic of
the XR application itself. Therefore, the amount of network
resources available to the XR video stream can fluctuate
with time, and some video frames may be delivered longer
than others. To prevent playback interruptions and to ensure
the maximal image quality, XR applications shall adaptively
select the quality of the video stream in real-time [17]. How-
ever, the tight latency requirements and sporadic interference
from higher-priority flows render it challenging for the adap-
tation algorithm to strike the right balance between resiliency
and image quality.

The optimization of the Quality of Experience (QoE) for
XR and Cloud XR applications received much attention from
both researchers and industry. XR videos are panoramic,
so novel approaches to efficiently represent and compress it
were developed [18] and standardized [19]. Next, to increase
the image refresh rate, different approaches to motion pre-
diction and proactive video rendering and transmission were
devised [20], [21].

Other important aspects of Cloud XR optimization lie
in finding the right balance between the computations per-
formed by the headset and the computations performed by the
cloud or Mobile Edge Computing server [22] and optimizing
the energy-efficiency of the cloud [23]–[25].

Finally, many papers propose different strategies to jointly
optimize XR scene rendering, caching the proactively gen-
erated video frames and their transmission by reserving
the network resources [26]–[28]. However, typically authors
do not consider the structure of the XR video flows and
the organization of the XR presentation at the headsets.
Instead, they reduce the video stream to a series of requests
that shall be processed under a fixed delay constraint.
Such a traffic pattern is more relevant for WebXR ser-
vices, e.g., [29]–[31]. Also, the typical assumption is that
the throughput provided by the network to the XR flows
is constant, or a sufficient amount of network resources
can be reserved when needed. However, no interference
from the other traffics in the network is considered. That
is why such papers do not focus on the XR video quality
adaptation.

In contrast to these papers, we look at the Cloud XR
QoE optimization from a different perspective. We model the
transmission of the XR data through the network and take into
account the variation in its delivery rate caused by random
interference from other high-priority traffics.

In the paper, we study the joint service of adaptive Cloud
Extended Reality application traffic with other high-priority
delay-sensitive traffics. The contribution of the paper is as
follows.

First, to the best of our knowledge, we are first to design
a mathematical model of an adaptive real-time Cloud XR
application that allows evaluating QoE for XR in wired and
wireless networks. For that, we take into account the follow-
ing peculiarities of the traffic generated by XR applications
often left out of consideration in the literature.

1) We consider a realistic client-side XR application
design that employs a small jitter-buffer to smoothen
the fluctuations in video frame delivery.

2) We consider that the XR traffic consists of two traffic
types: high-priority control traffic and real-time adap-
tive XR video.

3) We take into account that the priority of XR video flows
may be lower than that of other delay-sensitive traffic
types.

We consider the average video bitrate and stalling probability
as objective video QoE metrics because they provide a good
trade-off between modeling accuracy and estimation com-
plexity. Also, they are often considered in the literature [32].
For control traffic, we take into account the mean command
delivery delay.

Second, we use the developed model to estimate the capac-
ity of a communication system for XR video flow. We define
the capacity as the maximal average XR video bitrate for
which its delay requirements can be met with a pre-defined
probability. Finally, we use the model to find the XR video
bitrate adaptation function that maximizes the capacity.

The rest of the paper is organized as follows. In Section II,
we describe the Cloud XR system and introduce the prob-
lem statement. Section III reviews the relevant literature.
Section IV describes the joint service model, how it can
be used to estimate the network capacity for the XR video
stream and to optimize the XR bitrate adaptation function.
In Section V, we present and discuss the obtained numerical
results. Finally, Section VI concludes the paper.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
A. SYSTEM DESCRIPTION
Figure 1 presents a simplified architecture of the Cloud XR
system considered in the paper. The XR scene is rendered at
the cloud server, encoded into a video stream with a specific
visual quality, and transmitted to the XR-headset frame-by-
frame. The headset presents the scene by playing the video to
the user, captures her actions with the sensors, and generates
the control commands for the server. The server receives the
commands, updates the scene accordingly, and transmits the
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FIGURE 1. A sample cloud XR architecture.

next frames to the headset. Such a workflow is typical for the
existing cloud-based gaming and XR systems [10], [33], [34].

Because the scene changes according to the user actions,
the sooner the commands are delivered, the less is the scene
refresh delay perceived by the user. Therefore, in the net-
work, the commands shall have higher priority than the video
stream.

The video stream is the sequence of video frames generated
by the server with the inter-frame interval T . The size of each
frame is S = b · T , where b is the bitrate of the video stream.
In the paper, we assume that the higher is the bitrate, the
higher is the video quality, which is the typical case for a well-
engineered streaming system [35].

The XR scene presentation at the headset is organized
as the following video playback. The client builds up the
initial playback buffer of K0 video frames, and only after
that, it starts the playback. The larger is K0, the more resilient
is the playback to the variations in the frame delivery rate,
but at the same time, the higher is the scene refresh delay
perceived by the user. The client pulls one whole frame from
the playback buffer every interval T . If there is no whole
video frame in the buffer, the client does not play anything,
and a video stall occurs. At this point, the virtual buffer of
the server, i.e., the number of video frames not yet delivered
to the client, contains K0 frames. To reduce the load on the
network and to keep the delay between frame generation
and playback limited, the server discards the next generated
frame. This way, the server and client buffer levels have
a one-to-one correspondence. The pseudocode of the video
playback algorithm is presented in Algorithm 1.

In the paper, we assume that the server knows the exact
amount of data not yet delivered to the client. Since the server
needs this information once in the inter-frame interval, it can
be easily achieved in practice. For example, the client can
send its current buffer level to the server with the control
commands that shall be delivered with a small delay anyway.
Alternatively, to obtain the most relevant information on the
undelivered data, the server can use the dedicated control
connections with the routers along the data transmission
path [36].

Algorithm 1 XR Video Playback Algorithm
1: F K is the XR session duration (in inter-frame intervals)
2: F rxFrames is the list of frames in playback buffer
3: F ReceiveFrame is the function to receive data from the

network
4: playbackStarted = False
5: while NOT playbackStarted do
6: frame = ReceiveFrame()
7: rxFrames.push(frame)
8: if length(rxFrames) >= K0 then
9: PlaybackStarted = True
10: end if
11: end while
12: playbackFrame = 0
13: for all k ∈ ¯1,K do
14: frame = ReceiveFrame()
15: if IsFullFrame(frame) then
16: rxFrames.push(frame)
17: end if
18: if length(rxFrames) > 0 then
19: playbackFrame = rxFrames.pull()
20: else
21: playbackFrame = 0
22: end if
23: Play(playbackFrame)
24: end for

In the network, in addition to the command traffic the
other delay-sensitive traffic can have a higher priority than
the video flows. The traffic can be generated by factory
automation, telemedicine, autonomous and remote driving
applications. Multiple sources with different patterns gener-
ate random high-priority traffic, and the user’s actions caus-
ing the command traffic are unpredictable too. Therefore,
wemodel the high-priority traffic as a Poisson flow of packets
with the rate λ and a general packet size distribution.

In the paper, we assume that the high-priority traffic
receives no interference from the XR video flow. Hence,
we can estimate its QoS independently using well-known
analytical results for M/G/1-type queueing systems (e.g.,
see [37], [38]).

The channel resources consumed by the high-priority traf-
fic during an inter-frame interval change with time. There-
fore, to reduce the probability of stalling and maximize the
video quality, the bitrate of the video stream shall be adjusted
adaptively according to the amount of channel resources
remaining after servicing the high-priority traffic. Further,
in the paper, we consider the following bitrate adaptation
scheme, which is similar to the bitrate adaptation performed
by the cloud gaming service Google Stadia [33]. Once in
an inter-frame interval the server analyzes the current virtual
buffer state and chooses the bitrate of the next generated
frame from the discrete set B = {b0, b1, . . . , bNb}, where
0 = b0 < bmin ≤ b1 ≤ . . . ≤ bNb = bmax . Therefore,
the bitrate adaptation function can be an arbitrary function of
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the buffer state. The pseudocode of the considered scheme is
presented in Algorithm 2.

Algorithm 2 XR Bitrate Adaptation Scheme
1: F K is the XR session duration (in inter-frame intervals)
2: F framesInTx is the list of non-delivered frames
3: F GetBitrate is the bitrate adaptation function
4: F GenerateFrame is the frame rendering function
5: for all k ∈ {1, . . . ,K } do
6: for all frame ∈ framesInTx do
7: if IsFrameDelivered(frame) then
8: framesInTx.remove(frame)
9: end if

10: end for
11: bitrate = GetBitrate(framesInTx)
12: frame = GenerateFrame(bitrate)
13: SendFrame(frame)
14: framesInTx.push(frame)
15: end for

To sum up, the considered system can be represented as a
queuing system with two queues:

1) The M/G/1 queue with high-priority traffic (absolute-
priority queue),

2) The D/G/1 queue with video frames (low-priority
queue).

We assume that the service provided to the XR video flow
in one inter-frame interval of duration T is independent of
the service in the previous intervals. Therefore, the evolution
of the virtual server buffer state can be modeled with the
discrete-time Markov chain with time unit T . The transition
probabilities depend on the consumption of channel resources
by the high-priority traffic during a single time unit and on the
bitrate adaptation function.

B. PROBLEM STATEMENT
In the paper, we address the problem of QoE modeling and
optimization for adaptive Cloud XR application traffic in the
presence of interfering high-priority traffic in the network.
In the considered scenario, the QoE of the Cloud XR appli-
cations can be reduced to the QoE of the real-time adaptive
video streaming, which is a complex subjective metric. Its
models usually take into account the factors from various
parts of the video streaming system. They include the video
encoder, its parameters (e.g., frame rate, frame structure,
bitrate, etc.), the parameters of the network connection (e.g.,
capacity, delay, packet loss ratio), and the properties of the
playback device (e.g., screen size and resolution and frame
rate) [32].

In the paper, we focus on such QoS-derived QoE metrics
as the average video bitrate and the stalling probability [39].
We choose these metrics because they provide a good trade-
off between the QoE modeling accuracy and the estimation
complexity. We develop the model of the considered system
and use it to estimate the QoE of the XR video flows for vari-
ous buffer-state-based bitrate adaptation functions. We select

a family of bitrate adaptation functions and use the model
to find the optimal function. Namely, we find the function
that maximizes the average video bitrate for a particular
high-priority traffic rate and subject to a constrained stalling
probability.We show that while the state of the network is not
stationary and the rate of the high-priority traffic can change
with time, we can obtain the optimal adaptation functions for
a range of rates. Consequently, the server applies the bitrate
adaptation functions according to the perceived high-priority
traffic rate. We assume that this rate can be measured by the
network and communicated to the server via a cross-layer
protocol (e.g., [36], [40]).

III. LITERATURE REVIEW
In the paper, we model the QoE of the XR traffic as a
QoE for the real-time (i.e., delay-sensitive) adaptive video
streaming in the presence of the interfering high-priority
traffic. We aim to develop an adaptation algorithm for the
Cloud XR video streaming that will provide an optimal QoE.
Therefore, in Section III-A, we review the prior arts in the
video quality adaptation and show why we needed to develop
our model. Because the model is based on the queueing
theory, in Section III-B, we survey the relevant results from
this area. We demonstrate that, despite it is a well-researched
area, to the best of our knowledge, some of the M/G/1 queue
characteristics we obtain in this article are novel.

A. VIDEO QUALITY ADAPTATION
Video quality adaptation is a well-researched area, and many
papers develop different adaptation schemes in an attempt to
address certain problems and improve users’ QoE. However,
most of the papers study the video quality adaptation problem
in the framework of HTTP Adaptive Streaming (HAS) [39].
For example, a well-known algorithm is proposed in [41].
This algorithm is implemented in Dash.js, a reference open-
source video player for the MPEG-DASH technology [42].
The algorithm optimizes a utility function of stall frequency
and the average bitrate of the video stream. The authors show
that this algorithm is optimal for infinite video streams. The
paper [43] further improves the performance of the algorithm
in the case of live HAS. Another well-known bitrate adap-
tation algorithm is proposed in [44]. This algorithm serves
as a basis for the bitrate adaptation algorithm implemented
by Netflix. Similar to the previous one, it uses the video
buffer occupation as the main factor for the bitrate adaptation.
A control-theoretic approach to the bitrate adaptation algo-
rithm design is employed in [45]. The authors formulate
the bitrate adaptation as a control problem and develop an
algorithm aimed at reducing the video buffering while maxi-
mizing the video bitrate. With simulations, the authors show
that the proposed algorithm outperforms the state-of-the-art
ones.

These algorithms were mostly designed for video-on-
demand streaming, where a client can pre-buffer a large
amount of video to efficiently smoothen the network capacity
fluctuations. However, the bitrate adaptation for real-time
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video streaming is an even more challenging task because
the algorithms have a much lower policy space. So, many
recent papers build artificial neural networks so that they
could find the optimal bitrate adaptation scheme. In [46],
the authors develop an algorithm for joint bitrate and buffer
control for low-latency video streaming. In the proposed
scheme, the algorithm dynamically adjusts both the bitrate
of the downloaded video and the playback rate to reduce the
probability of video stalling. With simulations, the authors
show that the proposed algorithm provides higher QoE than
state-of-the-art in low-latency streaming scenarios. Another
neural-network-based algorithm is proposed in [47]. The
algorithm is designed for video streaming for the remote
control of unmanned aerial vehicles. The algorithm takes
into account the fluctuations of the air-to-ground channel
capacity and predicts the channel capacity to stream video
appropriately. To further reduce the presentation latencies,
the paper [48] proposes splitting the frames into subframes
and encoding and sending them independently. This way,
the client can receive and start decoding the parts of frames
earlier. However, state-of-the-art video codecs do not support
such a technique, so it is difficult to implement in practice.

Unfortunately, most of the papers analyze the performance
of the algorithms with simulations or by considering the
asymptotical cases. So, to develop an understanding of the
QoE limits of the adaptive XR video streaming in the pres-
ence of high-priority interfering traffic, further we address the
problem from the queueing theory perspective. Specifically,
as stated in Section II, we need to find the probability
distribution of the amount of resource consumption by the
M/G/1 queue in a fixed time interval.

B. PRIORITY QUEUES AND M/G/1-TYPE SYSTEMS
The queueing systems with multiple priority queues have
been well-studied in the literature for a rather long time.
In [49], the authors investigate various ways to organize
queues with priorities and model the transients for these
queues. They consider a combination of two or more queues
of type M/G/1. The authors calculate the distribution of the
duration of the continuous busy period of the M/G/1 queue
and the probability of the queue being busy at an arbitrary
time moment. Also, as a straightforward derivation, they
obtain the average resource consumption in the M/G/1 queue
at the finite time interval. However, the occupation time dis-
tribution at the finite interval is not calculated, so the results
of [49] are not applicable to solve the problem considered in
our paper.

The paper [50] describes a mathematical model for joint
service of web and MPEG-DASH video traffic. The system
in consideration is a system with two queues where one is
a high-priority M/D/1 queue of web-pages. The distribution
of service-free time over a fixed length interval is calculated.
However, in our case, the packet service time is not constant.
Therefore, the distribution obtained in [50] cannot be applied
to solve the problem.

In our model, the service provided to the low-priority
D/G/1 XR video queue depends on the occupation time prob-
ability distribution of the high-priority M/G/1 queue during a
short interval. Note that for the infinite observation interval,
the server occupation time in an M/G/1 system has been
studied in detail in the literature. Existing works provide well-
known methods to obtain such important long-term char-
acteristics as the average waiting time [37], average queue
length [51], average busy period duration [52]. However,
these characteristics were not well-studied for the interval of
finite duration.

Researchers have also considered various characteristics of
the system at finite time intervals. In the classic work [53], the
M/G/1 system was considered with an additional condition
for customers entering the queue. If a customer arrives in
the queue when the server is busy, it leaves the queue with
a certain probability. In this case, the transient processes of
the system were investigated, and service characteristics such
as the distribution of virtual waiting time and the average
duration of the busy period were obtained. The virtual waiting
time is the time required to release the system from servicing
requests that have arrived before a particular moment. Tran-
sient processes for the classic M/G/1 queue were investigated
in the paper [54]. The authors also focused on the virtual wait-
ing times. In this work, the time-dependent server-occupation
probability and a virtual waiting period were obtained. How-
ever, the results for the virtual waiting period do not apply to
the problem addressed in our paper.

The distribution of the busy period of the M/G/1 queue
was obtained in paper [55]. The authors consider not only
the states of the system when it is busy or free from servicing
requests, but also the general case: when there are no more
(or vice versa, more) than a certain number of requests in the
system. For the time interval tending to infinity, asymptotic
distributions of times spent by the system in these states have
been obtained. Moreover, at the beginning of the time interval
under consideration, only one boundary case is taken into
account: the absence of requests. The resulting asymptotic
distributions of the modified system [55] cannot be applied to
our study because, in the considered system, the time intervals
are short, and the use of asymptotic is not possible.

Although the probabilistic properties of the M/G/1 queues
are well-studied, to the best of our knowledge, no method
exists to calculate the required finite interval occupation time
distribution for the M/G/1 queue. So, we develop such a
method in Section IV-B.

IV. ANALYTICAL MODEL
This section develops an analytical model of the hetero-
geneous traffic service: real-time adaptive video traffic,
namely, XR scene streaming, and control traffic. In particular,
in Section IV-A, we discuss the design of the Markov chain
modeling the video buffer state evolution. In Section IV-B,
we estimate the probability distribution function of the
resource consumption by the high-priority traffic. Finally,
in Section IV-C, we describe the proposed bitrate adaptation
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TABLE 1. Key notation.

algorithm optimization framework. Table 1 summarizes the
main notations used in the model.

A. VIDEO BUFFER STATE EVOLUTION
We define S as a set of all possible states of the server virtual
buffer (hereinafter, the buffer) and describe each state S ∈ S
with a (K0 + 1)-dimensional vector S = (j, i1, . . . , iK0 ).
Here, the first index, j, indicates qj ∈ Q = {q0, q1, . . . , qNq},
where qj is the discretized fraction of the last frame partially
received by the client and 0 = q0 ≤ q1 ≤ . . . ≤ qNq = 1.
The indices ir are the indices of bitrates bir ∈ B of the video
frames in the buffer.

Assuming that the service provided to the video flow in
one inter-frame interval of duration T is independent of the
service in the previous intervals, we can describe the buffer
state evolution with a discrete-time Markov chain with the
time unit T . The states of the chain are the states of the buffer
at the time moments of the next video frame bitrate choice.
The chain is aperiodic and irreducible, which leads to its
ergodicity and the existence of stationary distribution π (S).
Next, we describe all possible transitions between the states
of the chain and estimate the transition probabilities.

If S = (j, i1, . . . , in, 0, . . . , 0), then the new video frame is
generated with the bitrate bin+1 = B(S), where B(X ) denotes
the bitrate adaptation function. For n < K0, the following
transitions from S are possible:

1) A part of the first video frame is transmitted and a new
video frame is generated:
S → (l, i1, . . . , in, in+1, 0, . . . , 0), for 1 ≤ l ≤ j.

2) The first few video frames are transmitted and a new
video frame is generated:
S → (l, im, . . . , in, in+1, 0, . . . , 0), for 1 < m ≤ n,
1 ≤ l ≤ Nq.

3) All the video frames are transmitted and a new video
frame is generated:
S → (Nq, in+1, 0, . . . , 0).

If S = (j, i1, . . . , iK0 ) and iK0 > 0, then the new video
frame is not generated and B(S) = 0. In this case, the
following transitions are possible:

1) A part of the first video frame is transmitted and a new
video frame is not generated:
S → (l, i1, . . . , iK0 ), for 1 ≤ l ≤ j.

2) The first few video frames are transmitted and a new
video frame is not generated:
S → (l, im, . . . , iK0 , 0, . . . , 0), for 1 < m ≤ K0,

1 ≤ l ≤ Nq.
3) All the video frames are transmitted:

S → (0, . . . , 0).

If S = (0, . . . , 0), the buffer is empty, bi1 = B(0, · · · , 0),
and only one transition is possible:

1) A new video frame is generated with bi1 =

B(0, · · · , 0):
S → (Nq, i1, 0, . . . , 0).

Let h(x) be the probability density function (p.d.f.) of the
event that an arbitrary time interval T has enough free time for
transmission of exactly x bytes of the video flow. We obtain
h(x) from e(t), which is the p.d.f. of the event that in anM/G/1
queue during time T the interval of duration t is occupied:

h(x) = e
(
T −

x
R

)
, (1)

where R is the rate of data transmission. We derive e(t) in
Section IV-B.

We fix a certain state S of the consideredMarkov chain and
estimate the buffer level V (S) in the state S as:

V (S) = qj · bi1 · T + T
K0∑
w=2

biw . (2)

Let EM be the set of all statesMi of the chain for which the
values of transition probability from the state S are positive:
EM = {M1, . . . ,MN (S)}, where N (S) is the power of set EM .
The amount of transmitted data VMi

S for the chain to transit
from the state S to the stateMi is:

VMi
S = V (S)− (V (Mi)− B(S) · T ).

This amount of transmitted data depends on the time free
from serving a high-priority queue during a period T .
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The discretization of the share q ∈ Q allows us to estimate
the probability of transition from the state S to the state Mi
as the probability of transmission of an arbitrary number
of bytes from the interval including VMi

S . Such intervals
should not intersect and should cover the whole set [0,V (S)].
Therefore, the boundaries of the intervals [m(i− 1),m(i)] are

m(i) =
V
Mi
S +V

Mi+1
S

2 . Thus, we obtain the transition probability
from the state S to the stateMi:

p(S,Mi) =



m(1)∫
0
h(x) dx, i = 1;

m(i+1)∫
m(i)

h(x) dx, 1 < i < N (S);

1−
N (S)−1∑
l=1

p(S,Ml), i = N (S).

(3)

Finally, we obtain the stationary probability distribution π
by solving the following system of linear equations:∑

S ′∈S
π (S ′)p(S ′, S) = π (S), ∀S ∈ S,∑

S ′∈S
π (S ′) = 1.

A stall during playback occurs if the buffer contains K0
video frames. Therefore, to estimate the stall probability
Pstall , we need to assess the probability that the chain is in
the states with iK0 6= 0:

Pstall =
∑
iK0 6=0

π (j, i1, · · · , iK0 ). (4)

The average bitrate Bav of the video is estimated as:

Bav =
∑
S

π (S)B(S). (5)

B. OCCUPATION TIME DISTRIBUTION OF THE M/G/1
SYSTEM IN A FIXED TIME INTERVAL
System occupancy can be described with an ON/OFF process
generated by the alternating busy and empty periods of the
M/G/1 queue. Without loss of generality, we may consider
that the interval T starts at time 0. We consider the following
stages of the system evolution during the interval:

• The Starting Stage: The starting stage is a part of the
busy period of the system that starts before time 0 and
spans over the beginning of the time interval.

• The Main Stage: The main stage is an ON/OFF process
with the boundary condition: the stage starts with an
OFF-period.

1) DISTRIBUTION OF ON- AND OFF-PERIOD DURATION
Let fON (t) and fOFF (t) be the p.d.f. of ON- and OFF-periods,
respectively. The duration of an OFF-period is distributed
exponentially with the mean 1/λ. For M/G/1 system with the
service time cumulative distribution function (c.d.f.) F(t), the

c.d.f. FON (t) of the busy (ON) period duration is determined
according to [56] as:

F∗ON (s) = F∗[s+ λ− λF∗ON (s)], (6)

where F∗(s) is the Laplace-Stieltjes transform of the service
time c.d.f. F(t).

Let t (k)OFF and t (k)ON be the sum of k OFF-periods and
ON-periods, respectively. The p.d.f. of such sums can be
calculated with convolution and we denote them as p(k)OFF (t)
and p(k)ON (t), where p

(0)
ON (t) = p(0)OFF (t) = δ(t) and δ(t) is the

Dirac delta function.

2) OCCUPATION TIME AT THE MAIN STAGE
The main stage starts with an OFF-period and has a duration
T ′ <= T . We calculate the distribution of the occupation
time of such a stage.

The probabilities that k−1OFF(ON)-periods have the total
duration less than T ′ and k OFF(ON)-periods have the total
duration longer than T ′ are evaluated as:

P
((
t (k−1)OFF < T ′

)
&
(
t (k)OFF > T ′

))
=

= P
(
t (k−1)OFF < T ′

)
− P

(
t (k)OFF < T ′

)
,

P
((
t (k−1)ON < T ′

)
&
(
t (k)ON > T ′

))
=

= P
(
t (k−1)ON < T ′

)
− P(t (k)ON < T ′).

For k = 1, the expressions take the following forms:
P
(
t (k)OFF > T ′

)
and P

(
t (k)ON > T ′

)
.

Then ∀k ∈ N, we can calculate pidlek , the probability that
k ON-periods have a total duration of x and k OFF-periods
have a total duration of less than T ′ − x, and k + 1 OFF-
periods have a total duration of more than T ′ − x. In other
words, exactly time x of the main stage is occupied and the
system is idle at the end of the main stage:

pidlek (x) = p(k)ON (x) ·

·P
[(
t (k)OFF < T ′ − x

)
&
(
t (k+1)OFF > T ′ − x

)]
.

Similarly, we calculate pbusyk , the probability that k OFF-
periods have a total duration of T ′−x and (k−1) ON-periods
have a total duration of less than x, and k ON-periods have
a total duration of more than x. In other words, exactly time
x is occupied and the system is busy at the end of the main
stage:

pbusyk (x) = p(k)OFF (T
′
− x) ·

·P
[(
t (k−1)ON < x

)
&
(
t (k)ON > x

)]
.

Finally, we obtain the occupation time p.d.f. for the main
stage of duration T ′. We denote it as pT ′ (x):

pT ′ (x) =
∞∑
k=1

(
pidlek (x)+ pbusyk (x)

)
.
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3) DISTRIBUTION OF THE STARTING STAGE DURATION
The starting stage duration is the remaining duration of an
ON-period of an ON/OFF process from an equiprobably
chosen starting point t0 = 0. In [57], we prove that this
remaining duration has the following p.d.f.:

l(t) =
1− FON (t)
< TON >

,

where FON (t) is the c.d.f. of the ON-period duration and <
TON > is its expected value.

The starting stage can be absent, so let us denote the
probability of its presence as Pborder . For the considered
ON/OFF process, this probability equals the probability that
an arbitrary random point on the time axis belongs to the ON-
period. So, it can be estimated as the share of time when the
system is occupied:

Pborder =
< TON >

< TON > + < TOFF >
, (7)

where < TOFF >= 1
λ
is the average duration of the OFF-

period.
Finally, we evaluate Pstart>T , the probability that a starting

stage lasts for the entire time interval T :

Pstart>T = 1−

T∫
0

l(t) dt. (8)

4) SYSTEM OCCUPATION TIME DISTRIBUTION
We estimate e(t), the probability that the system is occupied
for t , 0 ≤ t ≤ T , by considering the contributions of the
following system evolution cases:

1) Only starting stage is present:

Pstart>T · Pborder · δ(T − t).

2) Both starting and main stages are present:

Pstart≤T · Pborder · ẽ1(t), where

ẽ1(t) =

t∫
0

l(τ )pT−τ (t − τ )dτ.

3) Only the main stage is present:

(1− Pborder ) · pT (t).

By summing the above, we obtain:

e(t) = Pstart>T · Pborderδ(T − t)+

+Pstart≤T · Pborder ẽ1(t)+

+ (1− Pborder )pT (t).

Using e(t), the p.d.f. h(x) of the event that inside an interval
T there is sufficient free time for video transmission of x bytes
can be found with (1). This function is used to obtain the
transition probabilities p(S,Mi) with (3) and, subsequently,
the stationary distribution of Markov chain π (S). Finally,
it allows us to estimate the stall probability (4) and the average
bitrate (5).

C. OPTIMIZATION OF THE BITRATE ADAPTATION
FUNCTION
We use the developed model to optimize the video bitrate
adaptation function. The function can take as an input the
buffer level or more detailed information on the buffer state:
the number of video frames in the buffer, their average bitrate,
etc.

Let us consider a function space F of bitrate adaptation
functions. The average bitrate and the stalling probability
can be defined as functions of the scenario parameters and
the bitrate adaptation function: Bav = Bav (B,G, λ, . . .) and
Pstall = Pstall (B,G, λ, . . .), where B ∈ F . Thus, we can
introduce the following optimization problem. For particular
scenario parameters, we need to find such bitrate adaptation
function that maximizes the average bitrate of the video
stream and guarantees the limited video stalling probability θ :

B(opt) = argmax
B∈F
{Bav(B) : Pstall(B) ≤ θ}. (9)

In the paper, we consider a space of piecewise constant
bitrate adaptation functions. We define the current buffer
level U as the total amount of bytes not yet delivered to the
client. Then, we can define the bitrate adaptation function
as B(U ) = B

(
U

Umax

)
, where Umax = bmaxT (K0 − 1). For

a fixed number of bitrate levels N , the piecewise constant
function B(U ) is defined by the set of reference values of
bitrates EB = [B1, . . . ,BN ] Mbps and the relative buffer levels
EU = [U1, . . . ,UN−1], so that:

B(U ) =


B1,

U
Umax

≤ U1;

Bi, Ui−1 <
U

Umax
≤ Ui;

BN ,
U

Umax
> UN−1.

The pseudocode of the considered bitrate adaptation func-
tion is presented in Algorithm 3.

The output of the optimization is such a piecewise constant
bitrate adaptation function defined by the set (EBopt , EUopt ) for
which

(EBopt , EUopt ) = arg max
EB′, EU ′
{Bav(EB′, EU ′) : Pstall(EB′, EU ′) ≤ θ}.

(10)

We carry out the optimization numerically and discuss its
results in the next section.

V. NUMERICAL RESULTS
In this section, we use the well-known network simulation
platform ns-3 [58] to validate the model and demonstrate the
results of the developed method of bitrate adaptation function
optimization. In Section V-A, we describe the considered
scenario. Then, in Section V-B, we use the model to esti-
mate the network capacity for the XR video. In Section V-C,
we present the results of the bitrate adaptation function opti-
mization. Finally, in Section V-D, we present and discuss the
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Algorithm 3 Piecewise-Constant Bitrate Adaptation Func-
tion

Input: EB = [B1, . . . ,BN ], EU = [U1, . . . ,UN−1],B
1: function GetBitrate(framesInTx)
2: U = 0
3: bmax = max{bi ∈ B}
4: Umax = (K0 − 1) · T · bmax
5: for all frame ∈ framesInTx do
6: U+ = frame.size()
7: end for
8: Urelative = U

Umax
9: i∗ = argmaxi{Urelative ≤ Ui}

10: return Bi∗
11: end function

results of the model validation and compare QoE provided
by the optimized bitrate adaptation function with one of the
state-of-the-art.

A. SCENARIO
Weconsider a basic CloudXR scenariowith anXR-user play-
ing an XR-game at home. To provide freedom of movement
and, thus, an immersive experience to the user, the headset
uses Wi-Fi and connects to a remote Cloud XR server via a
Wi-Fi access point. The access point has a wired connection
with the Cloud XR server. To minimize the feedback delay,
the XR-headset sends the commands to the server using chan-
nel access parameters corresponding to high priority access
category AC_VO. To avoid interference with the commands,
the AP sends video frames to the headset using the low
priority access category AC_BK.

We model the high-priority command traffic as a stream
of packets or bursts of packets with an exponentially
distributed size in bytes with mean µ. We choose the
average command size µ = 90 kB, so that, in the consid-
ered scenario, the average transmission time of one com-
mand is 1 ms. The rate of commands varies in the range
[0.05, 0.3] ms−1. The server generates an XR video stream
with a bitrate in the range of 8 to 72 Mbps. This corre-
sponds to the image visual quality ranging from a typi-
cal home cinema FullHD to a UHD panoramic video with
a high frame rate. The period of video frame generation
is T = 15 ms. Other scenario parameters are given in
Table 2.

Using both the developed model and simulations, we esti-
mate the QoE of the XR user with the following metrics.

1) Average Bitrate: the average bitrate of the XR video
stream during the experiment, i.e., the average size
of the video frame divided by the inter-frame interval
duration.

2) Stall Probability: the portion of inter-frame intervals
when the client does not have a whole video frame in
the video buffer.

TABLE 2. Scenario parameters.

B. ESTIMATION OF THE NETWORK CAPACITY FOR
CLOUD XR
In this section, we use the model to estimate the network
capacity for non-adaptive XR video stream in the considered
scenario. Specifically, for a given high-priority traffic inten-
sity, we find the maximal XR video bitrate, for which the
stalling probability is less than θ = 0.01. To illustrate the
advantages of the developed model, we compare its results
with the following network capacity estimation representing
the average channel capacity available to the video stream:

C (0)
= C

(
1−

λ

µ

)
, (11)

where C is the average capacity of the channel between the
headset and the access point (C = 75 Mbps in the considered
scenario).

Figure 2 presents the network capacity for the XR video
stream (i.e., the bitrate of the video stream) for each com-
mand rate. The results show that the actual capacity of the
network for the XR video is up to 50% lower than we can
obtain with (11). This happens because eq. (11) considers
the average values instead of the probability distributions.
The difference between the actual capacity and C0 increases
with λ because the variance of the resource consumption
by the commands grows with the command rate. Also, this
significantly increases the probability that a video frame is
not delivered during K0 inter-frame intervals. Consequently,
Figure 3 shows that XR video streams with bitrate C (0) have
up to eight times higher stalling probability than the consid-
ered QoE requirement θ .
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FIGURE 2. Network capacity estimation.

FIGURE 3. Network capacity estimation. Stall probability.

C. BITRATE ADAPTATION FUNCTION OPTIMIZATION
In this section, we use the model to find the optimal for
the considered scenario bitrate adaptation functions from
the space of piecewise constant functions with the num-
ber of bitrate levels N = 4. The admissible bitrates and
relative buffer levels are chosen from the sets EBpool =
[8, 16, 24, . . . , 72] Mbps and EUpool = [0, 0.1, 0.2, . . . , 1]
respectively. We set the constraint on the stalling probability
θ = 0.01, i.e., the optimal bitrate adaptation algorithm shall
maximize the average video bitrate while losing less than 1%
of frames.

Taking into account that the bitrate adaptation functions of
the relative buffer level should be non-increasing, we search
through the function space. For each of the bitrate adap-
tation functions, we estimate the average video bitrate and
stall probability and determine the optimal combination
(EB(opt), EU (opt)) for each command rate according to (10).
The considered optimization scheme requires calculating the
model with Neval = CN

N−1+|EBpool |
· CN−1

N−2+| EUpool |
sets of

parameters, where | · | represents the cardinality of the set.
In turn, a single model calculation requires solving the linear
system of Neq = (

∑K0
i=1 N

i) · |Q|+1 equations. Although the
resulting optimization problem appears to be rather complex,
in practice, we do not have to solve it online, because we can
pre-calculate the optimal functions for a range of scenarios.

FIGURE 4. Optimal piecewise constant bitrate adaptation functions.

Figure 4 shows the optimal piecewise constant bitrate
adaptation functions B(opt)λ (U ) for the command rates λ =
[0.07, 0.2, 0.3] ms−1. From the figure, we can see that for all
considered loads, the optimal adaptation functions choose the
highest available bitrate for some range of buffer levels. This
means that, even for λ = 0.3, there is only a small probability
that the frame with the maximal bitrate is delivered longer
than (K0 − 1) inter-frame intervals. Another effect is caused
by a limited number of function steps. On the one hand,
the average bitrate for the function B(opt)λ=0.07 is higher than
for B(opt)λ=0.2. On the other, if the buffer is almost full, the
former chooses a lower bitrate than the latter. The reason
for this is the limited number of function steps. To meet the
stalling probability requirement, B(opt)λ=0.2 chooses rather a low
bitrate in advance (when U = 0.6) and does not decrease it
further. However, if the number of function steps was larger,
at U = 0.6, the optimal function would choose a higher
bitrate but would decrease it further at a larger U .
To find an optimal bitrate adaptation function for the range

of command rates, we aggregate the optimal bitrate adapta-
tion functions for each λ and obtain B(opt)(U ) = B(opt)λ (U).

D. COMPARISON OF VARIOUS BITRATE ADAPTATION
ALGORITHMS
We consider the following adaptation algorithms:

1) A_OPT : the adaptation algorithm described in
Section IV-C with the bitrate adaptation function
B(opt)(U ).

2) A3: the adaptation algorithm described in Section IV-C
with the bitrate adaptation functionB(opt)λ=0.3(U ).We con-
sider this bitrate adaptation function because it shall
provide satisfactory stall probability in the considered
range of command rates, but it requires finding a much
smaller number of optimal parameters in comparison
to the A_OPT algorithm.

3) BOLA: the algorithm developed in paper [43] and
adapted for the case of real-time adaptive streaming.
The parameters of the algorithm are set according to
its reference implementation in [42]. Unlike other con-
sidered algorithms, we do not constrain the set of the
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FIGURE 5. Comparison of the bitrate adaptation algorithms A3, A_OPT,
BOLA. Average bitrate.

bitrate levels for BOLA, so it can choose from the
whole set EBpool .

We compare the analytical and simulation results for algo-
rithms A3 and A_OPT, but BOLA algorithm in live scenarios
requiresmeasuring the network throughput, sowe estimate its
performance only with simulations. Figures 5 and 6 present
the target XR QoE metrics: the average bitrate and stall
probability.

Let us start with the accuracy of the developed model. The
figures show that at low rates of high-priority traffic (up to
λ = 0.2), the developed model accurately describes QoE
for the XR video stream. However, as the rate increases, the
model starts underestimating the probability of stalling and
accordingly overestimating the average bitrate of the video
stream. This happens because the Markov property of the
system disappears, i.e., the independence of the evolution of
the video buffer from the consumption of resources by high-
priority traffic in the previous periods of the video frame
generation is lost.

Let us consider the probability Pframe(T ) that a command
is delivered longer than the video inter-frame interval T , and
the command is not displayed in the next generated frame.
For the considered M/M/1 high-priority traffic model, this
probability is calculated in [60]. It appears that at rates λ >
0.23, for the considered system Pframe(T ) ≥ 10−5, which
is the typical Packet Loss Ratio (PLR) requirement for the
URLLC traffic [61]. So, the system shall not be used in such
a regime.

Now let us analyze the QoE provided by different bitrate
adaptation algorithms. We can see that the algorithm A_OPT
allows significantly increasing the video bitrate at low rates
of the high-priority traffic, and at the same time, fulfills the
required stalling probability constraint. The provided results
demonstrate the importance of optimizing the selection of
bitrate for each high-priority traffic rate. While A3 fulfills
the constraints on the probability of stalling at all considered
rates, at low rates, it provides a 30% lower average bitrate
than the optimal algorithm. As for the BOLA, at low rates of
high-priority traffic, the algorithm acts too conservatively and
provides a lower average bitrate than the optimal algorithm.

FIGURE 6. Comparison of the bitrate adaptation algorithms A3, A_OPT,
BOLA. Stall probability.

At the same time, at high rates, it cannot adapt to the fast
changes of the network state and provides too high stall
probability and up to 2 times lower average bitrate. So, we can
conclude that BOLA cannot provide satisfactory QoE for
Cloud XR streaming.

VI. CONCLUSION
In Cloud XR technology, rendering of the virtual scenes is
performed at the remote server instead of the headsets. The
server encodes the scenes into a real-time video stream and
sends it to the headset. To provide higher QoE to the end-
users, Cloud XR applications need to adapt to the changes in
the network conditions and dynamically adjust the bitrate of
the generated video stream. However, tight delay and high-
reliability requirements significantly squeeze the room for
bitrate adaptation optimization.

In the paper, we first studied analytically the problem of
adaptive Cloud XR streaming in the presence of other types
of high-priority real-time traffic, including the control traffic
generated by the Cloud XR application itself. We designed
a novel mathematical model of a real-time adaptive Cloud
XR application. The model enabled us to estimate such QoE
metrics for Cloud XR video stream as average bitrate and
stall probability for a wide class of high-priority traffics:
Poisson flow of packets with a general size distribution. With
the model, we estimated the capacity of a communication
network for Cloud XR video stream and found an optimal
Cloud XR video bitrate adaptation function that maximizes
the capacity. We considered the capacity as the maximal
average XR video bitrate for which the stalling probability is
below the pre-defined threshold given the load imposed on
the network by the high-priority traffic. Note that because
of the considered strict-priority service policy, the high-
priority traffic was not affected by the XR video flow. With
simulations, we demonstrated the accuracy of the model in
estimating the target QoEmetrics in the relevant range of sce-
narios. Finally, the simulations showed that, in the considered
scenario, the optimal bitrate adaptation function provides up
to 2 times higher average bitrate than one of the state-of-the-
art while keeping the stalling probability below the required
constraint.
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We seemultiple possible extensions and applications of the
developed model. First, the model can be generalized to a
more realistic and complicated high-priority traffic pattern.
Second, the model can be extended to take into account the
peculiarities of the video encoding: different types of frames
in the video stream, their sizes, and their impact on the
QoE. Third, the model can be extended to take into account
the interference from the other video flows. Finally, a more
advanced optimization technique can be applied to reduce
the computational complexity of finding the optimal bitrate
adaptation function for the particular network state. With
such a technique, we can perform optimization with a greater
granularity and provide higher QoE to the end-users.

REFERENCES
[1] E. D. Innocenti, M. Geronazzo, D. Vescovi, R. Nordahl, S. Serafin,

L. A. Ludovico, and F. Avanzini, ‘‘Mobile virtual reality for musical genre
learning in primary education,’’ Comput. Educ., vol. 139, pp. 102–117,
Oct. 2019.

[2] T. Joda, G. O. Gallucci, D. Wismeijer, and N. U. Zitzmann, ‘‘Augmented
and virtual reality in dental medicine: A systematic review,’’ Comput. Biol.
Med., vol. 108, pp. 93–100, May 2019.

[3] R. Oberhauser and C. Pogolski, ‘‘VR-EA: Virtual reality visualization of
enterprise architecture models with ArchiMate and BPMN,’’ in Proc. Int.
Symp. Bus. Modeling Softw. Design. Cham, Switzerland: Springer, 2019,
pp. 170–187.

[4] Z. Lv, X. Li, B. Zhang, W. Wang, Y. Zhu, J. Hu, and S. Feng, ‘‘Man-
aging big city information based on WebVRGIS,’’ IEEE Access, vol. 4,
pp. 407–415, 2016.

[5] X. Li, Z. Lv, W. Wang, B. Zhang, J. Hu, L. Yin, and S. Feng, ‘‘WebVRGIS
based traffic analysis and visualization system,’’ Adv. Eng. Softw., vol. 93,
pp. 1–8, Mar. 2016.

[6] J. Wolfartsberger, ‘‘Analyzing the potential of virtual reality for engineer-
ing design review,’’ Autom. Construct., vol. 104, pp. 27–37, Aug. 2019.

[7] V. Angelov, E. Petkov, G. Shipkovenski, and T. Kalushkov, ‘‘Modern
virtual reality headsets,’’ in Proc. Int. Congr. Hum.-Comput. Interact.,
Optim. Robot. Appl. (HORA), Jun. 2020, pp. 1–5.

[8] H. Zhang, J. Zhang, X. Yin, K. Zhou, and Z. Pan, ‘‘Cloud-to-end rendering
and storage management for virtual reality in experimental education,’’
Virtual Reality Intell. Hardw., vol. 2, no. 4, pp. 368–380, Aug. 2020.

[9] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy, and
Y.-C. Tian, ‘‘Adaptive energy-aware algorithms for minimizing energy
consumption and SLA violation in cloud computing,’’ IEEE Access, vol. 6,
pp. 55923–55936, 2018.

[10] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, ‘‘Towards effi-
cient edge cloud augmentation for virtual reality MMOGs,’’ in Proc. 2nd
ACM/IEEE Symp. Edge Comput., Oct. 2017, pp. 1–14.

[11] 5G Cloud XR Application White Paper, ZTE, Shenzhen, China, Sep. 2019.
[12] Huawei. (2018). Huawei Helps China Mobile Fujian Release World’s

First Operator Cloud VR. Accessed: Nov. 6, 2020. [Online]. Available:
https://www.huawei.com/en/news/2018/7/ChinaMobile-Fujian-Operator-
Clouz-VR

[13] Vodafone. (2020). 5G Standalone Takes Virtual Reality Teaching
to the Next Level. Accessed: Nov. 6, 2020. [Online]. Available:
https://newscentre.vodafone.co.uk/features/5g-standalone-takes-virtual-
reality-teaching-to-the-next-level/

[14] Huawei. (2018).Huawei and Telefónica Jointly Demonstrate the Industry’s
First 5G Slicing-Based Interactive VR Service. Accessed: Nov. 6, 2020.
[Online]. Available: https://www.huawei.com/ch-en/news/2018/2/5g-
slicing-based-interactive-vr-service

[15] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, ‘‘Cellular-
connected wireless virtual reality: Requirements, challenges, and solu-
tions,’’ IEEE Commun. Mag., vol. 58, no. 5, pp. 105–111, May 2020.

[16] White Paper for 5G Cloud VR Service Experience Standards, Huawei,
Shenzhen, China, Jun. 2019.

[17] S. Ahsan, A. Hourunranta, I. D. D. Curcio, and E. Aksu, ‘‘FriSBE: Adap-
tive bit rate streaming of immersive tiled video,’’ in Proc. 25th ACM
Workshop Packet Video, Jun. 2020, pp. 28–34.

[18] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen, ‘‘Tiling
in interactive panoramic video: Approaches and evaluation,’’ IEEE Trans.
Multimedia, vol. 18, no. 9, pp. 1819–1831, Sep. 2016.

[19] MPEG-I Coded Representation of Immersive Media—Part 2: Omnidirec-
tional Media Format, document ISO/IEC 23090-2, 2019.

[20] M. Chen, W. Saad, and C. Yin, ‘‘Virtual reality over wireless net-
works: Quality-of-service model and learning-based resource manage-
ment,’’ IEEE Trans. Commun., vol. 66, no. 11, pp. 5621–5635, Nov. 2018.

[21] S. Zhang, M. Tao, and Z. Chen, ‘‘Exploiting caching and prediction to
promote user experience for a real-time wireless VR service,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[22] E. Bastug, M. Bennis, M. Medard, and M. Debbah, ‘‘Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers,’’ IEEE
Commun. Mag., vol. 55, no. 6, pp. 110–117, Jun. 2017.

[23] R. Yadav, W. Zhang, H. Chen, and T. Guo, ‘‘MuMs: Energy-aware VM
selection scheme for cloud data center,’’ in Proc. 28th Int. Workshop
Database Expert Syst. Appl. (DEXA), Aug. 2017, pp. 132–136.

[24] R. Yadav and W. Zhang, ‘‘MeReg: Managing energy-SLA tradeoff for
green mobile cloud computing,’’ Wireless Commun. Mobile Comput.,
vol. 2017, Dec. 2017, Art. no. 6741972.

[25] R. Yadav,W. Zhang, K. Li, C. Liu,M. Shafiq, andN. K. Karn, ‘‘An adaptive
heuristic formanaging energy consumption and overloaded hosts in a cloud
data center,’’Wireless Netw., vol. 26, no. 3, pp. 1905–1919, Apr. 2020.

[26] Y. Sun, Z. Chen, M. Tao, and H. Liu, ‘‘Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff,’’ IEEE Trans.
Commun., vol. 67, no. 11, pp. 7573–7586, Nov. 2019.

[27] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, ‘‘Edge computing
meets millimeter-wave enabled VR: Paving the way to cutting the cord,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[28] T. Xu, Y. Sun, S. Xia, H. Li, L. Luo, and Z. Chen, ‘‘Optimal bandwidth allo-
cation with edge computing for wireless VR delivery,’’ in Proc. IEEE/CIC
Int. Conf. Commun. China (ICCC), Aug. 2019, pp. 903–907.

[29] Webxr Device API W3CWorking Draft. Accessed: Jan. 19, 2021. [Online].
Available: https://www.w3.org/TR/webxr/

[30] Z. Lv, T. Yin, X. Zhang, H. Song, and G. Chen, ‘‘Virtual reality smart
city based on WebVRGIS,’’ IEEE Internet Things J., vol. 3, no. 6,
pp. 1015–1024, Dec. 2016.

[31] Z. Lv, X. Li, H. Lv, and W. Xiu, ‘‘BIM big data storage in Web VRGIS,’’
IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2566–2573, Apr. 2020.

[32] N. Barman and M. G. Martini, ‘‘Qoe modeling for HTTP adaptive
video streaming—A survey and open challenges,’’ IEEE Access, vol. 7,
pp. 30831–30859, 2019.

[33] R. McCool, K. A. Abdel, Rahman, and G. Somadder. (2019). Stadia
Streaming Tech: A Deep Dive. Accessed: Sep. 18, 2020. [Online]. Avail-
able: https://www.youtube.com/watch?v=9Htdhz6Op1I

[34] M. Suznjevic, I. Slivar, and L. Skorin-Kapov, ‘‘Analysis and QoE evalu-
ation of cloud gaming service adaptation under different network condi-
tions: The case of NVIDIA GeForce NOW,’’ in Proc. 8th Int. Conf. Qual.
Multimedia Exper. (QoMEX), Jun. 2016, pp. 1–6.

[35] J. Xu, B. Zhou, C. Zhang, N. Ke, W. Jin, and S. Hao, ‘‘The impact of
bitrate and GOP pattern on the video quality of H.265/HEVC compression
standard,’’ in Proc. IEEE Int. Conf. Signal Process., Commun. Comput.
(ICSPCC), Sep. 2018, pp. 1–5.

[36] I. F. Akyildiz, E. Khorov, A. Kiryanov, D. Kovkov, A. Krasilov,
M. Liubogoshchev, D. Shmelkin, and S. Tang, ‘‘XStream: A new platform
enabling communication between applications and the 5G network,’’ in
Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2018, pp. 1–6.

[37] F. Pollaczek, ‘‘Über eine aufgabe der wahrscheinlichkeitstheorie. I,’’Math.
Zeitschrift, vol. 32, no. 1, pp. 64–100, 1930.

[38] H. Tijms, ‘‘Heuristics for finite-buffer queues,’’ Probab. Eng. Inf. Sci.,
vol. 6, no. 3, pp. 277–285, Jul. 1992.

[39] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
‘‘A survey on bitrate adaptation schemes for streaming media over HTTP,’’
IEEECommun. Surveys Tuts., vol. 21, no. 1, pp. 562–585, 1st Quart., 2019.

[40] Information Technology—Dynamic Adaptive Streaming Over HTTP
(DASH)—Part 5: Server and Network Assisted DASH (SAND), docu-
ment ISO/IEC 23009-5, 2017.

[41] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, ‘‘BOLA: Near-optimal
bitrate adaptation for online videos,’’ in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun., Apr. 2016, pp. 1–9.

[42] DASH-IF. Accessed: Sep. 18, 2020. [Online]. Available: https://github.
com/Dash-Industry-Forum/dash.js

35298 VOLUME 9, 2021



M. Liubogoshchev et al.: Adaptive Cloud-Based XR: Modeling and Optimization

[43] K. Spiteri, R. Sitaraman, and D. Sparacio, ‘‘From theory to practice:
Improving bitrate adaptation in the DASH reference player,’’ ACM Trans.
Multimedia Comput., Commun., Appl., vol. 15, no. 2s, pp. 1–29, 2019.

[44] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
‘‘A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,’’ in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 187–198.

[45] Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B.Wang, and C. Yue,
‘‘A control theoretic approach to ABR video streaming: A fresh look
at PID-based rate adaptation,’’ in Proc. IEEE Conf. Comput. Commun.,
May 2017, pp. 1–9.

[46] S. Chen, Y. Zhang, H. Peng, and J. Yan, ‘‘A joint bitrate and buffer control
scheme for low-latency live streaming,’’ in Proc. Int. Conf. Intell. Sci. Big
Data Eng. Cham, Switzerland: Springer, 2019, pp. 369–380.

[47] X. Xiao, W. Wang, T. Chen, Y. Cao, T. Jiang, and Q. Zhang, ‘‘Sensor-
augmented neural adaptive bitrate video streaming on UAVs,’’ IEEE Trans.
Multimedia, vol. 22, no. 6, pp. 1567–1576, Jun. 2020.

[48] S. Tian,M. Yang, andW. Zhang, ‘‘A practical low latency system for cloud-
based vr applications,’’ in Proc. Int. Conf. Commun. Netw. China. Cham,
Switzerland: Springer, 2019, pp. 73–81.

[49] N. K. Jaiswal, Priority Queues. Amsterdam, The Netherlands: Elsevier,
1968.

[50] N. S. Zhirnov, A. I. Lyakhov, and E. M. Khorov, ‘‘Mathematical model of a
network slicing approach for video and Web traffic,’’ J. Commun. Technol.
Electron., vol. 64, no. 8, pp. 890–899, Aug. 2019.

[51] L. Takács, ‘‘A single-server queue with Poisson input,’’Oper. Res., vol. 10,
no. 3, pp. 388–394, Jun. 1962.

[52] V. E. Benes, ‘‘On queues with Poisson arrivals,’’ Ann. Math. Statist.,
vol. 28, no. 3, pp. 670–677, Sep. 1957.

[53] L. Takács, ‘‘The transient behavior of a single server queuing process with
a Poisson input,’’ in Proc. 4th Berkeley Symp. Math. Statist. Probab. Los
Angeles, CA, USA: The Regents of the University of California, 1961,
pp. 535–567.

[54] J. Abate and W. Whitt, ‘‘Transient behavior of the M/G/1 workload pro-
cess,’’ Operations Res., vol. 42, no. 4, pp. 750–764, Aug. 1994.

[55] L. Takács, ‘‘Occupation time problems in the theory of queues,’’ in Math-
ematical Methods in Queueing Theory. Berlin, Germany: Springer, 1974,
pp. 91–131.

[56] L. Kleinrock, Theory, Queueing Systems, vol. 1. New York, NY, USA:
Wiley, 1975.

[57] A. Lyakhov, D. Ostrovsky, and E. Khorov, ‘‘Analytical study of the quality
of links established by the neighborhood discovery protocol,’’ J. Commun.
Technol. Electron., vol. 57, no. 12, pp. 1314–1321, 2012.

[58] The Network Simulator NS-3. Accessed: Sep. 18, 2020. [Online].
Available: https://www.nsnam.org

[59] (Nov. 2015). TGax Simulation Scenarios. Accessed: Nov. 13, 2020.
[Online]. Available: https://mentor.ieee.org/802.11/dcn/14/11-14-0980-
16-00ax-simulation-scenarios.docx

[60] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton, NJ, USA:
Princeton Univ. Press, 2009.

[61] M. Bennis, M. Debbah, and H. V. Poor, ‘‘Ultrareliable and low-latency
wireless communication: Tail, risk, and scale,’’ Proc. IEEE, vol. 106,
no. 10, pp. 1834–1853, Oct. 2018.

MIKHAIL LIUBOGOSHCHEV (Member, IEEE)
received the B.S. and M.S. degrees in applied
mathematics and physics from the Moscow
Institute of Physics and Technology, Moscow,
Russia, in 2017 and 2019, respectively, where
he is currently pursuing the Ph.D. degree in
telecommunications. He is currently a Researcher
with the Network Protocols Research Labora-
tory, Kharkevich Institute for Information Trans-
mission, Russian Academy of Sciences, and

the Wireless Networks Laboratory, Kharkevich Institute for Information
Transmission, Russian Academy of Sciences, since 2016 and 2018, respec-
tively. His research interests include 5G and beyond wireless systems,
QoS-aware cross-layer optimization, and stochastic network modeling and
optimization. He participates in national and international projects and does
research within the framework of joint research projects with the leading
telecommunication companies.

KAMILA RAGIMOVA was born in Dubna,
Russia. She received the B.Sc. degree in applied
mathematics and physics from the Moscow Insti-
tute of Physics and Technology, Moscow, Russia,
in 2020. She is currently pursuing theM.Sc. degree
with the Higher School of Economics, Moscow.
From 2018 to 2020, she was an Intern with
the Wireless Networks Laboratory, Kharkevich
Institute for Information Transmission Problems,
Russian Academy of Sciences. Her research inter-

ests include the analysis of the video-on-demand streaming services and
modeling of adaptive virtual reality applications.

ANDREY LYAKHOV (Member, IEEE) is currently
a Full Professor, the Deputy Director, and the
Head of the Network Protocols Research Lab-
oratory, Institute for Information Transmission
Problems, Russian Academy of Sciences. He has
more than 20 years of experience in Wi-Fi net-
works design and performance evaluation. He has
authored three monographs, more than 100 articles
cited in Scopus, and has ten patents. His main
research interests include design and analysis of

wireless network protocols, wireless network performance evaluation meth-
ods, and stochastic modeling of wireless networks based on randommultiple
access. He was a member of technical and program committees of large
IT conferences (ICC, MACOM, MobiHoc, Networking, and MASS) and
the General Chair of IEEE BlackSeaCom 2019 and WiFlex 2013. He was
a recipient of many international and Russian awards. He led many joint
research projects with top telecommunication companies and collaborative
projects (e.g., FP7 ICT Collaborative Project ‘‘Flexible Architecture for
Virtualizable wireless future Internet Access (FLAVIA)" from 2010 to 2012).

SIYU TANG received the M.Sc. and Ph.D. degrees
in electrical engineering from the Delft Univer-
sity of Technology, The Netherlands, in 2006
and 2010, respectively. Since then, she has been
with Bell Labs, Alcatel-Lucent (later merged with
Nokia), Antwerp, Belgium, working on novel
algorithms and network protocols for ultra-low
latency networks. In 2017, she joined the Huawei
Munich Research Center, Germany, as a Principal
Researcher, working in the field of telecommuni-

cations networks (e.g., future Internet architecture, next-generation network
protocols) and industrial communication networks (e.g., time sensitive net-
working and DetNet). Her expertise is to apply queuing theories, stochastic
modeling methodologies and control theories in communication networks to
improve their performance, stability, and connectivity.

EVGENY KHOROV (Senior Member, IEEE) is
currently the Head of the Wireless Networks Lab-
oratory, Institute for Information Transmission
Problems, Russian Academy of Sciences. He has
led dozens of national and international projects
sponsored by academic funds and industry. Being a
voting member of IEEE 802.11, he has contributed
to the 802.11ax standard as well as to the real-time
applications TIG with many proposals. He has
authored more than 100 articles. His main research

interests include 5G and beyond wireless systems, next-generation Wi-Fi,
protocol design, andQoS-aware cross-layer optimization. He was a recipient
of the Russian Government Award in Science, several Best Papers Awards,
and the Scopus Award Russia 2018. In 2015, 2017, and 2018, Huawei RRC
awarded him as the Best Cooperation Project Leader. He gives tutorials and
participates in panels at large IEEE events. He chairs TPC of the IEEE
GLOBECOM 2018 CA5GS Workshop and IEEE BLACKSEACOM 2019.
He was awarded as the Editor of the Year 2020 of Ad Hoc Networks.

VOLUME 9, 2021 35299


